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Abstract— In repetitive control, the Bode Sensitivity Integral
dictates a fundamental trade-off between improved suppression
of periodic disturbances and degraded performance for non-
periodic inputs. This paper experimentally demonstrates the
implications of this trade-off by applying a recently developed
systematic repetitive control design approach to an active
air bearing setup. This design methodology translates the
fundamental trade-off into trade-off curves between a non-
periodic and periodic performance index, of which the practical
relevance is illustrated by the obtained experimental results.

I. INTRODUCTION

Including a repetitive controller in the feedback loop

constitutes a common way to improve the attenuation of

periodic disturbances. However, this improved periodic per-

formance comes at the price of degraded performance for

non-periodic inputs, since pushing the sensitivity down to

zero at the periodic input’s harmonics increases the sensi-

tivity at intermediate frequencies, as dictated by the Bode

Sensitivity Integral [4]. To allow for a systematic analysis

of this fundamental trade-off in repetitive control, Pipeleers

et al. [12] define two performance indices quantifying the

repetitive controller’s effect on the closed-loop performance

with respect to periodic and non-periodic inputs. Period-

time uncertainty is explicitly accounted for and the repetitive

controller is designed to yield an optimal trade-off between

both performance indices. By application of the (generalized)

Kalman-Yakubovich-Popov (KYP) lemma [9], the corre-

sponding optimal design problem is translated into a semi-

definite program (SDP), of which the convexity (i) guarantees

the reliable and efficient computation of the global optimum,

and (ii) facilitates the generation of trade-off curves between

the two conflicting performance indices.

The purpose of this paper is to experimentally demonstrate

the value of the trade-off curves computed by the approach

[12] in dealing with the fundamental performance trade-off in

repetitive control on an active air bearing setup. The control

objective is reducing the error motion of the spindle’s axis

of rotation by appropriate actuation of the active journal

bearing. This error motion, being related to mass unbalance

and profile errors of the bearing parts, is periodic with the

spindle rotation, leaving measurement noise as the sole non-

periodic input to the control problem. Comparison of various

repetitive controller designs on the trade-off curve reveal that

superior reduction of the periodic error motion comes at

too high a price of measurement noise amplification. This

deteriorates the overall closed-loop performance while the

trade-off curve reveals more appropriate repetitive controller

designs.

As periodic disturbances are characteristic for spindle

applications, repetitive control is not new in the field of active

bearing control. In active air bearing applications, repetitive

control has been applied to overcome the low stiffness and

damping of the air film [2], [6], [7], whereas in magnetic

bearings, repetitive control is essential for obtaining sufficient

rotational accuracy [16], [17]. While in these applications

the repetitive controller is restricted to a basic, first-order

design, more advanced repetitive controller designs have

been experimentally validated for disk drive servo systems

[14], [15], a major industrial application of repetitive control.

However, all these repetitive controllers enforce perfect sup-

pression of the periodic disturbances without investigating

the consequences of the fundamental trade-off in repetitive

control on the overall performance.

This paper is organized as follows. Section II first de-

scribes the experimental setup and the corresponding control

scheme. Section III elaborates on the repetitive controller

design, while Sec. IV experimentally validates the selected

controllers. Section V concludes the paper. The notation used

in this paper is standard. To alleviate notation, the frequency

response function (FRF) of a discrete-time system H(z) is

denoted by H(ω) instead of H
(
ejωTs

)
.

II. EXPERIMENTAL SETUP

The experimental setup comprises the active air bearing

prototype presented in [1]. Section II-A starts with the

description of the test setup, whereas Sec. II-B details

the corresponding control scheme. Subsequently, Sec. II-C

discusses the parametric identification of the system.

A. Description

The experimental setup is depicted in Fig. 1, where

Fig. 1(a) shows a top view of the setup and Fig. 1(b)

illustrates the active air bearing layout.

