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Abstract— Approaching the problem of optimal adaptive
control as “optimal control made adaptive,” namely, as a
certainty equivalence combination of linear quadratic optimal
control and standard parameter estimation, fails on two counts:
numerical (as it requires a solution to a Riccati equation at
each time step) and conceptual (as the combination actually
does not possess any optimality property). In this note we
present a particular form of optimality achievable in Lyapunov-
based adaptive control. State and control are subject to positive
definite penalties, whereas the parameter estimation error is
penalized through an exponential of its square, which means
that no attempt is made to enforce the parameter convergence,
but the estimation transients are penalized simultaneously with
the state and control transients. The form of optimality we
reveal here is different from our work in [Z. H. Li and
M. Krstic, “Optimal design of adaptive tracking controllers
for nonlinear systems,” Automatica, vol. 33, pp. 1459-1473,
1997] where only the terminal value of the parameter error
was penalized. We present our optimality concept on a PDE
example—boundary control of a particular parabolic PDE with
an unknown reaction coefficient. Two technical ideas are central
to the developments in the note: a non-quadratic Lyapunov
function and a normalization in the Lyapunov-based update
law. The optimal adaptive control problem is fundamentally
nonlinear and we explore this aspect through several examples
that highlight the interplay between the non-quadratic cost and
value functions.

I. INTRODUCTION

For high-dimensional systems, and for PDEs in particular,

solving Riccati equations—even once—is a challenging task.

Doing so on a real-time basis, at each time step for each

new plant parameter estimate, is not feasible (the numerical

difficulty is independent of the dimension of the parameter

vector—be it scalar or infinite dimensional—and is associ-

ated with the high dynamic order of the plant). Even if one

is to indulge in solving a new Riccati equation at each time

step, one receives no reward for such excessive effort, as the

certainty equivalence combination of the standard parameter

estimation schemes with linear quadratic optimal control

does not possess any optimality property. In fact, even the

transient performance of the certainty equivalence adaptive

LQR control can be unpredictably poor, with its stability

proof being among the most complicated of any adaptive

control scheme [7]. Given the lack of both optimality and

numerical feasibility of combining Riccati-based feedbacks

with parameter adaptation, it is no surprise then that the

vast majority of adaptive control for distributed parameter
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systems [1], [2], [3], [6], [8], [9], [10], [12], [14], [15], [17],

[20], [21], [22], [23] are not based on optimal control ideas

(with a notable exception of [4], in the stochastic setting).

The only achievement so far of true optimality in adaptive

control has been reported in [13]. This was an inverse opti-

mality result, in the spirit of the classical inverse optimality

theory for nonlinear systems [16], [18], stated in the context

of a parameter-adaptive tracking problem for globally stabi-

lizable nonlinear finite-dimensional systems with uncertain

parameters. The interesting aspect of this result was that the

adaptive controller was truly a minimizer of a meaningful

cost functional, which included, besides the positive definite

penalties on the state and control (with complicated nonlinear

scaling in terms of the parameter estimate), a simple terminal

penalty on the parameter estimation error.

In this note we revisit this problem, but in the context of

adaptive control of a linear PDE example considered in [12].

This example is of conceptual significance, as it deals with an

unstable plant, but for which backstepping design yields an

explicit formula for the feedback law, which allows the main

point of the note to be made particularly clearly, without

being buried under layers of notation. The idea can be

generalized to several other linear adaptive control problems

but these extensions are not pursued here.

The note’s organization and contributions are as follows.

After introducing the plant and adaptive controller in Sec-

tion II, and proving their stability in Section III, the main

result (inverse optimality) is stated in Section IV. The opti-

mality is achieved relative to a cost that penalizes the infinite-

time transient of the exponential of the square of the param-

eter estimation error, which in turn acts as a weight on the

state and control penalty. No such optimality result (despite

being both desirable and nearly obvious in retrospect) has

been achieved before in adaptive control. The key technical

idea behind the result is that the parameter estimator design

is based on a particular form of Lyapunov function (which is

also the value function of the optimal control problem) that

combines the norms of the plant state and of the parameter

error in an unusual, non-additive manner. Such a Lyapunov

function leads to a normalization of the parameter update

law, which is uncommon in Lyapunov-based adaptive control

design [11]. In Section V we discuss the relative merits

of normalized and unnormalized update laws by exploring

different forms of penalty on control and parameter error,

for a particular scalar linear ODE example that is worked

out explicitly. In Section VI we quantify the effect of update

law normalization on transient performance for the example

from Section V.
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II. AN ADAPTIVE CONTROL DESIGN FOR A PDE

