
  

  
Abstract— An industrial loop tuner that uses conventional 

and modified relay feedback tests is presented in the paper. 
The modified relay feedback test is designed the way, so that 
the ultimate frequency in the test coincides with the phase 
cross-over frequency in the open-loop system having a PID 
controller. This allows for simple non-parametric tuning rules 
for PID controllers that provide the desired gain margin 
exactly. Robustness of non-parametric tuning is analyzed. 
Simulations are provided. Industrial loop tuner CLTUNE is 
described. 

I. INTRODUCTION 
N SPITE of the successful application of some types of 
advanced control techniques, the PID control still remains 

the main type of control used in the process industries. PID 
controllers are usually implemented as stand-alone 
controllers or configurable software modules within the 
distributed control systems (DCS). The DCS software is 
constantly evolving providing a number of new features. 
One of most useful features seen in the latest releases of 
such popular DCS as Honeywell Experion PKS® and 
Emerson DeltaV® is the controller autotuning functionality. 
Despite the existence of a large number of tuning 
algorithms, there is still a need in simple and not necessarily 
very precise, but reliable loop tuning algorithms that would 
be imbedded in stand-alone PID controllers or used as 
additional autotuning add-ons in the PID controllers of DCS. 
The practice of the use of a number of autotuning algorithms 
shows that many of them do not provide a satisfactory 
performance if the process is subject to noise, variable 
external disturbance or nonlinear. On the other hand the 
simplest algorithms such as Ziegler-Nichols’s closed-loop 
tuning method [1] and Astrom-Hagglund’s relay feedback 
test (RFT) [2] provide a satisfactory performance in those 
conditions despite the inherent relatively low accuracy of 
those methods. The explanation of this phenomenon still has 
to be given. Apparently, the use of an underlying model of 
the process in a parametric method (not fully matching to the 
actual process dynamics) that usually has three or higher 
number of parameters may result in the significant 
deterioration of the identification-tuning accuracy if the test 
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conditions are affected by noise, disturbances or 
nonlinearities. Only the most basic characteristics of the 
system, such as the ultimate gain and ultimate frequency [1], 
remain nearly unchanged in those conditions. As a result, 
many industrial tuners that utilize high-order underlying 
models may provide very precise results in simulations but 
turn out to be partly or fully unusable in real plant situations. 

The paper is organized as follows. At first the 
circumstances of test over real processes are considered. 
Then the problem of selection of the test point on the 
frequency response of the process is analyzed. After that a 
modified RFT that provides generation of the oscillations at 
a given point of the phase response of the process is 
proposed and the tuning rules are formulated. The 
robustness of the proposed algorithm is analyzed. Finally, 
the implementation of industrial loop tuner is given. 

 

II. MOTIVATING EXAMPLE FOR JUSTIFICATION OF NON-
PARAMETRIC LOOP TUNING 

Consider the following example of RFT over a flow loop. 
Two trends are presented as snapshots in Fig. 1 and 2, with 
OP being the controller output, PV being the process 
variable, and SP being the set point. Note that during the test 
SP=PV due to the “tracking” mode of the controller. The 
actual SP value that is used during the test is equal to the 
initial value of the SP before the test (SP=SP0). 

 
Fig. 1. CLTUNE: theoretically symmetric relay feedback test with OP 
amplitude 4% (loop name and parameter ranges/values are blacked-out for 
confidentiality reasons) 
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Fig. 2. CLTUNE: effect of varying disturbance (loop name and parameter 
ranges/values are blacked-out for confidentiality reasons) 

In Fig. 1, the process trend reveals that the oscillations 
that are supposed to be symmetric are in fact asymmetric 
(note different length of positive and negative pulses of OP: 
yellow line) – due to asymmetric characteristics of the 
valve-process for different directions of the valve motion 
(nonlinearity of the valve-process). In Fig. 2, the process 
trend reveals the presence of a varying disturbance because 
the value of the OP (yellow line) after the test is not equal to 
the value of the OP before the test (OP amplitude is 4%). 