The spindle is driven by an asynchronous motor and

supported by aerostatic bearings: the axial (thrust) and rear

radial (journal) bearing are passive whereas the front radial

bearing is active. The active bearing comprises a compliant

bearing surface composed of four lands, which are supported
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Fig. 1. Active air bearing setup: (a) top view of the experimental setup and (b) illustration of the active air bearing layout (not proportional), where the
dashed line illustrates the bearing surface deformation due to actuation of the top piezo-actuator.

on four rows of two piezo-actuators each. These actuators

deform the bearing surface in a controlled manner so as

to induce a radial force on the shaft via the air film. In

the case of the radial spindle bearing, the shaft has two

degrees of freedom normal to its axis. Consequently, two

displacement sensors are needed, one for each of these two

principal directions. Capacitive sensors are employed (Lion

Precision) and a reference target ring was machined in situ

on the spindle nose. The two measurement directions are

aligned horizontally and vertically, and coincide with the

working directions of the piezo-actuators. When driving the

opposite piezo-actuators in anti-phase, both “pushing” and

“pulling” in the two principal directions is possible. As a

result, only two scalar control inputs, denoted uh [V] and

uv [V], remain determining the amplifier inputs for the

horizontal and vertical piezo-actuators, respectively. These

signals are grouped into the vector

u =

[
uh

uv

]
, (1)

and in the same way, the outputs of the displacement sensors,

denoted ym,h [m] and ym,v [m], are grouped into ym.

Throughout this paper, vectors and matrices are indicated in

bold, where in case of a two-dimensional vector, the first and

second element relate to the horizontal and vertical direction,

respectively.

At the nose of the spindle, a disk is clamped generating

a 4.6 10−5 kgm mass unbalance and at the end of this disk

an encoder (500 counts per rotation) is mounted.

B. Control scheme

The objective of the controller is to suppress the error

motion e [m] of the spindle’s axis of rotation by controlling

the piezo-actuators of the active air bearing based on the

measured displacements ym [m]. Since e is periodic with

the spindle rotation, repetitive control is the appropriate

control strategy. The control problem is handled in discrete

+
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Fig. 2. Control scheme used to suppress the error motion of the spindle’s
axis of rotation by repetitive control.

time, where the sample frequency equals fs = 10 kHz and

the corresponding control scheme is shown in Fig. 2. The

experimental validation of the repetitive controllers focusses

on rotational speeds of the spindle between 900 rpm and

1200 rpm.

The error motion e is the sum of two contributions: (i)

ed [m] related to the mass unbalance and profile errors of the

bearing parts and (ii) eu [m] caused by actuation of the active

air bearing. The displacement sensors generate the measure-

ment ym, which corresponds to the actual error motion e

corrupted with (i) (stochastic) measurement noise n [m] and

(ii) a (periodic) systematic error r [m] due to roundness error

of the reference target ring for the displacement sensors.

As suppressing the error motion e constitutes the control

objective, the repetitive controller KRC(z) should not re-

spond to the systematic measurement error r. To this end,

the measured error motion em [m] is constructed from the

measurements ym by subtracting an estimate r̂ [m] of the

roundness error r. To compute r̂ at each time instant, the

roundness error is determined a priori as a function of the

spindle angle θ [rad] using the method of master reversal

proposed by Donaldson [3]. In operation θ is measured by

the encoder, yielding r̂ as a function of time.

C. Identification

For the considered control problem, the plant G(z) cor-

responds to the two-by-two system with input u and output
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eu: [
eu,h

eu,v

]

︸ ︷︷ ︸
eu

=

[
Gh(z) Ghv(z)
Gvh(z) Gv(z)

]

︸ ︷︷ ︸
G(z)

[
uh

uv

]

︸ ︷︷ ︸
u

. (2)

The identification is performed by separate excitation of the

horizontal and vertical piezo-actuators and is executed at

three rotational speeds of the spindle: 900 rpm, 1050 rpm and

1200 rpm. The system is excited between 1 Hz and 2500 Hz

by random multi-sines [11] with a frequency resolution of

1 Hz. The error motion ed (due to mass unbalance and

profile errors of the bearing parts) does not hamper the

identification, for the excitation frequencies are selected not

to coincide with harmonics of the spindle’s rotational speed.

