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Abstract— This paper addresses the problem of tuning fuzzy
logic controllers. In this paper we presents a new technique
called a genetic based fuzzy logic controller (GBFLC). The
proposed technique is used to iteratively tune the set of fuzzy
logic controller parameters such as membership functions and
scaling factors. The proposed technique is also used to reduce
the number of fuzzy rules. Computer simulations are performed
on a wall-following mobile robot and the results show the
usefulness of the proposed technique.

I. INTRODUCTION

Fuzzy logic controllers (FLCs) are currently being used to

a great extend in engineering applications [1], [2] especially

for plants that are complex and ill-defined [3], [4] and plants

with high uncertainty in the knowledge about its environment

such as autonomous mobile robotic systems [5]. However,

FLC has a drawback of finding its knowledge base which

is based on a tedious and unreliable trial and error process

[6]. One way of dealing with this problem is to tune the

set of FLC parameters through the use of genetic algorithms

(GAs).

GAs have been used to overcome the difficulty and

complexity in the tuning of the FLC parameters such as

membership functions (MFs), scaling factors and control

rule configurations [7]. Unlike many classical optimization

techniques, GAs do not rely on computing local derivatives

to guide the search process; all they need is an objective

function [8].

In this paper, a two stage tuning process is proposed to

tune the parameters of FLC such as MFs and scaling factors,

and to reduce the number of the fuzzy rules. In stage 1,

GAs tune the FLC parameters using input/output data pairs

obtained from a PD controller which is used as the initial

expert. In stage 2, the PD controller and the FLC tuned in

stage 1 operate in parallel and then we get new input/output

data pairs which are used by GAs to tune the parameters

of the FLC again. Stage 2 is repeated until the GBFLC has

achieved the desired performance.

This paper is organized as follows: in Section II the

dynamics of a mobile robot that follows a wall are obtained,

also some basic terminologies for the FLC and GAs are

reviewed. Section III describes our proposed GBFLC tech-

nique. Computer simulations are presented in Section IV and
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the results are discussed in Section V. Finally, conclusions

are pointed out in section VI.

II. PRELIMINARIES

A. Mobile robot dynamics

We want the mobile robot to follow a wall at a desired

distance. The minimum distance to the wall is the perpen-

dicular line from the robot to the wall as shown in Fig. 1.

Equations of motion for a mobile robot are [9], [10]

ẋm = Vm cos θm (1)

ẏm = Vm sin θm (2)

θ̇m =
Vm

l
tan u (3)

where xm, ym are the cartesian distances between the robot

and the wall, θm is the orientation of the robot, Vm is the

velocity, l is the turning radius, and u is the steering angle

which is the control action.

B. PD Controller Design

Fig. 2 shows a block diagram of a PD controller system.

The input to the PD controller is the error in distance from

the robot to the wall, and is calculated as

e = Dd −Dm (4)

where Dd and Dm are the desired and actual distances

between the robot and the wall, respectively. The output of

the PD controller is the action, u, which is defined as

u = kp e+ kd ė (5)

where kp and kd are the proportional and the differential gain

coefficients, respectively.
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Fig. 1. Dynamics of a wall-following mobile robot
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Fig. 2. Block diagram of a PD controller system

C. FLC

A block diagram of a FLC is shown in Fig. 3. It has two

inputs, the error, e, and the derivative of the error, ė, and its

output is the control action, u. The FLC is used to control

the distance of a mobile robot to a wall.

We choose 5 trapezoidal MFs for the inputs, e and ė, and

for the output, u, with the same linguistic values HN, LN,

Z, LP and HP where HN means High Negative, LN means

Low Negative, Z means Zero, LP means Low Positive, and

HP means High Positive. A trapezoidal MF which is shown

in Fig. 4 is described by

µ(x) =































0 : x < a
x−a

b−a
: a ≤ x < b

1 : b ≤ x < c
x− c

b− c
: c ≤ x ≤ d

0 : x > d

(6)

where a, b, c, and d are its coefficients. The fuzzy inference

system used in the FLC is a Mamdani type which has rules

of the form

Rl : IF e is Al
1 AND ė is Al

2 THEN ul is Cl, wl = ql (7)

where Al
i is the fuzzy set of the ith input in rule l, Cl is the

fuzzy set of the output ul in rule l, l = 1,2, . . . ,25, wl is

the weight of the lth rule and ql ∈ [0,1]. Table I represents
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Fig. 3. Block diagram of a FLC system
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Fig. 4. A trapezoidal membership function

TABLE I

FUZZY DECISION TABLE

�
�

�
�

�
e

ė
HN LN Z LP HP

HN HN HN HN LN Z

LN HN HN LN Z LP

Z HN LN Z LP HP

LP LN Z LP HP HP

HP Z LP HP HP HP

the fuzzy decision table for the inputs e and ė. The crisp

output can be calculated using the center of area (COA)

deffuzification method as follows

u = ku

m

∑
l=1

µCl (ul).ul

m

∑
l=1

µCl (ul)

(8)

where ku is the scaling factor for the output, and m is the

number of fuzzy rules in the system.