EXAMPLE

We consider the following plant

ut(x,t) = uxx(x,t)+ λ u(x,t) , x ∈ (0,1) (1)

u(0,t) = 0 , (2)

ux(1,t) = U(t) , (3)

where λ is an unknown constant parameter that can have

any real value and U(t) is the boundary control input to be

designed. Consider a change of variable [19]

w(x,t,λ ) = u(x,t)−
∫ x

0
k(x,y,λ )u(y,t)dy , (4)

k(x,y,λ ) = −λ y
I1

(

√

λ (x2 − y2)
)

√

λ (x2 − y2)
(5)

and its inverse

u(x,t) = w(x,t,λ )+
∫ x

0
l(x,y,λ )w(y,t,λ )dy (6)

l(x,y,λ ) = −λ y
J1

(

√

λ (x2 − y2)
)

√

λ (x2 − y2)
, (7)

where I1(·) and J1(·) are Bessell functions. The change of

variable (4), (5), with the unknown parameter λ replaced by

its real-time estimate λ̂ (t), transforms the system into

d

dt
w

(

x,t, λ̂ (t)
)

= wxx

(

x,t, λ̂ (t)
)

+
˙̂
λ (t)

∫ x

0

y

2
w

(

y,t, λ̂ (t)
)

dy

+
(

λ − λ̂(t)
)

w
(

x,t, λ̂ (t)
)

, (8)

w
(

0,t, λ̂ (t)
)

= 0 , (9)

wx

(

1,t, λ̂ (t)
)

= U(t)− k
(

1,1, λ̂(t)
)

u(1,t)

−
∫ 1

0
kx

(

1,y, λ̂ (t)
)

u(y,t)dy . (10)

In [12] we showed that the adaptive controller

U◦(t) = k
(

1,1, λ̂(t)
)

u(1,t)+
∫ 1

0
kx

(

1,y, λ̂ (t)
)

u(y,t)dy

(11)

with the parameter update law

˙̂
λ (t) =

∫ 1

0
w

(

x,t, λ̂ (t)
)2

dx

1 +
∫ 1

0
w

(

x,t, λ̂ (t)
)2

dx

(12)

is globally stabilizing and achieves regulation of u to zero.

In this note we propose a very different controller and

show its inverse optimality. This controller is given by

U∗(t) = −
(

1 + 3

∣

∣

∣
λ̂ (t)

∣

∣

∣
+

∣

∣

∣
λ̂(t)

∣

∣

∣

2
)

×
(

u(1,t)−
∫ 1

0
k
(

1,y, λ̂ (t)
)

u(y,t)dy

)

. (13)

III. STABILITY

Before we state our results, we introduce the following

functional:

L

(

u, λ̂
)

(t) = 2

∫ 1

0
wx

(

x,t, λ̂ (t)
)2

dx

−

∫ 1

0
w

(

x,t, λ̂ (t)
)2

dx

1 +

∫ 1

0
w

(

x,t, λ̂ (t)
)2

dx

×
∫ 1

0
w

(

x,t, λ̂ (t)
)

∫ x

0
yw

(

y,t, λ̂ (t)
)

dydx

+ 2l
(

1,1, λ̂ (t)
)

w
(

1,t, λ̂(t)
)2

+ 2w
(

1,t, λ̂(t)
)

∫ 1

0
lx

(

1,y, λ̂ (t)
)

w
(

y,t, λ̂ (t)
)

dy

+

(

1 + 3

∣

∣

∣
λ̂ (t)

∣

∣

∣
+

∣

∣

∣
λ̂ (t)

∣

∣

∣

2
)

w
(

1,t, λ̂(t)
)2

. (14)

Lemma 1: For the functional (14) the following holds

L

(

u, λ̂
)

(t) ≥
(

1− 2

π2
√

3

)

∫ 1

0
wx

(

x,t, λ̂ (t)
)2

dx

≥
2

∫ 1

0
u(x,t)2dx

(

1 + sup0≤y≤x≤1

∣

∣

∣
l
(

x,y, λ̂ (t)
)∣

∣

∣

)2
.