The non-parametric FRF estimates for the four plant

components reveal that (i) the off-diagonal gains |Ghv(ω)|
and |Gvh(ω)| are on average 20 dB less than the diagonal

gains |Gh(ω)| and |Gv(ω)|, and (ii) up to 1 kHz, the plant

dynamics are almost independent of the spindle’s rotational

speed. Based on the first observation, the plant is assumed

decoupled for the controller design and the simulations, that

is: the off-diagonal components Ghv(z) and Gvh(z) are

neglected. The subsequent experimental validation of the

controllers supports this assumption, for the experimental re-

sults on the actual, coupled setup show good correspondence

with the decoupled simulations.

Given the decoupling assumption, the controller design

only requires parametric models for the diagonal plant com-

ponents Gh(z) and Gv(z). Using the fdident toolbox [10], a

9th order discrete-time model Ĝh(z) is identified for Gh(z),
while the identified model Ĝv(z) for Gv(z) is of order

17. Comparison of the parametric and non-parametric FRFs

indicate that both plant models are accurate up to 600 Hz.

III. REPETITIVE CONTROLLER DESIGN

This section elaborates on the design of the repetitive

controller KRC(z). Relying on the decoupling assumption

for the plant G(z), a decoupled design of the repetitive

controller KRC(z) suffices:

KRC(z) =

[
KRC,h(z) 0

0 KRC,v(z)

]
, (3)

where the SISO controllers KRC,h(z) and KRC,v(z) are

designed according to the strategy proposed in [12]. Sec-

tion III-A summarizes this design approach, while Sec. III-

B discusses the selected repetitive controllers for the control

problem at hand.

Concerning the rotational speed of the spindle, the fol-

lowing notation is used: The desired rotational speed used

as entry for the frequency converter that drives the asyn-

chronous motor is indicated by f0,des [Hz]. However, the

repetitive controller implementation requires the period to

contain an integer number N of samples. Hence, assuming

that fs cannot be changed, the best the repetitive controller

can do is to account for f0 = fs/N [Hz], where

N = int(fs/f0,des) , (4)

+

M∑

m=1

Wmz−mN Q(z)

KRC,h(z)

eh uhLh(z)

Fig. 3. Structure of the horizontal SISO repetitive controller, where the
vertical equivalent is obtained by replacing the subscript ·h by ·v .

and ω0 = 2πf0 [rad/s]. The actual rotational speed of the

spindle is denoted f0,δ [Hz] (ω0,δ = 2πf0,δ [rad/s]) and may

deviate from both f0,des and f0, where δ corresponds to the

relative deviation from f0

f0,δ = f0(1 + δ) , (5)

and is bounded by ∆:

|δ| < ∆ . (6)

A. Repetitive controller design strategy

The SISO repetitive controllers KRC,h(z) and KRC,v(z)
feature the structure of Fig. 3, where only the design of the

filter L(z) depends on the control direction. The horizontal

repetitive controller equals

KRC,h(z) = Lh(z)
W (z)Q(z)

1 − W (z)Q(z)
, (7)

where

W (z) =
M∑

m=1

Wmz−mN , (8)

and N is given by (4). M is called the order of the repetitive

controller. Under the assumption of a decoupled plant, the

decoupled controller KRC(z) (3) gives rise to a decoupled

closed-loop sensitivity function, of which the horizontal

diagonal element is given by

Sh(z) =
1 − W (z)Q(z)

1 − W (z)Q(z) [1 − Lh(z)Gh(z)]
. (9)

The vertical equivalents of (7) and (9) are obtained by

replacing the subscript ·h by ·v .

