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Abstract— We consider the problem of model order reduc-
tion for spatially-varying interconnected systems distributed in
one spatial dimension. The sequentially semi-separable matrix
structure of such systems can be exploited to allow efficient
structure preserving model order reduction using the matrix
sign function. Iterative algorithms are provided for fast com-
putation, which is demonstrated on an example.

I. INTRODUCTION

The control of spatially distributed interconnected systems

has recently been of great interest in practical applications

such as turbulent flow relaminarization [1], air traffic con-

trol [2], biochemical reactions [3], and wind turbine farms [4]

(see also the special issue [5]).

The challenge has been in the computational cost of

designing effective controllers and the complexity of imple-

menting them. For PDE’s, when directly solving for the opti-

mal control is not viable, the system is often approximated as

a large but finite number of coupled ODE’s or interconnected

subsystems. The system matrix describing the input-state-

output behavior of N interconnected subsystems(ODE’s),

each of size(order) n, will be nN × nN , and thus most

matrix operations will be O(n3N3) floating point operations,

making traditional robust or optimal controller design pro-

hibitively expensive for fine discretizations or large numbers

of discrete subsystems. Much research has been dedicated to

surmounting this computational obstacle. In [6], a special

matrix structure(H-matrix) has been exploited in iterative

methods for finding fast O(N log(N)) approximate solutions

to Lyapunov and Riccati equations for systems governed

by discretized PDE’s. In [7] an efficient LMI(linear matrix

inequality) method for spatially homogenous interconnected

structures was developed, which was extended to finitely

many heterogeneous subsystems in an array with boundary

conditions [8] in O(n2αNα)(where 3.5 < α < 5). In [9]

a different matrix structure(‘Sequentially Semi Separable’,

(SSS)) was exploited to find efficient (O(n3N)) nearly

optimal distributed controllers for such systems, and in this

paper we will use the same structure.

We address the problem of model order reduction of spa-

tially varying systems connected on one-dimensional strings.

Significant advances on this issue have been made from

the subsystem point of view: for spatially invariant, infinite

dimensional systems: [10][11] and the extension to finite

dimensional spatially varying systems: [12] (see also [13]

for arbitrary interconnection structures). While such methods

preserve the underlying distributed structure of the system,

in the heterogeneous case, due to the sizes of the LMI’s to be

solved, the computational complexity still grows as O(N∼3).

There has also been considerable work from the large-

scale computations community, for example [14],[15] and

a survey, [16], where the large matrices are assumed to

have some kind of structure that is preserved to some extent

under iterative computations, or can be used with a proper

orthogonal decomposition. In some cases these results are

limited, in that the reduced system in general does not

have the same structure as the original, for example, in

[17], structure preserving computations are performed on

Hierarchical matrices to solve Lyapunov equations in a low

rank factored form, and then a rank revealing, and structure

destroying, computation (an SVD) is done to perform an

approximate balancing.

These methods seem to work well when the large scale

system can be well approximated by a low order system, on

the scale for which SVD’s may be computed efficiently, but

in some cases we will want the reduced system to preserve

the structure of the underlying system [18], for example,

such that it will still admit a distributed implementation (as

in [12]), and also to be very high order (although lower than

before) for better accuracy. Such a method, in O(N), will

be discussed in this paper for systems with a Sequentially

Semi-Separable structure.

We will take a similar line of study as that for control in

[19]: in section II we will briefly show how certain types

of interconnected subsystems lead to lifted systems with

an SSS matrix structure, which is preserved under various

arithmetic operations. These operations can be used to ef-

ficiently compute an SSS approximation of the matrix sign

function of a given SSS matrix, and thereby, for example,

solve Lyapunov and Riccati equations and check the stability

and norm for SSS matrices (section III). Further, by using

certain permutation techniques, we will show how the matrix

sign function may be used to compute a structure preserving

partial system balancing, which, when combined with the

techniques for Lyapunov and Riccati equations in section

IV will result in a computationally efficient(O(N)) structure

preserving model order reduction for 1-dimensional spatially

distributed heterogeneous systems with guaranteed stability

and computable error bounds. We will demonstrate the O(N)
complexity and structure preserving nature on a numerical

example in section V.
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Fig. 1. String interconnection

II. SUBSYSTEM MODEL/INTERCONNECTION STRUCTURE

The subsystem models considered will most generally

consist of state space realizations of the sort:
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where vm
s and vp

s are interconnections to other subsys-

tems(see Figure 1), and ys and us are measured outputs

and controlled inputs. The W ∗

s terms represent informa-

tion feedthrough between subsystems Σs+1 and Σs−1. A

generalization of this subsystem has appeared in [8] and

associated papers. We will generally allow each subsystem

Σs to be arbitrarily different from every other subsystem,

even having different state, input, and output dimensions, as

long as the interconnections are of correct size. Examples of

such subsystem models are available in the literature, such as

multiple vehicle systems [9], flight formations [20], offshore

bases [21], and discretizations of various PDE’s, [7], [22]

etc.