(15)

Proof: The first line of (15) is established by a lengthy

but straightforward calculation starting with
∣

∣

∣

∣

∫ 1

0
w(x)

(

∫ x

0
yw(y)dy

)

dx

∣

∣

∣

∣

≤ 1

2
√

3
‖w‖2 ≤ 2

π2
√

3
‖wx‖2 ,

(16)

(where the first inequality was established in [12, Lemma

A.1] and the second inequality follows from the Wirtinger

inequality [5, p. 182]), using the fact that 2l
(

1,1, λ̂
)

=−λ̂ ,

and using the fact, proven in [19], that
∫ 1

0

∣

∣

∣
lx

(

1,y, λ̂
)∣

∣

∣
dy ≤

λ̂ + 1, and hence (with the help of the Agmon and Young

inequalities)

2w(1)

∫ 1

0
lx

(

1,y, λ̂
)

w(y)dy

≥−‖wx‖2 −
(

1 +
∣

∣

∣
λ̂

∣

∣

∣

)2

w(1)2 . (17)

The second line of (15) follows from (6), the Wirtinger

inequality, and using the fact that π2

4

(

1− 2

π2
√

3

)

= 2.18 > 2.

Theorem 2: (Stabilization) The closed-loop system con-

sisting of the plant (1)–(3), parameter update law (12), and

the controller (13) is globally Lyapunov stable in the sense

of the norm
∫ 1

0 u(x,t)2dx +
(

λ̂ (t)−λ
)2

and, furthermore,
∫ 1

0 u(x,t)2dx → 0, λ̂ (t) → λ∞ as t → ∞, where λ∞ is some

constant.

Proof: We use the Lyapunov functional

V (t) =

(

1 +

∫ 1

0
w

(

x,t, λ̂ (t)
)2

dx

)

e(λ̂ (t)−λ)
2

−1 . (18)
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An easy calculation yields

V̇ (t) =− e(λ̂ (t)−λ)
2

L

(

u, λ̂
)

(t)

− e(λ̂ (t)−λ)
2
(

1 + 3

∣

∣

∣
λ̂ (t)

∣

∣

∣
+

∣

∣

∣
λ̂(t)

∣

∣

∣

2
)

w
(

1,t, λ̂ (t)
)2

.

(19)

By deriving an upper and lower bound on (18), from V̇ ≤ 0

we get that

ϒ(t) ≤ eϒ(0)−1 , (20)

where ϒ(t) =
∫ 1

0
w

(

x,t, λ̂ (t)
)2

dx+
(

λ̂ (t)−λ
)2

. The func-

tions k(x,y,λ ) and l(x,y,λ ) are continuous and zero at λ = 0.

Therefore, there exist class-K functions δ and γ such that

sup
0≤y≤x≤1

|k(x,y,θ )| ≤ δ (|θ |) (21)

sup
0≤y≤x≤1

|l(x,y,θ )| ≤ γ(|θ |) . (22)

Then a lengthy but routine calculation, starting from (20),

(21), (22), yields

Ω(t) ≤ Σ(1 + γ (|λ |+ Σ)) (23)

where

Ω(t) =

(

∫ 1

0
u(x,t)2dx +

(

λ̂ (t)−λ
)2

)1/2

(24)

Σ(Ω0) =
(

e(1+δ (|λ |+Ω0))
2Ω2

0 −1
)1/2

(25)

Ω0 = Ω(0) . (26)

Since (23) is a class-K function of Σ, and Σ is a class-K

function of Ω0, this proves global stability in the norm Ω(t).
The regulation result is argued in a similar way as in [12]

(despite the fact that the Lyapunov function is different),

using (19) and (15).

IV. INVERSE OPTIMALITY

Theorem 3: (Inverse Optimality) Consider the system

consisting of the plant (1)–(3) with the parameter update

law (12). The controller (13) minimizes the cost functional

J = lim
σ→∞

{

e(λ̂ (σ)−λ)
2

−1 +

∫ σ

0
e(λ̂ (t)−λ)

2

×M

(

u,U, λ̂
)

(t)dt
}

, (27)

where

M

(

u,U, λ̂
)

(t) = L

(

u, λ̂
)

(t)+
U(t)2

1 + 3

∣

∣

∣
λ̂ (t)

∣

∣

∣
+

∣

∣

∣
λ̂ (t)

∣

∣

∣

2
.

(28)

The minimum of the cost functional is

J∗ =

(

1 +

∫ 1

0
w

(

x,0, λ̂ (0)
)2

dx

)

e(λ̂ (0)−λ)
2

−1 . (29)

The cost on the state and control M

(

u,U, λ̂
)

(t) is positive

definite and underbounded by the following functional:

M

(

u,U, λ̂
)

(t) ≥ e−3|λ̂ (t)|
(

2

∫ 1

0
u(x,t)2dx +U(t)2

)

.