It should be noted that the presented situations are very 
common in the practice of loop tuning. Moreover, there are 
much fewer loops that are not subject to process 
nonlinearities, measurement noise or varying disturbance 
than those where at least some of those effects are present. 
As a result, methods of tuning that are based on parametric 
approach involving relatively high number of model 
parameters (even three) usually fail to provide an acceptable 
accuracy of tuning in those conditions. On the other hand, 
the use of only ultimate gain and frequency cannot ensure 
sufficient accuracy of tuning even theoretically. Therefore, a 
trade-off between the accuracy and reliability of tuning 
(which also translates into accuracy) is apparent. The cause 
of the relatively low accuracy of [1], [2] and other non-
parametric methods is well known. This is the use of only 
two measurements of the test over the process. It is also 
known that a satisfactory accuracy of identification for most 
processes can be achieved if at least a three-parameter model 
is used [3]. 

There is one more factor that also contributes to the issue 
of accuracy. This is a popular notion that applies to both 
parametric and non-parametric methods. This is the concept 
that states that the most important point in the closed-loop 
test is the one in which the phase characteristic of the 
process is –180○ (frequency ωπ). Yet, if the controller is, for 
example, of PI-type (the most common option) then in the 
open-loop dynamics containing the PI controller the 
frequency ωπ is lower than the ultimate frequency 

determined from the test [1] or [2]. The parametric methods 
of tuning that utilize the RFT are also based on the 
measurements of the process characteristics at this 
frequency. And because the underlying model differs from 
the actual dynamics of the process the criterion of 
identification is usually based on matching the model and 
the process responses in this point. Therefore, this approach 
does not account for the change of frequency ωπ due to the 
controller introduction, which is the factor that contributes 
to the accuracy deterioration (it is analyzed below). 

III. EFFECT OF CONTROLLER INTRODUCTION ON STABILITY 
IN ORIGINAL PROCESS AND ITS APPROXIMATION 

It has been a popular notion that the most important test 
point on the frequency response of the system is the point 
where the phase characteristic of the process is equal to 

o180−  (frequency ωπ). We shall also refer to this point as 
the phase cross-over frequency, as the phase characteristic 
of the plant (or plant and controller) crosses the line –180○. 
However, in fact it only applies to the system containing the 
proportional controller. This circumstance is often 
neglected, and this rule is applied to all types of PID control. 
Let us analyze how the introduction of the controller may 
affect the results of identification and tuning. 

Example 1. Assume that the process is given by the 
following transfer function (which was used in a number of 
works as a test process): 

( )5
2

12
1e)(
+

= −

s
sW s

p , (1) 

Find the first order plus dead time (FOPDT) 
approximating model )(ˆ sWp  to the process (1) based on 
matching the values of the transfer functions at frequency 
ωπ: 
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where Kp is the process static gain, Tp is the time constant, 
and τ is the dead time. Let us note that both (1) and (2) 
produce the same ultimate gain and ultimate frequency in 
the Ziegler-Nichols closed-loop test [1] or the same values 
of the amplitude and the ultimate frequency in the RFT [2]. 
(Note: strictly speaking, the values of the ultimate frequency 
in tests [1] and [2] are slightly different, as the frequency of 
the oscillations generated in the RFT does not exactly 
correspond to the phase characteristic of the process –180○; 
this fact follows from the relay systems theory [6], [7]). 
Obviously, this problem has infinite number of solutions, as 
there are three unknown parameters of (2) and only two 
measurements obtained from the test. Assume that the value 
of the process static gain is known: Kp=1, and determine Tp 
and τ. Those parameters can be found from equation 

)()(ˆ
ππ ωω jWjW pp = , 

where ωπ is the phase cross-over frequency for both transfer 
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functions. Therefore, πωπ −=)(arg jWp . The value of ωπ is 

0.283, which gives )0,498.0()( jjW p −=πω , and the 

FOPDT approximation is, therefore (found via solution of 
the set of two algebraic equations): 

1153.6
)(ˆ
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−

s
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s

p . (3) 

For the Nyquist plots of the process (1) and its 
approximation (3) the following holds: 