Due to normalization of the input and the output variables,

we need to use the scaling factors. We denote the scaling

factors of the inputs as ke and kė, and of the output as ku.

Since the tuning of scaling factors is a trial-and-error

process, it takes much time to reach its best values. These

values may be good but may not be the optimum. In this

paper, we tune the scaling factors of the inputs and the output

using the proposed GBFLC.

D. GAs

GAs, which were proposed by Holland in 1973 [11],

are search and optimization techniques that are based on a

formalization of natural genetics [12].

GAs search a multidimensional parameter space to find

an optimal solution. A given set of parameters is referred

to as a chromosome. The parameters can be either decimal

or binary numbers. The GA is initialized with a number

of randomly selected parameter vectors or chromosomes.

This set of chromosomes is the initial population. Each

chromosome is tested and evaluated based on a fitness

function; in control engineering we would refer to this as

a cost function. The chromosomes are sorted based on the

lowest cost function or the ranking of the fitness functions.

One then selects a number of the best, according to the fitness

function, chromosomes to be parents of the next generation

of chromosomes. A new set of chromosomes is selected

based on reproduction.

In the reproduction process, we generate new chromo-

somes, which are called children. We use two GA operations.

The first operation is a crossover in which we choose a pair of

parents and select a random point in all of their chromosomes

and make a cross replacement from one parent to another.

The second operation is a mutation in which a parent is

selected and we change one or more of its parameters to get

2
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a new child. Now, we have a new population to test again

with the fitness function. The genetic process is repeated

until the last iteration is reached.

III. THE PROPOSED GBFLC TECHNIQUE

Our proposed GBFLC is shown in Fig. 5. Tuning the

parameters of the FLC passes through two stages. In stage

1, we run the PD controller as shown in the upper figure to

obtain the initial input/output data pairs. Then we use GAs

to tune the parameters of the FLC using these input/output

data pairs. In Stage 2, the PD controller and the FLC tuned in

stage 1 operate in parallel as shown in the lower figure. We

then get new input/output data pairs which are used by GAs

to tune the parameters of the FLC again. Stage 2 is repeated

until the FLC has achieved the desired accuracy. Algorithm

1 describes the tuning process in stage 1 and Algorithm 2

describes the tuning process in stage 2. In [13], a similar

technique is used but the training data is used to tune the

weights of a neural network controller.

Algorithm 1 : Tuning in stage 1

1) Run the PD controller and obtain L input/output data

pairs.

2) Initialize population with size P for the MFs parame-

ters, the scaling factors, and the fuzzy rules’ weights

chromosomes.

3) Repeat for each iteration i

a) repeat for each population p

i) Construct a FLC from the pth chromosome of

the MFs parameters, the scaling factors, and

the fuzzy rules’ weights.

ii) Repeat for each input/output data pair l

• Evaluate the output, ul
f lc, of the constructed

FLC using the inputs obtained in step 1.

iii) Calculate the pth fitness function. We use

the mean square error function (MSE) as the

fitness function which is defined as

MSE =
1

2L

L

∑
l=1

(ul
d −ul

f lc)
2 (9)

b) Sort the entire chromosomes (for the MFs pa-

rameters, the scaling factors, and the fuzzy rules’

weights) of the population according to their

fitness values.

c) Select a portion of the sorted population as the

new parents.

d) Create a new generation for the remaining portion

of population using crossover and mutation.

IV. COMPUTER SIMULATION

We choose the velocity of the robot to be constant, Vm = 50

cm/s. The robot starts moving with an initial orientation,

θm = 0 rad. The turning radius, l = 10 cm. The desired

Algorithm 2 : Tuning in stage 2

1) Put the tuned FLC obtained from Algorithm 1 in

parallel with the PD controller.

2) Run the system and obtain L input/output data pairs.

3) Run Algorithm 1 steps 2 and 3.

4) Does the tuned FLC resulting from this algorithm

achieve the desired performance.

• If YES then end the algorithm.

• If NO then go to the next step.

5) Put the tuned FLC obtained from this algorithm in

parallel with the PD controller again.