(30)
Proof: A straightforward calculation yields

J =V (0)+

∫ ∞

0
e(λ̂ (t)−λ)

2

×

[

U(t)+

(

1 + 3

∣

∣

∣
λ̂ (t)

∣

∣

∣
+

∣

∣

∣
λ̂(t)

∣

∣

∣

2
)

w
(

1,t, λ̂(t)
)

]2

1 + 3

∣

∣

∣
λ̂ (t)

∣

∣

∣
+

∣

∣

∣
λ̂ (t)

∣

∣

∣

2
dt ,

(31)

from which the results in the first two statements follow. To

prove the third statement we note from [19, Theorem 3] that

sup0≤y≤x≤1

∣

∣

∣
l

(

x,y, λ̂
)∣

∣

∣
≤

∣

∣

∣
λ̂
∣

∣

∣
e2|λ̂ | and then use Lemma 1

and a simple calculation to obtain a lower bound in terms of

an exponential of

∣

∣

∣
λ̂ (t)

∣

∣

∣
.

The cost functional (27), which is optimized by the

controller (13), provides a clue as to what form of cost

penalties in state, control, and parameter error are mean-

ingful to pursue in possible developments of direct (rather

than inverse) optimal adaptive control. Parameter estimation

transients are penalized (through an exponential-of-square

penalty) but they are not penalized in a way that would

demand convergence of the parameter estimate to the true

parameter. This is consistent with the fact that parameter

convergence requires persistence of excitation, which is

normally not present in problems where the state is being

regulated to zero. The cost on the plant state and control

are quadratic and positive definite, as indicated by (30), but

it also involves scaling by the parameter estimate λ̂ , which

is to be expected, and which is not removable without the

actual knowledge of the unknown parameter λ .

We want to emphasize the difference between “adaptive

inverse optimal control” [19, Section VII] and “inverse

optimal adaptive control” in this note. In [19, Section VII]

only a case with known plant parameters was considered

and adaptation was used to deal with the conservativeness

in the inverse optimal design, namely to tune a control gain

to a sufficient (but non-conservative) value. Hence, in [19,

Section VII] an inverse optimal design was made adaptive.

In this note, we deal with an unknown parameter case and

design an adaptive controller which is inverse optimal. This is

clearly a stronger result, for a more challenging problem, and

optimality holds for the entire parameter-adaptive nonlinear

system.

V. VARIATIONS OF INVERSE OPTIMALITY

Compared to the cost functional in [13] which imposes

only a terminal penalty on the parameter error, this note

adds the transient penalty on the parameter error in the

cost functional (27). This innovation is closely linked with

the choice of Lyapunov function (18). To provide further

insight into the interplay between the designer’s choices of
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Lyapunov function, control and update law, and ultimately

the inverse optimal cost function, we revisit a simple scalar

adaptive control example worked out in [13] and provide

several new inverse optimal designs that incorporate different

weights on the state and control. (The quantity θ̂∞ denotes

limt→∞ θ̂ (t), which is easily shown to exist in all of the

results stated in this section.)

Theorem 4: (True optimality of pointwise optimal feed-

back law) Consider the system

ẋ = u + θx (32)

and the associated adaptive feedback law

u = −
(

θ̂ +
√

θ̂ 2 + 1
)

x (33)

where θ̂ (t) is the estimate of the unknown constant parameter

θ . With the update law

˙̂θ = x2 (34)

the control law (33) is optimal relative to the following cost

functional and value (Lyapunov) function:

J(34) =
(

θ̂∞ −θ
)2

+
∫ ∞

0

x(t)2 + u(t)2

θ̂(t)+
√

θ̂ (t)2 + 1

dt (35)

V(34) = x2 +
(

θ̂ −θ
)2

, (36)

whereas with the update law

˙̂θ =
x2

1 + x2
(37)

the control law (33) is optimal relative to the following cost

functional and value (Lyapunov) function:

J(37) = e(θ̂∞−θ)
2

−1

+

∫ ∞

0
e(θ̂(t)−θ)

2 x(t)2 + u(t)2

θ̂ (t)+
√

θ̂ (t)2 + 1

dt (38)

V(37) =
(

1 + x2
)

e(θ̂−θ)
2

−1 . (39)

Proof: By direct verification.