The filters Q(z) and L(z) guarantee robust stability of the

closed-loop system, whereas the closed-loop performance is

optimized through the design of W (z).
1) Stability: To achieve robust closed-loop stability, the

filters L(z) and Q(z) are designed in accordance with the

common procedure in repetitive control [5], [8], [14]:

• L(z) is designed as the series connection of the inverse

plant model and a low-pass filter F (z):

Lh(z) = Ĝh(z)−1F (z) , Lv(z) = Ĝv(z)−1F (z) ,
(10)

where the relative degree of the minimum-phase but

strictly proper identified plant models is accounted

for as explained in [15]. F (z) is designed as a low-

pass linear-phase FIR filter1 of order 300 with cut-off

frequency 640 Hz.

1Linear-phase FIR filters are preferred for F (z) and Q(z), since their
linear phase behavior can be compensated for, as detailed in [15].
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• Q(z) is designed as a low-pass linear-phase FIR filter

of order 200 with cut-off frequency 620 Hz.

Including the inverse plant model in L(z) guarantees nominal

stability, for in case of perfect plant models Ĝh(z) and Ĝv(z)
and F (z) = Q(z) = 1, Sh(z) and Sv(z) are both equal to:

S̃(z) = 1 − W (z) . (11)

However, the identified models are only accurate up to

600 Hz, raising the issue of robust stability. To this end,

the low-pass filters Q(z) and F (z) turn off the repetitive

controller from 600 Hz, the frequency from which the

identified models are insufficiently accurate.

2) Performance: According to [12], performance is speci-

fied as an optimal trade-off between two performance indices

that quantify the closed-loop performance with respect to the

periodic and the non-periodic inputs, respectively. The defini-

tion of these performance indices relies on the assumptions

that in the pass band of the filters Q(z) and F (z) (i) the

filters equal their dc-gain and (ii) the identified plant models

are perfect. These assumptions imply that Sh(ω) = Sv(ω) =
S̃(ω) holds up to 600 Hz.

The periodic performance index γp,∆ corresponds to the

smallest reduction |S̃(lω0,δ)| over all harmonics l ≤ Λ and

over all potential ω0,δ values:

γp,∆ ≡ max
l≤Λ

{
max
ω∈Ωl

{
|S̃(ω)|

}}
, (12)

where Ωl corresponds to the uncertainty interval on the lth
harmonic:

Ωl = [lω0(1 − ∆) , lω0(1 + ∆)] . (13)

Λ is set equal to the highest harmonic in the pass-band of

Q(z) that should be suppressed. Attenuation of the periodic

disturbances corresponds to γp,∆ < 1, where γp,∆ = 0
indicates perfect rejection.

The non-periodic performance index γnp is defined as the

highest amplification |S̃(ω)| over all frequencies ω:

γnp ≡ ‖S̃(ω)‖∞ . (14)

Due to the Bode Sensitivity Integral, repetitive controllers

are bound to amplify the non-periodic disturbances, yielding

γnp > 1, where values closer to one are preferred.

The repetitive controller is designed to yield an optimal

trade-off between the conflicting performance indices γp,∆

and γnp. To this end, the parameters Wm are computed as

the solution of the following optimization problem

minimize
Wm

γp,∆ + αγnp (15a)

subject to def. (12) (15b)

def. (14) , (15c)

where the weight α quantifies the relative importance of

γp,∆ and γnp. As explained in [12], application of the

(generalized) KYP lemma converts this optimization problem

into an SDP. The convexity of the obtained optimization

γ
n

p

γ
n

p

γp,2%

γp,2%

KRC1

KRC2

KRC2

KRC3

KRC3

1
1

2

2

3

3

4

0

0

0.01 0.02 0.03

0.25 0.5 0.75

Fig. 4. Trade-off curve between γp,2% and γnp for fifth-order repetitive
controllers, where the selected controller designs are indicated. KRC2(z)
and KRC3(z) correspond to optimal fifth-order repetitive controllers,
whereas KRC1(z) is a classical first-order controller.

problem guarantees the reliable and efficient computation of

the global optimum and facilitates the generation of trade-

off curves between γp,∆ and γnp, which are computed by

solving (15) for a range of α values.