If N of these subsystems(2) are connected together in

a string (see Figure 1) with zero boundary inputs (vm
1 =

0,vp
N = 0) and the interconnection variables are resolved,

we obtain the interconnected system:

Σ̄ :

[
¯̇x
ȳ

]

=

[
Ā B̄
C̄ D̄

] [
x̄
ū

]

(3)

where the overline indicates a ‘lifted’ variable; for vectors:

x̄ =
[
xT

1 xT
2 ... xT

N

]T
, and the interconnected system

matrices (Ā, B̄, C̄, D̄) have a very special structure, called

‘Sequentially Semi Separable’(SSS). For example, for N =
5, we obtain equation (1) at the bottom of the page. Such

matrices will be denoted:

Ā = SSS(Bm, Wm, Cm, A, Bp, W p, Cp) (4)

where the arguments of SSS() are called the ‘generator’

matrices of Ā, and the SSS notation of the other matrices

can be easily derived. This type of data-sparse structured

matrix has recently been studied with respect to LTV(linear

time varying) systems theory and inversion [23], scattering

theory [24], and for their own sake [25]. The facts in which
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Fig. 2. Controller implementation

we are interested are that SSS matrices can be stored using

only a linear amount of memory, there exist algorithms

of only linear computational complexity(O(N)) for SSS

matrix-matrix addition and multiplication, and inversion,

and further, that the class of SSS matrices is closed under

these operations, that is, they are structure preserving. These

properties(many of which are similar to those possessed by

H matrices[6]) are especially important, since they allow the

effective use of iterative algorithms incorporating inverses,

in contrast to other classes of data sparse matrices(such as

banded), which are not closed under inversion.

In [19] efficient O(N) methods were developed to find

a controller, K̄ :

[
ĀK B̄K

C̄K D̄K

]

, for the distributed system

(3), which has the same structure as the subsystems, and can

be connected as in Figure 2. This illustrates a key advantage

of SSS over H matrix or frequency domain controller design

methods for distributed systems: SSS structured controllers

admit a simple distributed controller implementation, similar

in structure to those sought in [7] and [8], without any

additional computation.

However, the systems Σ̄ and K̄ may still be very ineffi-

ciently represented, and since the computational complexity

of SSS operations generally grows cubically with the size

of the generator matrices[24], it is to our advantage to find

an approximation of, for example, Σ̄ with SSS matrices of

smaller generators. For decreasing the ‘SSS orders’(that is,

maxs(dim(Wm
s ), dim(W p

s ))) of Ā, B̄, C̄, D̄, a number of

O(N) techniques are available [24][23] from LTV systems

theory(see [19] for a discussion), but we might also want to

actually decrease the state size of Σ̄, i.e. decrease the size

of Ā ∈ RnN×nN to some smaller nsmallN . This will be the

focus of the following discussion.

In the next subsections we will list some results having

to do with arithmetic operations on SSS matrices, and the

computation and convergence of the matrix sign iteration;

these are just for reference for the following results, for

proofs and explanations see [19] and the references therein.
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ẋ3

ẋ4
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III. COMPUTATIONAL METHODS

For computational complexity, we use ‘big O’ notation,

Definition 1: A positive function is f(N) ∈ O(Nα) if

there exist finite positive constants, ∞ > c, κ > 0 such that

f(N) < cNα, ∀N > κ.

Informally, we will say that a procedure ‘is’ O(Nα) if it can

be computed in f(N) ∈ O(Nα) flops.

A. Background: SSS matrices

For an SSS matrix: Ā =
SSS(Bm, Wm, Cm, A, Bp, W p, Cp), s ∈ {1, 2, ...N},

many matrix-matrix operations are O(N), but cubic

in the sizes of the generator matrices. For example,

if Bm
s , Wm

s , Cm
s , As, B

p
s , W p

s , Cp
s ∈ Rn×n, ∀s ∈

{1, 2, ...N}, then computing Ā2 will take 40n3N flops [24].