The first half of Theorem 4 was proved in [13], whereas

the second one is new. Note the interesting form of the

Lyapunov derivative, V̇(37) = −2x2e(θ̂−θ)
2√

θ̂ 2 + 1, which,

even though dependent on the parameter error, is only

negative semidefinite, so, as usual, we only get x(t) → 0

as t → 0.

Next, we explore some variations in the forms of the

Lyapunov functions like (39) and the cost functionals like

(38). The following two theorems give such examples, where

slight changes in the update law and the Lyapunov function

result in considerably simplified weights on u(t) in the cost

functional.

Theorem 5: (Simpler weight on control effort) Consider

the system (32) with a parameter estimator given by

˙̂θ =

(

θ̂ +
√

θ̂ 2 + 1
)

x2

1 +
(

θ̂ +
√

θ̂ 2 + 1
)

x2
. (40)

The feedback law

u = −4
(

θ̂ +
√

θ̂ 2 + 1
)

x (41)

is the minimizer of the cost functional

J = e(θ̂∞−θ)
2

−1

+

∫ ∞

0
e(θ̂(t)−θ)

2

×
[

(

θ̂ +
√

θ̂ 2 + 1
)2

(

1 + q
(

x(t), θ̂ (t)
))

x(t)2

+
1

4
u(t)2

]

dt , (42)

where q
(

x, θ̂
)

is a non-negative function given by

q
(

x, θ̂
)

=
1

2

√

θ̂ 2 + 1

θ̂ +
√

θ̂ 2 + 1
+ 1

− x2

√

θ̂ 2 + 1
(

1 +
(

θ̂ +
√

θ̂ 2 + 1
)

x2
) ≥ 0 . (43)

Global stability and regulation of x(t) to zero are achieved

relative to the Lyapunov function

V =
(

1 +
(

θ̂ +
√

θ̂ 2 + 1
)

x2
)

e(θ̂−θ)
2

−1 (44)

V̇ = −
(

θ̂ +
√

θ̂ 2 + 1
)

(

5 + q
(

x, θ̂
))

x2e(θ̂−θ)
2

. (45)

Proof: By direct verification.

Theorem 6: (Simpler weight on control effort, with sim-

pler control law) Consider the system (32) with a parameter

estimator given by

˙̂θ =

(

1 +
∣

∣θ̂
∣

∣

)

x2

1 +
(

1 +
∣

∣θ̂
∣

∣

)

x2
. (46)

The feedback law

u = −2
(

1 +
∣

∣θ̂
∣

∣

)

x (47)

is the minimizer of the cost functional

J = e(θ̂∞−θ)
2

−1

+

∫ ∞

0
e(θ̂(t)−θ)

2

×
[

(

1 + q
(

x(t), θ̂ (t)
))

x(t)2 +
1

2
u(t)2

]

dt , (48)

where q
(

x, θ̂
)

is a non-negative function given by

q
(

x, θ̂
)

= 2
(∣

∣θ̂
∣

∣− θ̂
)

+ 1− x2 sgn θ̂

1 +
(

1 +
∣

∣θ̂
∣

∣

)

x2
≥ 0 . (49)

Global stability and regulation of x(t) to zero are achieved

relative to the Lyapunov function

V =
(

1 +
(

1 +
∣

∣θ̂
∣

∣

)

x2
)

e(θ̂−θ)
2

−1 (50)

V̇ = −
(

1 + q
(

x, θ̂
)

+ 2
(

1 +
∣

∣θ̂
∣

∣

)2
)

x2e(θ̂−θ)
2

. (51)

Proof: By direct verification.

In the designs in Theorems 5 and 6, the price paid for the

reduced complexity in the weight on u(t) is in the increased

complexity in the Lyapunov function, which translates into
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the increased complexity of the update law and of the weight

on x(t) in the cost functional.

The designs in Theorems 5 and 6 both attempt to eliminate

the scaling of the costs on x and u in terms of θ̂ but neither

succeeds. It is possible in principle to eliminate this scaling,

however, the redesigned feedback would have to employ

the knowledge of the unknown θ . This obstacle is probably

fundamental, and related to the fact that adaptive stabilization

is not a full-state stabilization problem (the parameter, which

can be treated as a constant state, is unmeasured).