)()(ˆ
00 Ω=Ω jWjW pp , where πω=Ω 0 . If the designed 

controller is of proportional type then the stability gain 
margins for processes (1) and (3) are the same. However, if 
the controller is of PI type then the stability margins for (1) 
and (2) are different. We illustrate that. Design the PI 
controller for the process approximation (3) using the 
Ziegler-Nichols tuning rules [1]. This results in the 
following transfer function of the controller: 


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



 +=

s
sWc 76.17

11803.0)( , (4) 

 
Fig. 3. Nyquist plots for open-loop system with PI controller and process 

The Nyquist plots of the open-loop systems containing the 
process (1) or its approximation (3) and the controller (4) are 
depicted in Fig. 3. It follows from the frequency-domain 
theory of linear systems and the used tuning rules that the 
controller introduction is equivalent to clockwise rotation of 

vector )( 0ΩjW p
r

 by the angle o25.11
28.0

1arctan =
⋅

=
π

ψ  

and multiplication of its length by such value, so that its 
length becomes equal to 0.408. However, for the open-loop 
system containing the PI controller, the points of intersection 
of the Nyquist plots of the system and of the real axis are 
different for the system with process (1) and with process 
approximation (3). They are shown as points Ω1 and Ω2 in 
Fig. 3. Therefore, the stability margins of the systems 
containing a PI controller is not the same any more. It is 
revealed as different points of intersection of the plots and of 
the real axis in Fig. 3. In fact the position of vector 

)()()( 000 ΩΩ=Ω jWjWjW pcol
rrr

 is fixed, but this vector 

does not reflect the stability of the system. As one can see in 

Fig. 3, the gain margin of the system containing the FOPDT 
approximation of the process is higher than the one of the 
system with the original process. 

The considered example enlightens a fundamental 
problem of all methods of identification-tuning based on the 
measurements of process response in the critical point (Ω0). 
This problem is the shift of the critical point due to the 
introduction of the controller. Address this issue now. 
Assume that we can design a certain test, so that we can 
assign the test point at the desired phase lag of the process 

ϕ=Ω )(arg 0jW p , where ϕ is a given quantity, and measure 

)( 0ΩjWp  in this point. Consider the following example. 

Example 2. Let the plant be the same as in Example 1. 
Assume that the introduction of the controller will be 
equivalent to the mapping similar to the mapping described 
above – the vector of the frequency response of the open-
loop system in the point 0Ω  will be a result of clockwise 

rotation of the vector )( 0ΩjW p
r

 by a known angle and 

multiplication by a certain known factor: 
)()()( 000 ΩΩ=Ω jWjWjW pcol

rrr
. Also assume that the 

controller will be the same as in Example 1 (for illustrative 
purpose - because the tuning rules are not formulated yet). 
Therefore, let us find the values of Tp and τ for the transfer 
function (2) (we still assume Kp=1) that ensure that the 
equality )()(ˆ

00 Ω=Ω jWjW pp  holds, where 
ooo 75.16825.11180)(arg 0 −=+−=ΩjWp  (the angle is 

selected considering the subsequent clockwise rotation by 
11.25○). Therefore, 263.00 =Ω , and 

)103.0,532.0()( 0 jjW p −−=Ω . The corresponding FOPDT 

approximation of the process is 
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One can notice that both the time constant and the dead 
time in (6) are smaller than in (3). Application of controller 
(5) shifts the point 0Ω  of intersection of )( 0ΩjWp  and 

)(ˆ
0ΩjW p  to the real axis. This point remains to be the point 

of intersection of the two Nyquist plots. Therefore, the gain 
margin of both systems: with the original process and with 
the approximated process are the same. 

Consider now the problem of the design of the test that 
can provide the functionality of matching the points of the 
actual and approximating processes in the point 
corresponding to a specified phase lag. 

IV. MODIFIED RELAY FEEDBACK TEST 
Consider the following discontinuous control: 


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where max1 βσ=∆ , min2 βσ−=∆ , maxσ  and minσ are last 
“singular” points of the error signal corresponding to last 
maximum and minimum values of )(tσ  after crossing the 
zero level, β is a positive constant parameter. 