B. Selected repetitive controllers

As explained in [12], given W (z), γp,∆ depends only on

the product Λ∆ and neither on f0, nor on the individual

values of Λ and ∆. In the repetitive controller design Λ∆ is

set equal to 2% and with an abuse of notation the periodic

performance index is indicated by γp,2% instead of γp,∆.

Three repetitive controllers, characterized by a different

design of W (z) and of which the corresponding performance

indices are given in Table I, are experimentally validated. The

first repetitive controller, denoted KRC1(z), corresponds to

the more frequently used basic first-order repetitive controller

W (z) = z−N . This controller yields γnp = 2 and although

this controller perfectly rejects periodic disturbances at f0,

its robust periodic performance is moderate: γp,2% = 0.13.

The repetitive controllers KRC2(z) and KRC3(z), on the

other hand, are fifth-order repetitive controllers (M = 5),

optimized according to (15) and corresponding to different

trade-offs between γp,2% and γnp (that is: different weights

α). Figure 4 indicates both designs on the trade-off curve

between γp,2% and γnp for fifth-order repetitive controllers.

For a given level of robust periodic performance γp,2%, the

trade-off curve indicates the minimal level of non-periodic

performance degradation γnp that has to be tolerated. Or,

vice-versa, for a fixed level of non-periodic performance, the

trade-off curve indicates the best robust periodic performance

that can be achieved. The steep slope between KRC2(z) and

KRC3(z) indicates that improving the periodic performance

below γp,2% = 0.022 comes at the price of very high

amplification of the non-periodic disturbances: compared

1619



γp,2% γnp

KRC1(z) 0.13 2

KRC2(z) 0.022 1.8

KRC3(z) 0.0013 3.3

TABLE I

PERFORMANCE INDICES OF THE SELECTED REPETITIVE CONTROLLERS.

to KRC2(z), KRC3(z) improves the periodic performance

from γp,2% = 0.022 to γp,2% = 0.0013, but degrades the

non-periodic performance from γnp = 1.8 to γnp = 3.3. The

first-order repetitive controller KRC1(z) is also indicated in

Fig. 4, but as it does not correspond to an optimal fifth-order

design, it is located off the trade-off curve.

IV. EXPERIMENTAL RESULTS

This section investigates the implications of the funda-

mental performance trade-off in repetitive control on the

active air bearing setup by comparing the selected repetitive

controllers. The experimental validation is performed at

various spindle speeds between 900 rpm and 1200 rpm, but

as these results are very similar, this section only discusses

the validation at 1200 rpm, yielding f0 = f0,des = 20 Hz

and N = 500.

To distinguish between the conflicting performance as-

pects of the repetitive controllers, the measured steady-state

error motion em is split up in its part periodic with the

spindle rotation and its non-periodic contribution. Table II

summarizes the root-mean-square (rms) values of the peri-

odic and non-periodic part of em, where only the frequency

content up to 600 Hz, the working range of the repetitive

controllers, is accounted for. This table is further discussed

below.

A. Periodic performance

To allow for a detailed evaluation of the repetitive con-

trollers’s periodic performance, Fig. 5 shows the reduction in

the amplitude spectrum of the periodic part of the measured

horizontal error motion em,h achieved by the repetitive con-

trollers. The actual period of the spindle rotation is estimated

using the approach of [13], yielding f0,δ = 19.968 Hz, and

the spectrum is shown up to the 30th harmonic.

