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Abstract— Human movement appears constructed of prim-
itives that serve as building blocks for complex motion. Two
pioneering descriptions of aimed movement, the deterministic
iterative-corrections and stochastic optimized-submovement mod-
els, each assume that such primitives (or submovements) are
discrete and non-overlapping. Although these prominent mod-
els successfully explain the speed-accuracy tradeoff familiarly
known as Fitts’ law, they say little about the kinematic shape
of submovements. This paper introduces a family of length-
normalized action primitives (LNAPs) that produce rigid-body
trajectories similar to those seen in human motion, and which
agree with Fitts’ law. Like the aforementioned models, the
LNAP method requires discrete submovements. However, it
extends the antecedent models by explicitly bounding poten-
tial input profiles. Additionally, it embraces the concept of
proportional input noise, a key characteristic of the stochastic
optimized-submovement model.

I. INTRODUCTION

It has been suggested that complex human motions are

constructed from a limited set of movement primitives [1].

This paper proposes a framework for modeling human mo-

tion in which movement is driven by a series of energy-

balanced profiles, referred to hereafter as length-normalized

action primitives (LNAPs). Application of LNAPs to a single

rigid body produces a dynamic response that agrees with

Fitts’ Law, is undershooting, and also multiresolutional; these

features are characteristic of human movement.

A. Fitts’ Law

Aimed point-to-point movement begins at rest, then travels

(roughly) some fixed distance D before stopping inside a

target of radius r. Such movement is considered to have a

relative precision of (r/D). It has been long observed that

motions sharing a common relative precision are completed,

on average, in an equal amount of time. This is formally

known as Fitts’ law [2], and may be expressed as

tm = a+ b log
2

(

D

r

)

(1)

where tm is movement time, and a and b are real constants.

B. Intermittent Feedback Models

Representations of human motion must deal with the

presence of sensory feedback. Closed-loop approaches make

continuous use of visual and proprioceptive feedback, as

seen in optimal feedback control methods [3]. Models that

completely ignore such feedback are open-loop; included in

this group are the minimal jerk [4] and minimal variance [5]

theories. Finally, models that incorporate neither open-loop

nor closed-loop feedback must instead utilize intermittent

feedback, assuming that sensory feedback is availed sporad-

ically throughout the movement, but not continuously.

Best-known of the intermittent models are the determinis-

tic iterative-corrections (DIC) model of Crossman and Good-

eve [6], and the stochastic optimized-submovement model

(SOS) of Meyer et al. [7]. Both models assume that a correc-

tive submovement cannot begin until the prior submovement

is completed—an assumption that unfortunately conflicts

with evidence of overlapping primitives [8]. Nonetheless,

both models have enjoyed considerable prominence in the

literature.

According to the DIC model, each submovement travels

steadily closer to the target, without overshoot. As long

as each submovement produces an exponentially smaller

traversal, while consuming an equal period of time, the

total movement duration will agree with Fitts’ relationship.

However, Crossman and Goodeve did place any bounds on

the range of input profiles that might work in this manner.

Further, they did not consider the effect of neural noise on

the command input signal. In an effort to accommodate input

noise, the SOS model assumes that submovement variability

is linearly related to the submovement’s average velocity,

thus producing concurrence with Fitts’ equation. However,

aside from this general description, Meyer et al. do not

otherwise constrain the input shape.

In a prior article, the authors demonstrated an intermittent

feedback function that agrees with Fitts’ law [9]. Expanding

on the underlying properties of that function, an entire family

of forcing profiles, or LNAPs, is descibed herein. This new

methodology utilizes the DIC approach of exponentially

smaller traversals to match Fitts’ finding, while accommo-

dating the presence of neural noise, as does the SOS model.