We apply the describing function (DF) method [9] to the 
analysis of motions. If the motions in the system are periodic 
then maxσ  and minσ  represent the amplitude of the 
oscillations: minmax σσ −==a , and as a result the 
equivalent hysteresis value of the relay is 

minmax21 βσβσ −==∆=∆=∆ . The DF of the algorithm 
(6) was found in [5]:  


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π
j
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haN 214)( , (7) 

We shall further refer to the test under control (6) as to 
“modified relay feedback test”. Parameters of the 
oscillations can be found from the harmonic balance 
equation: 

)(
1)(

0
0 aN

jW p −=Ω , (8) 

where a0 is the amplitude of the periodic motions, and the 
negative reciprocal of the DF is given as follows: 



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21
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Finding a periodic solution in system with control (6) has 
a simple graphic interpretation (Fig. 4) as finding the point 
of intersection of the Nyquist plot of the process and of the 
negative reciprocal of the DF, which is a straight line that 
begins in the origin and makes a counterclockwise angle 

βψ arcsin=  with the negative part of the real axis. 

 
Fig. 4. Finding periodic solution 

In the problems of identification and tuning, frequency Ω0 
and amplitude a0 are measured from the modified RFT, and 
on the basis of the measurements obtained the tuning 
parameters are calculated from Ω0 and a0. 

Reviewing Example 2, we can note that if, for example, 
Ziegler-Nichols tuning rules are to be applied, and the 
subsequent transformation via introduction of the PI 
controller involving clockwise rotation by angle 

o25.11
28.0

1arctan =
⋅

=
π

ψ  is going to be applied, then 

parameter β of the controller for the modified RFT should 
be 195.025.11sin == oβ . 

The modified RFT also allows for the exact design of the 
gain margin (assuming the DF method provides exact 
model). Since the amplitude of the oscillations a0 is 
measured from the test, the process gain at frequency Ω0 can 
be obtained as follows: 

h
ajWp 4

)( 0
π

=Ω , (10) 

which after introduction of the controller will become the 
process gain at the ultimate frequency. Therefore, if the 
tuning rules are given in the format: 

0
21

2,4
Ω

==
π

π
cT

a
hcK cc , (11) 

where c1 and c2 are parameters that define the tuning rule, 
then the frequency response of the controller at Ω0 becomes 
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and for obtaining the gain margin γ  (γ >1) parameter c1 
should be selected as 

( )2
2

2
1

411
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c
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πγ +
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In the considered example, if we keep parameter c2 the 
same as [1]: c2=0.8, then to obtain, for example, gain margin 
γ=2 tuning parameter c1 for the modified RFT should be 
selected c1=0.49. Any process regardless of the actual 
dynamics will have gain margin γ=2 (6dB) exactly. 

IV. RULES FOR NON-PARAMETRIC TUNING 
Given a large variety of possible process dynamics, it is 

very difficult to formulate certain universal rules for tuning. 
In practice of process control, tuning rules that provide a 
less aggressive response than the one provided by IAE, 
ITAE criteria or Ziegler-Nichols formulas (or other rules) 
are widely used. This approach is motivated by the 
consideration of safety, which chosen versus to high 
performance [10].  

We shall consider the PI controller only, and only the 
rules given in the format of the proportional dependence of 
the controller gain on the ultimate gain and of the integral 
time constant on the period of the oscillations. 

Considering the fact that the frequency-domain 
characteristics of all loops tuned via the modified RFT will 
be very consistent (the gain margin is the same), let us 
analyze the time-domain characteristics of the loops with 
different process dynamics and generate the tuning rules that 
provide the best consistency in the time-domain. 

