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Abstract— We study a problem of output feedback stabi-
lization of complex-valued reaction-advection-diffusion systems
with parametric uncertainties (these systems can also be viewed
as coupled parabolic PDEs). Both sensing and actuation are
performed at the boundary of the PDE domain and the
unknown parameters are allowed to be spatially varying.
First, we transform the original system into the form where
unknown functional parameters multiply the output, which can
be viewed as a PDE analog of observer canonical form. Input
and output filters are then introduced to convert a dynamic
parametrization of the problem into a static parametrization
where a gradient estimation algorithm is used. The control
gain is obtained by solving a simple complex-valued integral
equation online. The solution of the closed-loop system is
shown to be bounded and asymptotically stable around the
zero equilibrium. The results are illustrated by simulations.

I. INTRODUCTION

We consider a problem of boundary stabilization of un-

stable complex-valued reaction-advection-diffusion systems

with parametric uncertainties. The existing results on adap-

tive control for distributed parameter systems [3], [4], [5],

[8], [11], besides dealing with real-valued plants, typically

rely on full-state measurements. In this paper we deal with

complex-valued plants with only boundary measurements.

We assume that plant parameters are unknown functions

of spatial variable. Therefore, both the state space and the

parameter space are infinite dimensional, while the input and

the output are scalar.

In a recent paper [10], adaptive output feedback controllers

were introduced for parabolic PDEs with measurements on

the opposite sides of the PDE domain. We extend the result

of [10] in two ways. First, we consider PDEs with complex-

valued state, which brings about several model equations

important in applications, most notably the Schrödinger

equation and the Ginzburg-Landau equation [12].

Second, we deal with the case of Neumann measure-

ments, common in fluid problems, where one typically

measures pressure and shear stress. In [10], the adaptive

controllers were designed for Dirichlet sensing, typical in

thermal/chemical problems where temperature or concentra-

tion are measured.

These two extensions make the result of this paper appli-

cable to the problem of suppression of vortex shedding off

of a bluff body in a fluid flow, for which Ginzburg-Landau

PDE is a very good approximate model [1]. The control

design would be implemented with pressure sensors located

on the bluff body and downstream micro-jet actuators. The

non-adaptive backstepping design for this problem has been

introduced in [1], and the observers have been developed

in [2]. However, since the vortex shedding problem is fully

modelled only by Navier-Stokes equations, the parameters

of the Ginzburg-Landau model are very difficult to derive

analytically and adaptive control design becomes crucial.

The key feature of our design is the transformation of

the original plant into an infinite-dimensional analog of the

observer canonical form. Our adaptive observers are infinite

dimensional extensions of Kreisselmeier observers [6] and

the controllers are designed using the backstepping method

[9]. We employ swapping identifiers with a gradient update

law.

Even though the exact identification of the parameters

is not the objective of this paper, the numerical results

in Section IX indicate that the steady-state profiles of the

parameter estimates are close to the true unknown functions.

II. REACTION-DIFFUSION SYSTEM

We consider a reaction-diffusion plant

At(x, t) = aAxx(x, t) + b(x)A(x, t), 0 < x < 1 , (1)

where A is a complex-valued function. The boundary con-

ditions are

A(0, t) = 0 (2)

A(1, t) = U(t) , (3)

where U(t) is the control input. We assume that only

boundary value Ax(0, t) is available for measurement (this

corresponds to pressure sensing in vortex shedding problem).

The parameter a is a known constant that satisfies Re(a) > 0
and b(x) is an unknown complex-valued continuous function.

Without loss of generality, we assume that Re(a) = 1
(one can always achieve that with appropriate scaling of

time). The open-loop system is unstable when b(x)/a is

large in absolute value. The objective is to stabilize the zero

equilibrium of the plant.

A more general plant can be handled as outlined in Section

VIII.