C. Undershooting Behavior

Undershoot is typical in rapid human movement to fixed

targets, as individuals increase the amount of undershoot

with the level of stochastic disturbance [10]. While some

researchers find no bias in aimed movement, it is unusual
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Fig. 1. Average accelerations during 30 trials of forearm rotation by a
single subject in three different point-to-point movements. Curves denoted
with D traveled twice as far as those denoted by d. The target radius R

was twice as large as target radius r.

to find a reported overshoot tendency, although overshooting

behavior may be evident when attempting to intercept a mov-

ing target [11]. Lyons et al. studied vertical point-to-point

movement, and showed that undershoot was more likely to

occur with downward, rather than upward, movement [12].

This indicates that humans adjust their trajectory to minimize

the resultant cost of corrective actions. As detailed below,

application of a “noisy” LNAP to a rigid body produces a

trajectory that undershoots its target with known probability.

D. Multiresolution Nature

Consider two movements of the same relative precision,

but of differing movement distance; these movements are

a matched precision pair (MPP). Since they share a com-

mon relative precision, the two movements exhibit identical

movement durations, as mandated by Fitts’ law. However,

because they travel differing distances in the same amount of

time, their position, velocity and acceleration profiles exhibit

unequal amplitudes.

A study by Kwon et al. concludes that humans encode

learned hand movement in terms of relative precision, rather

than absolute distance [13]. This suggests that movements

learned for one relative precision are effectively learned for

all other movements sharing the same relative precision.

Thus, MPP movements should share more than an identical

duration; their trajectories should appear as magnitude-scaled

versions of one another [14]. Since an isolated rigid body

acts as a linear time-invariant system, it is not surprising

that scaling the input (as a function of time) for such as

system does, in fact, produce a proportionally scaled output

trajectory. This paper proposes that such scaling occurs natu-

rally if input functions are stored as functions of normalized

length, rather than time.

As a preliminary look at length-normalized functions,

consider the experimental acceleration trajectories of human

forearm rotation shown in Fig. 1. Plotted as functions of

time, it is somewhat difficult to spot similarities among the

curves. When plotted on a length-normalized basis, however,
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Fig. 2. The same data as in Fig. 1, but normalized by movement length
along both axes.

the MPP profiles (‘dr’ and ‘DR’) exhibit remarkably similar

shapes, as can be seen in Fig. 2. This suggests that motions

of a common relative precision can be encoded as a single

length-normalized profile, and then scaled to accommodate

the desired movement amplitude.

II. PHYSICAL PLANT

This paper studies rotation of the human forearm as a

proxy for various forms of aimed movement. Using the

second-order linear model of van der Helm and Rozendaal

[15], the forearm is represented as a rotating rigid link with

damping at the pivot; that is,

Jθ̈(t) +Bθ̇(t) = τ(t) (2)

where θ is the link angle, J is the link polar moment of

inertia, B is the rotational damping coefficient, and τ(t) is

the applied torque. Values for J and B are 0.25 kg·m2 and

0.20 kg·m2/s, respectively.

Absent an initial velocity, point-to-point rotation of any

mechanical plant in the form of (2) requires that energy be

added to the system to induce link rotation. It is assumed

that energy is delivered via an applied pivot torque, τ . Once

movement is initiated, energy removal may also be required

(via negative torque) to halt rotation if energy dissipating

processes, such as friction and damping, do not stop rotation

inside some desired target interval. As friction is absent

in the model of (2), some modicum of negative torque is

always necessary to suspend link rotation. This manuscript

assumes that energy addition and removal is accomplished

via one or more input LNAPs. Thus, the reader may correctly

substitute ‘torque forcing function’ for ‘LNAP’ throughout

the remainder of this manuscript.

III. LENGTH-NORMALIZED ACTION PRIMITIVES

Unconstrained human motion is generally smooth, dis-

playing a nearly symmetric, bell-shaped, velocity profile.

Although imposition of a target does not alter the smoothness

characteristic, the velocity profile may be skewed when a

spatial constraint is added [16]. Nonetheless, human move-

ment is readily identifiable by a stereotypical kinematic
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curve. On the other hand, the proposed LNAP construct

allows for a broad range of kinematic responses. So while

LNAP constraints are conducive to a “human-like” response,

such behavior is not guaranteed. Thus, command signals

from the human brain that produce joint torques must be

viewed as a subset of the LNAP form. This section intro-

duces four constraints that define a LNAP profile. Common

response characteristics are then reviewed.