Let us use the FOPDT model as the implied process 
dynamics for the purpose of optimal selection of the 
coefficients c1 and c2, as it provides a combination of 
minimum-phase and non-minimum-phase dynamics, which 
is typical of real processes. Analysis of the time-domain 
performance of FOPDT processes with different ratios 
between the dead time and the time constant (subject to the 
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same value of the gain margins) would allow us to find the 
optimal tuning rules. Within the time domain, the only 
parameter that can be used as a “universal” characteristic 
(for different time constants) is the value of the overshoot in 
the step response. Therefore, let us find the overshoot values 
of the step responses of a series of FOPDT dynamics with 
dead time to time constant ratio ranging as follows 

]5.1;3.0[/ =pTτ , subject to equal gain margins in those 

loops, by varying gain margin and parameter c2 values. The 
noted dependence is presented in Fig. 5, where gain margin 

]4;2[∈γ  and parameter ]3.3;3.0[2 ∈c . 
A similar plot for the case of the conventional RFT is 

presented in Fig. 6 for comparison. In that case the gain 
margins are not equalized by respective selection of 
parameter β, and the difference between the maximum and 
the minimum overshoots is about three times of the former 
(note the scale difference along the vertical axis). Therefore, 
the modified RFT has an equalizing effect for the time-
domain characteristics too. 

Analysis of the data presented in Fig. 5 shows that for 
satisfactory consistency of the step response (difference 
between maximum and minimum overshoots is lower than 
10%) the gain margin and the value of c2 should not be 
smaller than certain values. In particular, for γ=2 c2≥1.1; 
γ=2.5 c2≥0.7; γ=3 c2≥0.6; γ=3.5 c2≥0.5, and γ=4 c2≥0.5. 
Therefore, the recommended settings for non-aggressive 
tuning with expected overshoot 0-3.3% might be γ=3 c2=0.7, 
which results in the following tuning rules: 

0

27.0,433.0
Ω

==
π

π cc T
a
hK , (14) 

As follows from formula (12) the PI controller would 
introduce the lag at the frequency 0Ω  equal to 

o81.12
2
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modified RFT should be 222.0
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V. ANALYSIS OF LOOP TUNER PERFORMANCE IN NON-
IDEAL CONDITIONS 

As was noted above, real processes are almost always 
subject to effects of noise, process nonlinearities and 
varying disturbances. Therefore, robustness with respect to 
the presence of those factors would be a very important 
characteristic of a loop tuner. Performance of the loop 
tuning method presented above in the conditions of varying 
external disturbance was investigated via simulations. The 
results of simulations are presented in Table 1 (for the 
described algorithm) and Table 2 (for method [4], which 
reveals many typical properties of parametric methods of 
tuning). Comparison of results presented in Table 1 and 2 
shows that the described non-parametric method of tuning is 
significantly more robust to the effects of varying 

disturbance than the analyzed parametric method. It should 
be noted that the constant disturbances do not affect the 
results of the tests as they are carried out in the incremental 
way, so that the constant disturbance is compensated for by 
proper initialization before the test. The effect of the 
presence of a nonlinearity in the process can be modeled by 
a certain “equivalent” varying disturbance. Therefore, the 
robustness to a varying disturbance reflects on the 
robustness to the nonlinearity. 

 
Fig. 5. Difference between maximum and minimum overshoot [%] for 
modified relay feedback test 

 
Fig. 6. Difference between maximum and minimum overshoot [%] for 
conventional relay feedback test 

VI. INDUSTRIAL LOOP TUNER CLTUNE 
Industrial tuner CLTUNE is implemented on the 

Honeywell DCS TPS® platform, written as a program in CL 
language, and resides in the Application Module of the 
DCS. The tuner is intended for tuning flow, pressure, 
temperature and level loops in petrochemical industry. The 
tuner includes three tuning algorithms: conventional RFT 
[2], modified RFT (as described above), and LPRS-based 
[4], [8]. Selection of the tuning algorithm is done from the 
Settings Page (see Fig. 7). Other user-defined (or default) 
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settings include: amplitude of the relay signal h (increments 
of OP), overshoot specification, two noise protection 
parameters, increment of SP (for LPRS-based tuning), 
number of cycles to skip (to allow the oscillations to 
stabilize), and number of test cycles. There are two methods 
of noise protection applied to each of the algorithm. One is 
based on the time-specified inhibiting for the subsequent 
switch (delay), and the other one is based on the use of two 
relays with shifted hysteresis zones and logics associated 
with those relays, so that no hysteresis (no extra hysteresis 
for the modified RFT) is applied to the relay characteristic. 
All values are either user-defined or default. There are three 
controller selection options (P, PI, and PID) and two types 
of processes (non-integrating and integrating) that can be 
selected, with tuning rules formulated and programmed for 
each of the combination.  