III. TRANSFORMATION INTO THE OBSERVER

CANONICAL FORM

We start by transforming the plant into the so-called

observer canonical form, in which the unknown parameters

multiply the output. Consider the transformation1

B(x) = A(x) −
∫ x

0

p(x, y)A(y) dy (4)

1In the rest of the paper time dependence is omitted when this does not
lead to confusion.
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where the complex valued function p(x, y) is the solution of

the PDE

pxx(x, y) − pyy(x, y) =
b(y)

a
p(x, y) (5)

p(1, y) = 0 (6)

p(x, x) =
1

2a

∫ 1

x

b(s) ds . (7)

It is straightforward to verify that the transformation (4) maps

(1)–(3) into

Bt(x, t) = aBxx(x, t) + θ(x)Bx(0, t) (8)

B(0, t) = 0 (9)

B(1, t) = U(t) , (10)

where the new unknown parameter is θ(x) = a p(x, 0). Our

design will be now pursued for the new system (8)-(10). Note

that Bx(0, t) = Ax(0, t) and B(1, t) = A(1, t), i.e. Bx(0, t)
is measured and the controller designed for (8)-(10) is

applied to the original system without change. Since the PDE

(5)–(7) has a twice continuously differentiable solution [10],

the transformation (4) is invertible and therefore asymptotic

stability of B implies asymptotic stability of A. Since θ will

be estimated, there is actually no need to solve the PDE

(5)-(7) for the controller implementation.

IV. NON-ADAPTIVE STATE FEEDBACK CONTROLLER

First we present the nominal control design in the assump-

tion that θ(x) is known and the full state measurement is

available.

Consider the transformation

W (x) = B(x) −
∫ x

0

k(x, y)B(y) dy . (11)

One can show that if the kernel k(x, y) is the solution of the

complex-valued PDE

kxx(x, y) = kyy(x, y) (12)

a k(x, x) = −θ(0) (13)

a k(x, 0) = −θ(x) +

∫ x

0

k(x, y)θ(y) dy , (14)

then (11) and the control law

U = B(1) =

∫ 1

0

k(1, y)B(y) dy (15)

map the system (8)-(10) into the exponentially stable system

Wt(x) = aWxx(x) (16)

W (0) = W (1) = 0 . (17)

Exponential stability of (16)–(17) along with bounded in-

vertibility of the transformation (11) ensure that the closed-

loop system (8)–(9), (15) is exponentially stable around zero

equilibrium.

Note that the solution of (12)–(14) is easier to compute

if we set k(x, y) = η(x− y) (which satisfies (12)) and then

solve the one dimensional integral equation

a η(x) = −θ(x) +

∫ x

0

η(x− y)θ(y) dy .

V. OBSERVER

The next step is to design input and output filters that will

provide the estimation of the system state and will also drive

the update law for the parameter estimation.

Let us consider the following output filter (which can be

viewed as a family of filters in the parameter ξ ∈ [0, 1])

φt(x, ξ) = aφxx(x, ξ) + δ(x− ξ)Bx(0) (18)

φ(0, ξ) = 0 (19)

φ(1, ξ) = 0 (20)

and the input filter

ψt(x) = aψxx(x) (21)

ψ(0) = 0 (22)

ψ(1) = B(1) . (23)

These two filters can be used to build an observer of the

state, with error

e(x) = B(x) − ψ(x) −
∫ 1

0

θ(ξ)φ(x, ξ) dξ . (24)

The error e(x) of the observer is governed by the exponen-

tially stable complex heat equation

et(x) = aexx(x) , e(0) = e(1) = 0 .

as can be proved by simple substitution.

VI. UPDATE LAW

The observer error (24) provides us with the parametric

model to build an estimator for θ(x). The parametric model

is obtained by taking the spatial derivative of the error (24)

on the boundary where the measurement is available:

ex(0) = Bx(0) − ψx(0) −
∫ 1

0

θ(ξ)φx(0, ξ) dξ . (25)

The estimation error

êx(0) = Bx(0) − ψx(0) −
∫ 1

0

θ̂(ξ)φx(0, ξ) dξ (26)

can then be used to drive the standard normalized gradient

update law2

θ̂t(x) = γ(x)
êx(0)φ∗x(0, x)

1 + ‖φx(0, ·)‖2
. (27)

where γ(x) is a positive adaptation gain function.