A. LNAP Constraints

Regardless of its eventual shape, a LNAP must possess fi-

nite energy to avoid driving the system to an infinite position.

Further, LNAP activation requires a distinct beginning and

end; each LNAP must therefore possess compact support.

For convenience, all LNAPs are defined with support over

the interval ζ = [0 1], where ζ is the achieved proportion

of desired movement. If the link has rotated halfway to its

target, the value of ζ is 0.5. As a result, any LNAP function,

ψ(ζ), is subject to the following constraint:

Constraint 1: Finite Signal Energy with Compact Support

∫

∞

−∞

|ψ(ζ)|2dζ =

∫

1

0

|ψ(ζ)|2dζ <∞ (C1)

For a LNAP to accomplish point-to-point movement, it must

initially add energy to get the system moving, and then

remove energy to decelerate and stop the system. Since work

equals force times distance, the mechanical energy injected

into the system is equivalent to the area under the ψ(ζ) curve.

If energy dissipating mechanisms are not present, the LNAP

must remove all system energy that it has added. This means

that the integral of ψ(ζ) over ζ must equal zero. Thus, all

LNAPs display an oscillatory shape, with both positive and

negative intervals. This constraint is expressed as

Constraint 2: Mechanical Energy Balance

∫

∞

−∞

ψ(ζ)dζ =

∫

1

0

ψ(ζ)dζ = 0 (C2)

To exist as a well-defined function of normalized position,

a LNAP must map each ζ in the interval [ 0 1] to a single

value of ψ(ζ). If link rotation stops or reverses direction, then

some ζ exists where both positive and non-positive inputs

have been applied, resulting in an ill-defined function. Thus,

it must be guaranteed that the system maintains positive

velocity throughout the application of any given LNAP. Since

the angular velocity of a rotating link reflects its kinetic

energy, and no elastic elements are present in the system of

(2) to store potential energy, positive velocity is guaranteed

by maintaining a positive energy flow as the system moves

from ζ = 0 to ζ = 1.

Recall that mechanical energy (work) is equal to applied

torque, ψ(ζ), times distance, ζ. As a result, the area under

the LNAP curve between 0 and ζ represents energy delivered

to the system while moving across normalized distance ζ.

Assuming that the system starts from rest, it will continue

moving forward as long as the area under the LNAP curve

remains uniformly positive while ζ moves between 0 and

1. This restriction on direction change presents a potential

problem, given that reversing movements are common in

human behavior. However, a study of aimed movement in

monkeys indicates that there is always a delay before a

movement begins in the opposite direction [17]; this suggests

that the brain is processing the initiation of a new primitive.

Within the LNAP framework, direction reversal is interpreted

as the conclusion of a primitive acting in one direction,

followed by the application of another LNAP acting in the

opposite direction.

While the need for a positive LNAP integral across the

interval from zero to ζ ∈ (0 1) has been established in the

preceding paragraphs, nothing has been mentioned about the

forcing function value when ζ = 0. A time-based control

input u(t) could feasibly start with zero amplitude, u(t0)=0,

and then begin waiting for the relentless march of time to

produce a non-zero input, u(t1) 6=0, at time t1 > t0, thereby

causing the system to begin moving. However, as a function

of normalized position, a LNAP cannot usefully possess a

zero initial magnitude. If ψ(ζ0) = 0, then no torque (force)

acts initially on the system, and no movement occurs. As

a result, ζ does not increase, and no non-zero input is ever

applied. Thus, to ensure that movement begins in the positive

direction, the initial LNAP function value must be positive.

Requiring a jump in ψ(ζ) at ζ = 0, however, does

not imply an infinite power requirement. Incremental work

performed by the LNAP across an incremental normalized

distance is dW = ψ(ζ)dζ. Recalling that power is the

time derivative of work, and that Constraint 1 precludes

a positional discontinuity (meaning both ψ(ζ) and dζ
dt

are

finite), the power is bounded; that is, P = dW
dt

=ψ(ζ)dζ
dt
<∞.