 
Fig. 7. Settings Page of CLTUNE (loop name and description are blacked-
out for confidentiality reasons) 

The experience of the use of CLTUNE shows that the 
presented modified RFT and the tuning ruled used within 
the software provides a very robust tuning 
algorithm/software. It provides reliable tuning even in the 
presence of noise, disturbances and nonlinearities of the 
process, which was partly illustrated by the simulations 
presented above. 

VII. CONCLUSION 
Some robustness aspects of parametric and non-

parametric loop tuning are considered in the paper. It is 
noted that despite a higher precision of parametric tuning in 
ideal test conditions, the actual precision of non-parametric 
tuning can be higher in real plant conditions. A modified 
RFT and a method of non-parametric tuning of a PID 
controller based on this test are described in the paper. The 
modified RFT is implemented via including simple logic in 
the conventional relay test. It is proved that the proposed 
method provides the desired value of the gain margin 
exactly. Tuning rules for a PI controller are presented. 
However, consideration of PI controller is not a limitation, 
and the approach can be extended to the PID control. 

An industrial loop tuner for Honeywell DCS TPS® that 
uses the proposed algorithm is presented (software 
CLTUNE). A brief description of the software features and 
functionality is given 

REFERENCES 
[1] J.G. Ziegler, and N.B. Nichols, “Optimum settings for automatic 

controllers”, Trans. Amer. Soc. Mech. Eng., Vol. 64, pp. 759-768, 
1942. 

[2] K. J. Astrom and T. Hagglund, “Automatic tuning of simple regulators 
with specifications on phase and amplitude margins,” Automatica, 20, 
p. 645-651, 1984. 

[3] K.J. Astrom and T. Hagglund, PID Controllers: Theory, Design and 
Tuning, second ed. Research Triangle Park, NC: Instrument Society 
America, 1995. 

[4] I. Boiko, “Autotune identification via the locus of a perturbed relay 
system approach,” IEEE Trans. Control Sys. Technology, Vol. 16, No. 
1, pp. 182-185, 2008. 

[5] I. Boiko, “Modified relay feedback test and its use for non-parametric 
loop tuning,” 2008 American Control Conference, Seattle, USA, pp. 
4755-4760, 2008. 

[6] Ya.Z. Tsypkin, Relay Control Systems, Cambridge, England, 1984. 
[7] Boiko, “Oscillations and transfer properties of relay servo systems – 

the locus of a perturbed relay system approach,” Automatica, 41, pp. 
677-683, 2005 

[8] I. Boiko, “Method and apparatus for tuning a PID controller,” US 
Patent No. 7,035,695, 2006. 

[9] D.P. Atherton, Nonlinear Control Engineering – Describing Function 
Analysis and Design. Workingham, Berks, UK: Van Nostrand 
Company Limited, 1975. 

[10] K.J. Astrom and T. Hagglund, Advanced PID Control, Instrument 
Society America, 2006. 

 
 

 
TABLE II 

PARAMETRIC TUNING ACCURACY UNDER RAMP DISTURBANCE 

Ramp slope 0 0.005 0.007 0.01 0.015 

cK  0.923 0.522 0.446 - - 

cT  12.73 23.51 55.64 - - 

Disturb.  per 
oscillation 
period [%] 

0 ~10 ~14 ~20 ~30 

cK error [%] 0 43.5 51.7 - - 

cT  error [%] 0 84.6 336.9 - - 

 

TABLE I 
NON-PARAMETRIC TUNING ACCURACY UNDER RAMP DISTURBANCE 

Ramp slope 0 0.005 0.01 0.015 0.02 

cK  0.600 0.596 0.597 0.616 0.617 

cT  16.84 17.23 17.97 19.92 21.68 

Disturb.  per 
oscillation 
period [%] 

0 ~10 ~20 ~30 ~40 

cK error [%] 0 0.62 0.48 2.67 2.89 

cT  error [%] 0 2.3 6.7 18.3 28.7 
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