However, under the original LTV interpretation of SSS

matrices ([23]), it is apparent that the sum or product of two

SSS matrices will also be SSS, but of a maximum ‘order’

of the sum of the orders of the original systems.

To be explicit, we define:

Definition 2: The maximum upper and lower order of an

SSS matrix are the largest sizes of its upper and lower

multiplier terms (W p
s and Wm

s in Ā), respectively. The class

of SSS matrices of maximum lower and upper orders al and

au with N diagonal terms is denoted as SSSal,au,N .

As discussed above, the growing order of SSS matrices under

certain operations can be related as:

Lemma 1: For conformably partitioned matrices Ā ∈
SSSal,au,N and B̄ ∈ SSSbl,bu,N , then Ā + B̄ = C̄ ∈
SSScl,cu,N where cl ≤ al + bl, cu ≤ au + bu, and

ĀB̄ = D̄ ∈ SSSdl,du,N where dlleqal + bl, du ≤ au + bu.

Proof: This can be seen from the addition and multiplication

algorithms [24], [25].

This is important since we intend to use iterative algorithms

for controller synthesis, and evidently each iteration will

cost more than the previous. In practice, by considering the

LTV interpretation of SSS matrices [23], one can use LTV

model order reduction techniques individually on the lower

triangular and upper triangular sections of the SSS matrix to

decrease the SSS order. For certain types of iterations and

problem data, the number of iterations to convergence can

be bounded based on certain assumptions, and the results

can be made robust to such model order reduction induced

errors [19]. In the rest of this section, we will briefly review

a few results for the matrix sign function for SSS matrices

and SSS structure preserving permutations, which we then

use in an O(N) structure preserving block diagonalization

in section III-D, an integral part of the procedure for the

main result of this paper: the structure preserving model

order reduction in section IV.

B. SSS matrix sign computation and previous applications

The matrix sign function [26],[27], defined for a square

matrix X with no eigenvalues on the imaginary axis, will be

important in our computations.

Definition 3: [27] Given a matrix X with Jordan de-

composition X = PJP−1 where J =

[
L 0
0 R

]

and

λ(L) ∈ C−, λ(R) ∈ C+,the matrix sign of X is defined

as sign(X) = P

[
−IL 0
0 IR

]

P−1 where IL and IR are

the same size as L and R, respectively.

The matrix sign is typically calculated using Algorithm 1,

Algorithm 1 Sign Iteration [26]

Z0 = X

Zk+1 =
1

2
(Zk + Z−1

k ) for k = 0, 1, 2, ...

sign(X) = lim
k→∞

Zk

For SSS matrices, X̄ , given the assumptions:

• A1: ρ(X̄) < β1 < ∞
• A2: mini |ℜ(λi(X̄))| > β2 > 0
• A3: cond(P ) < β3 < ∞ for X̄ = PJP−1

which we will denote A, then in [19] it was shown that using

Algorithm 1:

Lemma 2: For the set of SSS matrices X̄ ∈ SSS•,•,N ,

X̄ ∈ A ∀N ∈ N, an approximation, S̄ ∈ SSS•,•,N

to sign(X̄) can be calculated to within some prespecified

positive tolerance ǫ > ‖S̄ − sign(X̄)‖2 in O(N).

We note that using this iteration, the sign iteration can be

used to check the Hurwitz stability of an SSS matrix (or the

Schur stability, through a Cayley transform)[19]. Also Lya-

punov and Riccati equations for SSS matrices may be solved

in a similar way, and that discrete time Lyapunov(Stein)

equations may be converted to continuous time through a

Cayley transformation and solved with the sign iteration, or

in a more direct manner with Smith Squared iterations [28],

on which can be derived similar convergence bounds.