Still, the mere production of muscle force requires some

level of energy expenditure; is this another possible infinite

power requirement? Since targeted movement allows an

individual to prepare for the move, it is presumed that

energy is stored in the muscles ahead of the movement, thus

alleviating the need for instantaneous energy transfer. We are

certainly able to rest a hand on an object at one instant, then

push firmly on the object the next instant, as long as we have

prepared for the action. In summary, the described need for a

positive initial value, along with the requirement for positive

area under the LNAP curve, can be written as:

Constraint 3: Well-Defined Function with Positive Start
∫ ζ

0

ψ(ζ)dζ > 0, ζ ∈ [ 0 1) (C3)

Although LNAP amplitude is finite (Constraint 1), the func-

tion magnitude has not yet been otherwise bounded. As a

matter of convenience, mechanical energy added by a LNAP

is set to one-half, as is mechanical energy removed by the

LNAP. Thus, the absolute integral of mechanical energy (not

signal energy) added to, and removed from, the system is set

to unity:

Constraint 4: Normalized Mechanical Energy
∫

1

0

|ψ(ζ)|dζ = 1 (C4)
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Fig. 3. Possible LNAP Profiles

For the remainder of this paper, the term LNAP refers

to a function of normalized position, ψ(ζ), conforming to

constraints C1 through C4. The four profiles displayed in

Fig. 3 conform to these restrictions, although an infinite

number of alternate LNAP profiles obviously exist.

B. Undershooting Response

Application of a LNAP input to the system of (2) will

produce link rotation. Assume that the link starts at angle θ0,

and the desired endpoint is θf . Then the normalized rotation

for any angle θ is

ζ(θ) =
θ − θ0
θf − θ0

=
θ − θ0
α

(3)

where α represents the desired movement rotation.

Without a loss of generality, assume that the initial angle

is zero, and the desired endpoint is unity, so that α = 1, and

ζ = θ. If the damping rate, B, is zero, then the LNAP will

add and remove equal amounts of energy during link move-

ment, resulting in the link rotating precisely to its intended

destination, θf = 1. When damping is present, however,

energy is dissipated. This causes the maximum velocity to

be less than that for the non-damped case. Furthermore, the

desired endpoint cannot be reached, as the energy balance

of Constraint 2 makes no accommodation for energy lost

to damping. In fact, if LNAP input is not suspended as the

link comes to a stop under the influence of negative torque,

rotation will reverse direction. As mentioned in developing

Constraint 3, link reversal is an undesired condition. Thus,

it is crucial that LNAP application be suspended any time

direction reversal is detected.

If damping is present, and all LNAP input is indeed

suspended at the instant that rotation comes to a stop, then

the link will undershoot its target, just as humans tend to do

during targeted movement. The extent of the undershoot can

be limited by modifying the LNAP shape, so as to increase

the amount of positive energy delivered to the system early

in the movement, and thus limiting the amount of energy

removed via negative torque until late in the LNAP profile.

C. Input Disturbance Compensation

Having dealt with the effects of damping, consider next

the influence of “noise” on the command signal. Assume that

the LNAP input is subject to a white, Gaussian, zero-mean

disturbance, d(t), with a variance, σ2

d, that is proportional

to the square of the command magnitude, such that σ2

d =
k|ψ(ζ)|2. It has been suggested by Harris and Wolpert [5],

[18] that human command signals are corrupted by such

input disturbances.

Input disturbances with zero mean will produce end po-

sitions that are symmetrically distributed about the target

point. Given the human tendency to undershoot a target, it is

therefore worth considering what modifications are required

to keep a LNAP-driven system from overshooting when

proportional input noise is present.

Choose a nominal disturbance bound, D, such that

D = ksdσd (4)

where ksd is a positive real scalar. For a normal distribution,

ksd can be chosen from a standard normal (Z) table to cause

D to bound the input disturbance magnitude some desired

percentage of the time. For instance, a value of ksd = 1.96
results in the probability of |d(t)| ≤ D being 95%.