Converted to dB, the γp,2%-values of Table I imply that

all harmonics up to Λ = int(2%/∆) will be reduced by

18 dB by KRC1(z), 33 dB by KRC2(z), and 58 dB by

KRC3(z). As f0,δ = 19.968 Hz corresponds to δ = 0.16%,

it follows that this theoretical result should be valid for Λ =
12, as confirmed by Fig. 5. Furthermore, both Fig. 5 and

Table II indicate that a lower γp,2% value gives rise to a

smaller periodic contribution to em, even if 30 harmonics

are taken into account.

The results for KRC1(z) reveal the necessity to account

for uncertainty on f0. Whereas this controller would perfectly

eliminate the periodic contribution to em if δ = 0%, the

small deviation δ = 0.16% causes a significant periodic

performance degradation for KRC1(z).

horizontal vertical

per. non-per. per. non-per.

no RC 95.2 nm 2.4 nm 113.4 nm 2.9 nm

KRC1(z) 4.3 nm 2.1 nm 3.9 nm 3.9 nm

KRC2(z) 2.7 nm 2.1 nm 2.7 nm 4.2 nm

KRC3(z) 0.7 nm 4.4 nm 0.9 nm 8.6 nm

TABLE II

STEADY-STATE RESPONSE (1200 RPM): ROOT-MEAN-SQUARE VALUES

OF THE PERIODIC AND NON-PERIODIC CONTRIBUTION TO THE

MEASURED ERROR OF THE SPINDLE’S AXIS OF ROTATION IN THE ACTIVE

FREQUENCY RANGE OF THE REPETITIVE CONTROLLERS.

B. Non-periodic performance

For the control problem at hand, the measurement noise

n constitutes the sole non-periodic input to the closed-loop

system. Figure 6 complements the rms values of Table II by

showing the power spectrum of the non-periodic part of the

measured error motion em.

Converted to dB, the γnp-values of Table I translate into

a worst-case measurement noise amplification of 6 dB by

KRC1(z), 5 dB by KRC2(z) and 10 dB by KRC3(z).
As observed in Fig. 6, these amplification levels manifest

in between the harmonics. Inspection of the rms values

in Table II reveals that the superior periodic performance

of KRC3(z) comes at too high an amplification of the

measurement noise, deteriorating the overall closed-loop

performance. From this point of view KRC2(z) is preferred,

for it combines better periodic performance than KRC1(z)
with a similar amplification of measurement noise.

Interpretation of the results of Fig. 6 and Table II requires

special care, for they involve the measured error motion

em. While n relates to em by the closed-loop sensitivity,

its effect on the actual error motion e is determined by

the complementary sensitivity. However, simulation of the

measured actuator signals through the identified plant models

Ĝh(z) and Ĝv(z) (providing an estimate of the actuals error

motion e) yields similar results as Fig. 6 and Table II,

and hence, the main conclusions regarding the non-periodic

performance remain valid.

V. CONCLUSION

Relying on the repetitive controller design methodology

of [12], this paper investigates the implications of the

fundamental performance trade-off in repetitive control for

the reduction of the error motion of the spindle’s axis of

rotation in an active air bearing setup. As dictated by the

Bode Sensitivity Integral, improved suppression of periodic

disturbances, quantified by γp,∆, comes at the price of

degraded performance for non-periodic inputs, quantified by

γnp.

The experimental results confirm the trade-off curve be-

tween γp,∆ and γnp, as computed by [12]. Although mea-

surement noise constitutes the sole non-periodic input to the

considered control problem, the experimental results show

that it should not be neglected in the repetitive controller

design. If γp,∆ is improved at the price of too high a degra-
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Fig. 5. Periodic steady-state response (1200 rpm): reduction in the amplitude spectrum of the periodic part of the horizontal tracking error em,h achieved
by the three repetitive controllers.
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Fig. 6. Non-periodic steady-state response (1200 rpm): power spectrum of the non-periodic component of the measured horizontal error motion em,h

for the three repetitive controllers.

dation of γnp, the fed-back measurement noise dominates

the error motion of the axis of rotation.
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