C. Structure preserving permutations of SSS matrices

We can also permute SSS matrices together to form SSS

block matrices, and vice versa (in the same way that block

Toeplitz matrices may be permuted to form Toeplitz block

matrices), where the SSS orders will increase only additively;

i.e. we can move between the two equivalent representations:

[
ē
f̄

]

=

[
W̄ X̄
Ȳ Z̄

] [
ḡ
h̄

]

,
¯[
e
f

]

= P̄
¯[
g
h

]

(5)

First we have:

Lemma 3: Given SSS matrices

W̄ ∈ SSSwl,wu,N , X̄ ∈ SSSxl,xu,N

Ȳ ∈ SSSyl,yu,N , Z̄ ∈ SSSzl,zu,N

there exist permutation matrices such that

ΠL

[
W̄ X̄
Ȳ Z̄

]

ΠR = P̄
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for some P̄ ∈ SSSpl,pu,N where pl ≤ wl + xl + yl + zl,

pu ≤ wu + xu + yu + zu. Proof: See [19] for formulas

for P̄ in terms of the generators of W̄ , X̄, Ȳ , Z̄ .
Further, the permutation matrices are also block SSS:

ΠL =

[

SSS(0, 0, 0,

[

I
0

]

, 0, 0, 0), SSS(0, 0, 0,

[

0
I

]

, 0, 0, 0)

]

ΠR =

[
SSS(0, 0, 0,

[
I 0

]
, 0, 0, 0)

SSS(0, 0, 0,
[
0 I

]
, 0, 0, 0)

]

The opposite permutation can also be done.

Lemma 4: Given some block SSS matrix P̄ ∈

SSSpl,pu,N and lifted vectors
¯[
e
f

]

,
¯[
g
h

]

, then there exist

permutation matrices such that

ΦLP̄ΦR =

[
W̄ X̄
Ȳ Z̄

]

with some W̄ , X̄, Ȳ , Z̄ ∈ SSSpl,pu,N . Proof: See [19]

for formulas for the generators of W̄ , X̄, Ȳ , Z̄ in terms of

the generators of P̄ .

If all of the generators of the SSS matrices in Lemmas 3 and

4 are appropriately sized, then we have that ΠL = ΠT
R =

ΦT
L = ΦR.

D. Structure Preserving Block Diagonalization

In this subsection, we will use both the structure preserv-

ing permutation and the sign iteration for a new application

to SSS matrix computations; structure preserving block diag-

onalization. We will first show a simplified proof of a version

of a well known result ([29]) for unstructured real matrices:

Lemma 5: Given some matrix X ∈ Rz×z with positive

real eigenvalues and some scalar α such that X − αI has

Jordan decomposition

X − αI =

[
P11 P12

P21 P22

] [
R 0
0 L

] [
P11 P12

P21 P22

]
−1

(6)

with L ∈ Rx×x, R ∈ Ry×y , λ(L) < 0, λ(R) > 0. If 0 /∈
λ(P11)

⋃
λ(P22), then

V = sign(X − αI) +

[
IR 0
0 −IL

]

︸ ︷︷ ︸

K

(7)

block diagonalizes X : V XV −1 =

[
Y1 0
0 Y2

]

, where Y1 ∈

Rx×x, Y2 ∈ Ry×y , λ(Y1)
⋃

λ(Y2) = λ(X) with λ(Y1) > α
and λ(Y2) < α. Proof:

V = sign(X − αI) + K = PKP−1 + K

= (PK + KP )P−1 = 2

[
P11 0
0 −P22

]

P−1

V XV −1 = 2

[
P11 0
0 −P22

]

P−1X
1

2
P

[
P−1

11 0
0 −P−1

22

]

=

[
P11(R + αI)P−1

11 0
0 P22(L + αI)P−1

22

]

The interesting and useful part of this result is that we

need not actually compute the Jordan decomposition, only

sign(X) and K . Furthermore, while we don’t know a priori

the sizes of IR and IL, after computing sign(X) it’s easy to

see that X has
N+Tr(sign(X))

2 eigenvalues in the RHP and
N−Tr(sign(X))

2 in the LHP.

Since these quantities can all be efficiently calculated for

SSS matrices, we can apply this result to certain matrices

with SSS structure, however, we often desire the resulting

blocks to have structure SSS•,•,N , not SSS•,•, x
z

N and

SSS•,•, y

z
N , so we will also need some structure preserving

permutations.

For some SSS matrix X̄ ∈ SSS•,•,N with dimensions

X̄ ∈ RzN×zN and positive real spectrum λ(X̄) ∈ R
+
0 we

can:

1) Find an α > 0 such that X̄ − αI has xN positive

eigenvalues and yN negative eigenvalues(where x +
y = z) and satisfies assumptions A.