Substituting (4) into the Harris and Wolpert relationship,

(

D

ksd

)2

= k|ψ(ζ)|2

After simplifying, a new variable, β, is introduced to repre-

sent the relationship between command magnitude and the

disturbance bound:

D = ksd

√
k|ψ(ζ)| = β|ψ(ζ)|

Given that k is small (experimentally determined to be in

the range of k=5 × 10−5), β likewise has a small magnitude.

For reasons discussed below, the range of β is restricted

to the interval [0 ψ(0)). Since D represents a probabilistic

upper bound on d(t), the following relationship is true with

a probability consistent with the value of ksd:

|d(t)| ≤ β|ψ(ζ)|

In a worst-case overshoot scenario, the input disturbance

acts to increase acceleration under positive torque and hinder

deceleration under negative torque. To ensure an undershoot-

ing condition, the LNAP can be modified by decreasing the

LNAP magnitude by a constant amount across all values of

ψ(ζ). This reduces the energy added to the rotating link, and

increases the energy which can be extracted from the system.

Although a formal development is not presented here for the

sake of brevity, it can be shown that the necessary offset,

ψβ , to the LNAP is

ψβ = β

To keep the initial value of a LNAP that has been offset

in this manner from becoming negative, the value of β
must be less than the initial value of the unmodified LNAP,
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ψ(0). It is for this reason that β is bounded above by the

initial LNAP amplitude. Within this constraint, however, it

is possible to adjust any LNAP to undershoot with a desired

probability by shifting the LNAP profile downward by a

constant β = ksd

√
k. It is also possible to compensate for

input disturbances in a non-uniform manner, although the

calculations become considerably more complex.

IV. SCALED LNAPS

In developing the LNAP concept, it has been assumed that

all movements have a target endpoint of θ=1. Movements of

differing lengths, however, can also be accommodated using

LNAPs. To produce a movement of arbitrary angle α, it is

possible to “scale” the LNAP function. As defined in (3),

normalized movement is

ζ =
θ − θ0
α

with the value of ζ ranging from zero at movement initiation

(θ = θ0) to unity when the desired rotation (θ = θ0 + α) is

achieved. Assuming, as before, that all movements begin at

θ = 0, let

ζ =
θ

α
(5)

LNAP magnitude is scaled proportionally to match to move-

ment size. Thus,

ψα(θ) = α · ψ (ζ) = α · ψ
(

θ

α

)

(6)

Any offsets or modifications made to the mother LNAP,

ψ(ζ), are thus displayed also in the scaled LNAP, ψα(ζ).
When a “noisy” scaled LNAP is applied to the plant of

(2), the response is determined by the following equation

of motion:

Jθ̈(t) +Bθ̇(t) = ψα (θ(t)) + d(t)

On average, the input disturbance, d(t), is zero, so the

expected trajectory of the system can be expressed as

Jθ̇dθ̇ +Bθ̇2dt = ψα(θ)dθ

From (5), it follows that θ̇ = αζ̇ , given a constant movement

length, α. This relationship, along with the scaled LNAP

equivalence of (6), allows the equation of motion to be

rewritten without reference to movement angle θ:

α2Jζ̇dζ̇ + α2Bζ̇2dt = α2ψ(ζ)dζ

Canceling out the α2 terms, the equation of motion is thus

expressed as a function of time, t, and normalized movement,

ζ, without regard to the desired movement amplitude, α:

Jζ̇dζ̇ +Bζ̇2dt = ψ(ζ)dζ

Integrating from an initial state to the state at time t, with

time-invariant link inertia and damping,

1

2
Jζ̇2 +B

∫ t

0

ζ̇2dt =

∫ ζ

0

ψ(ζ)dζ (7)

The first term is normalized kinetic energy. Recalling that

linear damper work is W = B
∫ t

0
v2dt, where v is damper

velocity, the second term is normalized energy dissipated by

the damper. The final term represents area under the LNAP

curve, which is normalized energy added to the system by

the applied LNAP. Assuming constant values of J and B,

this relationship holds for all target rotations, α. Thus, it is

not surprising to discover that all movements governed by (7)

reach the same normalized velocity, go the same normalized

distance before coming to a stop, and consume the same

amount of time.