6) Go to step 2.

Stage 1 

Stage 2 

flcu

du

Tuning parameters 

of the FLC

pdu

+

+
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Fig. 5. The proposed GBFLC

distance between the robot and the wall is Dd = 100 cm.

We choose the proportional and the differential gains of the

PD controller kp and kd to be 1.2 and 1.5, respectively.

In our proposed GBFLC, we construct 3 chromosomes.

The first one represents the MF parameters. The second one

represents the scaling factors and the third one represents the

fuzzy rules’ weights.

The proposed GBFLC has 3 variables: 2 inputs, e and ė,

and one output, u. Each variable has 5 MFs with the linguistic

values HN, LN, Z, LP, and HP. Each MF has 4 coefficients

(a, b, c, and d) so the total number of MF parameters to

be tuned is 3 variables × 5 MFs × 4 coefficients = 60

parameters. So, the chromosome of a MF has a length of 60

genes. We use decimal numbers for coding these parameters.

In order to choose consistent values for the MF parameters,

we redefine the MF parameters as shown in Fig. 6 to be

a = xo + p1;

b = xo + p1 + p2;

c = xo + p1 + p2 + p3;

d = xo + p1 + p2 + p3 + p4.

3

3557



$
x

x

)(xP

1p 2p
3p 4p

1-

Fig. 6. Trapezoidal MF with modified coefficients

The proposed GBFLC has 3 scaling factors: 2 for the

inputs, ke and kė and one for the output, ku. The chromosome

of the scaling factors has 3 genes. We use decimal numbers

for coding scaling factors.

Reducing the number of fuzzy rules is important for fuzzy

control of complex processes with high dimensionality [14].

The proposed GBFLC has 5 MFs for each input so the total

number of fuzzy rules is 5 × 5 = 25 fuzzy rules. We tune

the weight of each fuzzy rule so, we generate a chromosome

of 25 genes which we put in a binary string. When a gene

= 0 that means the related fuzzy rule will be omitted and a

gene of value 1 means the related fuzzy rule will be added

to the rule base.

In our GBFLC, we tried several population sizes. We tried

20, 40, 60, 80, 100, 200, 400, 500, and 1000. We found that a

population size of 20 is not enough to get acceptable results.

On the other hand, a population size greater than 40 does

not significantly improve performance. Therefore, we chose

a population size of 40. That number means that we have 40

chromosomes for the MFs, scaling factors, and fuzzy rules’

weights. We also tried different numbers of iterations. We

tried 10, 15, 20 50, and 100. We found that 10 iterations are

not enough to get acceptable results. On the other hand, more

than 15 iterations did not significantly improve performance.

Therefore, we chose 15 iterations. We used a pentium 4

computer with a 3.2 GHz clock frequency and 1.0 Gigabytes

of RAM. The GA program with a population size of 1000

and with 100 iterations took about 2 hours to compute

the results and this is computationally expensive and time

consuming but a population size of 40 with 15 iterations took

about 5 minutes. The probability of crossover is chosen to be

0.4 as such we reproduce 16 chromosomes by crossover. In

binary coding, we select a random point as mentioned before,

and make the crossover process. In decimal coding, we

simply multiply the first chromosome of the selected portion

of the old population (20 chromosomes) by a random number

r, where r ∈ [0,1], and multiply the second chromosome by

(1−r) then add both of them to generate a new chromosome.

We repeat this operation for the next chromosome in the old

population until the number of crossover chromosomes is

reached. Here, we set r = 0.5. The probability of mutation

is chosen to be 0.1, therefore, we reproduce 4 chromosomes

on average by mutation. For the binary and decimal coding,

we generate 4 new chromosomes randomly to avoid a local

minimum for the fitness function.

V. RESULTS

In stage 1, we obtain the input/output data pairs from the

PD controller and use them to tune our proposed GBFLC

as we described in Algorithm 1. We use the PD controller

shown in Fig. 2 to teach the FLC; the PD controller is thought

of as the initial expert. Fig. 7 shows error resulting from the

PD controller versus error resulting from the FLC obtained

from stage 1.

We put the tuned FLC obtained from stage 1 in parallel

with the PD controller and get new input/output data pairs.

We use these data pairs to further tune the FLC obtained

from stage 1 as we described in Algorithm 2. We repeated

this cycle twice.