2) permute X̄ (and thus also sign(X̄ − αI)) into appro-

priate sized blocks:

ΦX̄ΦT =

[
Ȳ11 Ȳ12

Ȳ21 Ȳ22

]
}xN
}yN

(8)

3) and calculate V = Φsign(X̄ − αI)ΦT +

[
IR 0
0 −IL

]

resulting in V (ΦX̄ΦT )V −1 =

[
Z̄1 0
0 Z̄2

]

Where Z̄1, Z̄2 ∈ SSS•,•,N , λ(Z̄1) > α, λ(Z̄2) < α. The

first step, picking an appropriate α, can be accomplished

by first guessing α0 = Tr(X̄)
Nz , computing the number of

resulting positive and negative eigenvalues via Tr(sign(X̄−

α0I)), and then bisecting for αi until
N−Tr(sign(X̄−αiI))

2 is

an appropriate integer multiple of N . Step 2 can be accom-

plished using Lemma 3, and step 3 can be accomplished

using Algorithm 1 for SSS matrices.

Assuming that the number of α bisections is independent

of N , and that X̄ − αI ∈ A, ∀N ∈ N, we thus have an

O(N) procedure for block diagonalization of SSS matrices.

IV. PARTIAL BALANCING AND STRUCTURE PRESERVING

MODEL ORDER REDUCTION

We can now proceed with a method for partial balancing

and truncation (see e.g. [30] for an overview using LMIs).

Given some SSS system Ḡ =

[
Ā B̄
C̄ 0

]

, we compute

P̄ , Q̄ � 0 such that (for discrete time):

ĀP̄ Ā∗ − P̄ + B̄B̄∗ � 0 (9)

Ā∗Q̄Ā − Q̄ + C̄∗C̄ � 0 (10)

Note that we do not have a general method of efficiently

solving LMI’s such as those above for SSS matrices; in prac-

tice, we use our sign or Smith squared iterative methods to

approximately solve the corresponding Lyapunov equations

for some small negative ǫI on the right hand side, and then

check that the residual error is small enough such that the

resulting P̄ and Q̄ satisfy (9) and (10)[9].

Since P̄ , Q̄ � 0, R̄ = P̄ Q̄ will have real non-negative

spectrum λ(R̄) ∈ R
+
0 . In the case where P̄ , Q̄ solve the
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Lyapunov equations, the square roots of λ(R̄) will be the

Hankel singular values of the system. If we then pick some

α > 0 and apply the partial diagonalization procedure

described above to calculate V and Π such that

V (−1)ΠR̄ΠT V =

[
Σ̄1 0
0 Σ̄2

]

(11)

with λ(Σ̄1) = {λ(R) > α}, λ(Σ̄2) = {λ(R) < α}, and per-

form the corresponding ‘partial balancing’ state transforma-

tion:

[
V −1Π∗ĀΠV V −1Π∗B̄

C̄ΠV 0

]

=






ˆ̄A11
ˆ̄A12

ˆ̄B1

ˆ̄A21
ˆ̄A22

ˆ̄B2

ˆ̄C1
ˆ̄C2 0






then the truncated system ˆ̄G =

[
ˆ̄A11

ˆ̄B1

ˆ̄C1 0

]

can be

shown to only be a state transformation away from the

fully balanced truncated system[31], and thus has the same

stability properties and error bound: ˆ̄A11 is guaranteed stable

and ‖Ḡ − ˆ̄G‖∞ < 2
∑

(λi(Σ̄2))
1/2, but the realization of

ˆ̄G retains the SSS•,•,N structure. We note that this error

upper bound can be efficiently calculated as 2Tr((Σ̄2)
1/2)

interpreted as the matrix square root, which can also be

computed using the matrix sign [32].

Remark 1: In practice, the 0 /∈ λ(P11)
⋃

λ(P22) condition

in Lemma 5 is not often violated when performing SSS

model order reductions as discussed above, however, it does

happen that either the spectrum of R̄ has only a small ‘gap’

between λnrN and λnrN+1 (for ordered eigenvalues, where

nrN is the size of the desired Σ̄1), or P11 and P22 are ill

conditioned due to near permutations in P , and hence either

the calculation of the similarity transformation V̄ , or V̄ itself,

may be ill-conditioned. This may result in SSS matrices
ˆ̄A11,

ˆ̄B1,
ˆ̄C1 with weakly stable or unstable generators (Wm

s

and W p
s terms which are LTV marginally stable or unstable),

which are difficult to implement due to the resulting large

off-diagonal terms. This can often be remedied by solving

Lyapunov inequalities of the form:

ĀP̄ Ā∗ − P̄ + B̄B̄∗ + T̄ � 0 (12)

Ā∗Q̄Ā − Q̄ + C̄∗C̄ + T̄ � 0 (13)

Where T̄ is a block diagonal SSS matrix with realization T̄ =

SSS(0, 0, 0,

[
κInr

0
0 0

]

0, 0, 0) on each of its diagonals, for

some κ > 0. This perturbs the spectra of P̄ and Q̄ and

thus R̄, at the expense of often increasing the resulting

approximation error (see below), However, since solutions

to (12) and (13) will still be valid solutions to (9) and (10,

the error upper bound 2Tr((Σ̄2)
1/2) can still be used.

V. EXAMPLE

We pick a computational example with no physical

meaning in order to better exhibit some of the issues

mentioned above. Consider the discrete time system

Ḡ :

[
x̄k+1

ȳk

]

=

[
Ā B̄
C̄ 0

] [
x̄k

ūk

]

where we have picked Ā =

−
1

10
SSS(

[

−2
1

]

,−.1,
[
1 2.5

]
,

[

1 1
2 .5

]

,

[

.3
−.01

]

, .7,
[
9 5

]
),
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Fig. 3. ordered eigenvalues of R̄ for different values of κ

B̄ = SSS(

[
1.6
−.7

]

, .4,−1.5,

[
1.3
.2

]

,

[
1.7
−.2

]

, .7, 1.7),

C̄ = SSS(2.6,−.5,
[
0.2 1.7

]
,
[
.5, .3

]
, 3.5, .4,

[
.5 −.5

]
)

to be spatially invariant for s = 1 : 200 for simplicity,

although as in [19], the computational methods and

complexity hold also for heterogeneous sytems. The

original system with state dimension 400 has l2 induced

norm ‖Ḡ‖∞ ≈ 197.2 and with MATLAB’s reduce()

using balanced truncation, a non-structured reduced

order system Ĝ with state dimension 200 was found

with ‖Ḡ − Ĝ‖∞ ≈ 7.4565. Using the SSS structured

methods (with SSS order of 10 for all calculations) above

with κ = 5, an SSS structured reduced order system ˆ̄G with

state dimension 200 was found with ‖Ḡ − ˆ̄G‖∞ ≈ 6.3795.

In this case, only 3 α-iterations were needed to find the

correct value for splitting the eigenvalues, and by extending

N to larger values, it was found that the estimate of linear

computational complexity(O(N)) holds, as in [19] and [9],

and the SSS model order reduction routines become faster

than the MATLAB routines at N ≈ 350 and ≈ 110 seconds.

In figure 3 we see how changing κ in (12) and (13)

affects the eigenvalues of R̄ for this problem. For κ = 0,

there is not much gap(leading to more α-iterations), the

resulting V̄ matrix is ill-conditioned, and ˆ̄A11 has large

off diagonal elements (see figure 4) making it difficult to

implement. However, for κ = 5 the resulting gap in λ(R)
is noticeable, leading to faster α-bisection convergence and

a nicer realization of ˆ̄A11 (see figure 5). Note that the

figures show the entrywise log10 of the absolute values of

the matrices, and we thus see that ˆ̄A11 has an exponential

spatial decay away from the diagonal(see the ESD operators

of [33]), making it much easier to implement distributed

controllers.

However, unnecessarily large κ values lead to decreased

accuracy in the approximation, for example, with κ = 25

we have ‖Ḡ − ˆ̄G‖∞ ≈ 8.0516 and for κ = 100 we have

‖Ḡ − ˆ̄G‖∞ ≈ 10.2025, but an appropriate κ value can

be iteratively found by bisection and checking that the off

diagonal corners of V̄ (−1) approach 0.
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VI. CONCLUSION

In conclusion, we have described and demonstrated a

model order reduction technique for certain 1-D heteroge-

neous distributed systems that scale as O(N), better than

existing interconnected system methods [12], but preserve

the distributed interconnection structure, unlike the com-

putationally efficient but structure destroying rank-revealing

factorization techniques proposed within the numerical linear

algebra community [17].

The methods described herein can easily be extended to

continuous time and other balanced truncation techniques

such as are listed in [34], and probably also to H matrices [6],

although the authors are unaware of the desirability of sim-

ilarly structured reduced order models in such applications.
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