V. DISCRETE LNAPS

If damping is present, the system of (2) will fail to

rotate the desired amount under command of a single LNAP.

Rather, it will travel forward some fraction of that distance,

before damping and negative torque bring the link to a stop.

For a time-invariant plant, the rotation fraction, 0≤ρ ≤ 1, is

the same for all movements conducted using scaled versions

of a given LNAP. This can be seen in the energy balance

of (7), where energy addition and removal is a function

of normalized position, ζ, rather than actual position, θ. If

link rotation for a given LNAP stops at θ = ρ when the

commanded rotation is α=1, then link rotation will stop at

θ=ρα for all other values of α driven by scaled versions of

the original LNAP.

Since a single LNAP undershoots its target, it is possible

to generate a string of LNAP commands in series, one after

another. At the conclusion of each submovement, a new

scaled LNAP is created to move the link a target distance

αnew = θf − θ. Although each additional submovement will

likewise undershoot the target, repeated application of this

process can bring the link arbitrarily close to the desired

final rotation.

Consider moving a rigid link by means of multiple discrete

submovements, with the goal of placing the link inside of a

target radius that is no more than angle r away from desired

rotation, D = θf − θ0. This means that total rotation will be

in the range D ± r. Subject to constant damping, any rigid

link driven by a scaled LNAP, ψα(ζ), will rotate across angle

ρα during a time interval td. Each time the link stops, a new

scaled LNAP is generated and applied. As a result, the total

rotation after N submovements becomes

Θ = ρD + ρ(1 − ρ)D + · · · + ρ(1 − ρ)N−1D

= D −D(1 − ρ)N

Since, under LNAP control, the system never overshoots

the target rotation, it is sufficient to bound the total movement

from below; Θ ≥ D − r. As a result,

D −D(1 − ρ)N ≥ D − r

This can be rearranged to show that

N =

⌈

log
(

D
r

)

− log(1 − ρ)

⌉

(8)

This indicates that given a sufficient number of submove-

ments, the link can be moved arbitrarily close to the desired

rotation, D.
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Fig. 4. Application of discrete LNAPs moves the link toward its target
without overshoot, despite contamination of the input signal with random
noise. From [9].

Let the total time used to generate N scaled LNAPs be

a. Then the total movement time, tm, consumed in rotating

the rigid link utilizing N discrete submovements is

tm = a+N · td
Approximating N by ignoring the ceiling function from

(8),

tm ≈ a+
log

(

D
r

)

− log(1 − ρ)
· td

Noting that ρ and td are fixed, define a constant b such

that

b =
td

− log(1 − ρ)

Then,

tm ≈ a+ b log(D/r)

This relationship, with the approximation defined as an

equality, is Fitts’ law. Therefore, repeated application of

scaled LNAPs, each based on the same LNAP profile and

scaled to reach an unchanging target, produces a response

that is consistent with the tradeoff between speed and accu-

racy laid down by Fitts [2] more than half a century ago.

An example of discrete LNAPs, in this case a “staircase”

LNAP that is rescaled and reapplied each time the link

comes to a stop, is shown in Fig. 4. Despite noise on the

input signal, the link repeatedly undershoots its target, with

each successive period of forward movement exponentially

smaller in size, but equal in duration. This produces the

expected correspondence with Fitts’ Law.

VI. CONCLUSION

LNAPs provide a framework for studying human move-

ment, with wide latitude given to selecting the shape of

any particular LNAP. When applied to a rigid link, these

length-normalized forcing functions produce a response that

is multiresolutional, undershoots its target, and agrees with

Fitts’ Law. Future work will demonstrate the stability of

discrete LNAPs when moving a rigid body.
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