Fig. 8 shows error resulting from the PD controller versus

error resulting from the PD controller in parallel with the

FLC obtained from stage 1. Fig. 9 shows error resulting

from the PD controller versus error resulting from the FLC

obtained from cycle 1 of stage 2. Fig. 10 shows error

resulting from the PD controller versus error resulting from

the PD controller in parallel with the FLC obtained from

cycle 1 of stage 2. Fig. 11 shows error resulting from the PD

controller versus error resulting from the FLC obtained from

cycle 2 of stage 2. Fig. 12 shows error resulting from the

PD controller versus error resulting from the PD controller

in parallel with the FLC obtained from cycle 2 of stage 2.

Fig. 7, Fig. 9, and Fig. 11 show us how the performance

of the FLC improves from the first to the second stage (the

two cycles) and the best performance is that of the FLC

obtained from cycle 2 of stage 2. Fig. 13 shows the paths

of the mobile robot to follow a wall using the PD controller

and the proposed GBFLC. Fig. 11 and Fig. 13 tell us that

our proposed GBFLC is better than the PD controller.

Table II, Table III, and Table IV represent the tuned

parameters of the MFs for the input e, the input ė, and the

output u, respectively. Table V represents the scaling factors

after tuning. Table VI represents the fuzzy decision table

after the tuning process. The empty places in Table VI are

the omitted rules due to tuning. Here we see that the number

of fuzzy rules is reduced by 44% from 25 rules before tuning

to 14 after tuning.

TABLE II

TUNED MF PARAMETERS FOR THE INPUT e

a b c d

HN -1.1277 -0.7744 -0.4998 -0.2049

LN -0.6312 -0.4160 -0.0660 0.2497

Z -0.4211 -0.1129 0.1350 0.3521

LP -0.2460 0.1331 0.4266 0.7748

HP 0.2579 0.6270 0.8409 1.1814
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Fig. 7. Error resulting from the PD controller (solid line) vs. error resulting
from the FLC obtained from stage 1 (dotted line)
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Fig. 8. Error resulting from the PD controller (solid line) vs. error resulting
from the PD controller parallel with the FLC obtained from stage 1 (dotted
line)
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Fig. 9. Error resulting from the PD controller (solid line) vs. error resulting
from the FLC obtained from cycle 1 of stage 2 (dotted line)
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Fig. 10. Error resulting from the PD controller (solid line) vs. error resulting
from the PD controller parallel with the FLC obtained from cycle 1 of stage
2 (dotted line)
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Fig. 11. Error resulting from the PD controller (solid line) vs. error resulting
from the FLC obtained from cycle 2 of stage 2 (dotted line)
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Fig. 12. Error resulting from the PD controller (solid line) vs. error resulting
from the PD controller parallel with the FLC obtained from cycle 2 of stage
2 (dotted line)
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Fig. 13. Paths of the mobile robot to follow a wall using the PD controller
(solid line) vs. the GBFLC (dotted line)

TABLE III

TUNED MF PARAMETERS FOR THE INPUT ė

a b c d

HN -1.1899 -0.9170 -0.5926 -0.3476

LN -0.7226 -0.4392 -0.1337 0.2220

Z -0.4226 -0.1821 0.1041 0.3307

LP -0.2885 0.0385 0.3351 0.6641

HP 0.3777 0.5834 0.8787 1.1502

TABLE IV

TUNED MF PARAMETERS FOR THE OUTPUT u

a b c d

HN -1.1782 -0.8579 -0.5208 -0.1903

LN -0.7220 -0.4580 -0.0858 0.1457

Z -0.4592 -0.1918 0.1065 0.3961

LP -0.1679 0.1698 0.4631 0.6976

HP 0.3242 0.6034 0.8046 1.1057

TABLE V

SCALING FACTORS

ke kė ku

1.2858 1.6465 1.6206

TABLE VI

FUZZY DECISION TABLE AFTER TUNING

�
�

�
�

�
e

ė
HN LN Z LP HP

HN HN HN Z

LN HN LN Z

Z LN Z LP

LP HP HP

HP LP HP HP

VI. CONCLUSIONS

This paper introduces a new technique to tune all the pa-

rameters of a FLC using GAs. The proposed GBFLC is used

to control a wall-following mobile robot. Two algorithms

are described for the tuning process. Algorithm 1 uses a

PD controller as the initial expert. Algorithm 2 uses the

PD controller and the GBFLC in parallel with to continue

improving the performance. In this case, the output of the

PD controller is viewed as an error signal that is to be driven

to zero. We tune the coefficients of the inputs and the output

MFs. Also, we tune the scaling factors of the inputs and the

output. Finally, we reduce the number of fuzzy rules. The

results show that the performance of the FLC tuned by the

proposed technique is better than the performance of the PD

controller.
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