We emphasize that all three control laws, (33), (41), and

(47), as well as the simpler, non-optimal control law,

u = −
(

1 + θ̂
)

x , (52)

are all globally stabilizing also with the update law (34),

relative to the Lyapunov function (36), as well as with the

update law (37), relative to the Lyapunov functions (39) and

V = ln
(

1 + x2
)

+
(

θ̂ −θ
)2

.

The above inverse optimality results in Theorems 4, 5, 6

inspire an attempt to approach a direct optimal control prob-

lem for the plant (32). In inverse optimal designs the order

in which choices are made is as follows: (i) Lyapunov/value

function, (ii) feedback law, (iii) cost functional. We now

approach a direct optimal control problem where we start

with a cost functional

J = lim
t→∞

{

V
(

x(t), θ̂ (t)
)

+

∫ t

0
e(θ̂ (t)−θ)

2
[

x(t)2 + u(t)2
]

dt

}

, (53)

and a postulated form of a value function,

V =
(

1 + p
(

x, θ̂
)

x2
)

e(θ̂−θ)
2

−1 , (54)

where p
(

x, θ̂
)

is a positive, continuously differentiable func-

tion to be found, and then derive the optimal adaptive

controller. We first find that the function p
(

x, θ̂
)

satisfies

the nonlinear partial differential equation

(

p +
x

2
px

)2

− 2θ̂ + x2
(

2θ̂ p + pθ̂

)

1 + x2 p

(

p +
x

2
px

)

= 1 , (55)

with an additional condition that p
(

0, θ̂
)

= θ̂ +
√

θ̂ 2 + 1.

Then the optimal adaptive controller is given by

u∗ = −
(

p +
x

2
px

)

x (56)

˙̂θ =

(

p + x
2

px

)

x2

1 + px2
. (57)

Obviously, the big open questions are the global existence

and the numerical computation of the solution to the nonlin-

ear PDE (55).

VI. TRANSIENT PERFORMANCE EFFECT OF UPDATE

LAW NOMALIZATION

Theorem 4 highlights the difference between normalized

and unnormalized update laws. While update law normaliza-

tion is a common (and in some cases an essential) tool in

swapping (or estimation error/certainty equivalence) based

approaches to adaptive control, within the framework of

Lyapunov-based adaptive control [11] normalized update

laws are uncommon. The form of Lyapunov function in this

paper lends justification to the use of normalization with

Lyapunov update laws.

Even though it is useful to have one more tool in the design

toolkit for adaptive feedback systems, we are not necessarily

claiming that there is absolute advantage in using update law

normalization. To understand the tradeoff, consider again the

scalar ODE plant (32) but with the simpler (non-optimal)

control law (52). The Lyapunov functions (36) and (39),

respectively, yield the update laws (34) and (37). For the two

respective closed-loop systems one can find that the solutions

satisfy the following two relations. Under the update law (34)

the trajectories satisfy

x(t)2 +
(

θ̂(t)−θ + 1
)2

= x2
0 +

(

θ̂0 −θ + 1
)2

, (58)

whereas under the update law (37) the trajectories satisfy

ln
(

1 + x(t)2
)

+
(

θ̂(t)−θ + 1
)2

(59)

= ln
(

1 + x2
0

)

+
(

θ̂0 −θ + 1
)2

, (60)

where
(

x0, θ̂0

)

is the initial condition. Using (58) and (59)

the following is obtained.

Theorem 7: (Normalized versus unnormalized update

law) Consider the closed-loop systems consisting of the plant

(32), the controller (52), and respectively, the update laws

(34) and (37). Let θ ≥ 1 and θ̂0 = 0. The following is true:

inf
x0 6=0

sup
t≥0

x(t,x0)
2

∣

∣

∣

∣

(34)

= (θ −1)2 (61)

inf
x0 6=0

sup
t≥0

x(t,x0)
2

∣

∣

∣

∣

(37)

= e(θ−1)2 −1 . (62)

Proof: By observing that in both (58) and (59) the peak

in x(t) (in the phase space) is achieved at time t for which

θ̂ (t) = θ −1.

This theorem says the following. When the instability

parameter θ is positive and large, and when the initial

parameter estimate θ̂0 is zero and thus clearly not of sta-

bilizing value, then, the adaptation transient that the system

undergoes, as measured by the peak of the state x, is larger

with the normalized update law than with the unnormalized

update law. This advantage of the unnormalized update law

is not unexpected. The absence of normalization allows the

update law to act more aggressively and to deliver stabilizing

values of the control gain in a shorter period of time,

resulting in a smaller peak of the state transient.
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