Lemma 1: The following properties hold:3

êx(0)
√

1 + ‖φx(0, ·)‖2
, ‖θ̂t‖ ∈ L2 ∩ L∞ (28)

‖ex‖, ‖θ̃‖ ∈ L∞, |ex(0)| ∈ L2 . (29)

Proof: Consider the Lyapunov function

V = V1 + V2 ,

2The superscript star indicates the complex conjugate.
3By L2 and L∞ we denote the temporal norms on [0,∞).
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where

V1 =
1

2

∫ 1

0

|θ̃(ξ)|2
γ(x)

dξ , V2 =
1

2

∫ 1

0

|ex(ξ)|2 dξ . (30)

The time derivatives of V1 and V2 are

V̇1 = Re

{

∫ 1

0

θ̃(ξ)∗θ̃t(ξ)

γ(ξ)
dξ

}

=

= −Re

{ −êx(0)

1 + ‖φx(0, ·)‖2

∫ 1

0

θ̃∗φ∗x(0, ξ) dξ

}

=

= −Re

{ −êx(0)

1 + ‖φx(0, ·)‖2
[ê∗x(0) − e∗x(0)]

}

≤

≤ − |êx(0)|2
1 + ‖φx(0, ·)‖2

+
|êx(0)||ex(0)|

√

1 + ‖φx(0, ·)‖2
,

and

V̇2 = Re

{
∫ 1

0

ex(ξ)e∗tx(ξ) dξ

}

=

= Re

{

ex(ξ)e∗t (ξ)|10 −
∫ 1

0

exx(ξ)e∗t (ξ) dξ

}

=

= −Re(a)‖exx‖2 = −‖exx‖2 .

Using the inequality |ex(0)| ≤ ‖exx‖ and Young’s inequality

we get

V̇ ≤ −|êx(0)|2
1 + ‖φx(0, ·)‖2

+
|êx(0)||ex(0)|

√

1 + ‖φx(0, ·)‖2
− ‖exx‖2

≤ −1

2

[ |êx(0)|2
1 + ‖φx(0, ·)‖2

+ ‖exx‖2

]

and from this we conclude that signals
êx(0)√

1+‖φx(0,·)‖2
, ‖exx‖,

and |ex(0)| are in L2. From the definitions (30) we get

boundedness of ‖θ̃‖, ‖θ̂‖, and ‖ex‖. Moreover, as êx(0) =

ex(0)−
∫ 1

0
θ̃(ξ)φx(0, ξ)dξ , we get

êx(0)√
1+‖φx(0,·)‖2

∈ L∞ and

from the update law (27) ‖θ̂t‖ ∈ L∞ ∩ L2.

VII. MAIN RESULT

The main result of the paper is stated in the following

theorem.

Theorem 2: Consider the system (1)–(2) and the con-

troller

U =

∫ 1

0

k̂(1, y)

[

ψ(y) +

∫ 1

0

θ̂(ξ)φ(y, ξ) dξ

]

dy

where the kernel k̂(x, y) = η̂(x − y) is the solution of

a η̂(x) = −θ̂(x) +

∫ x

0

η̂(x− y)θ̂(y) dy ,

the filters ψ and φ are defined by (18)–(20), (21)-(23) and

the estimate θ̂ is updated according to (27). If the closed loop

system has a solution (A,ψ, φ, θ̂) ∈ C([0,∞), H1(0, 1)),
then for any θ̂(x, 0) and any initial conditionsA(·, 0), ψ(·, 0),
φ(·, ξ, 0) ∈ H1(0, 1), the signals θ̂, φ, ψ and A are bounded

for all x ∈ [0, 1] and

lim
t→∞

max
x∈[0,1]

A(x, t) = 0 . (31)

Proof: Consider the backstepping transformation

w(x) = T [h](x) = h(x) −
∫ x

0

k̂(x, y)h(y) dy (32)

applied to the function

h(x) = ψ(x) +

∫ 1

0

θ̂(ξ)φ(x, ξ) dξ . (33)

The inverse transformation of (32) is

h(x) = w(x) +

∫ x

0

l̂(x, y)w(y) dy , (34)

where k̂(x, y) and l̂(x, y) are related by

k̂(x, y) − l̂(x, y) = −
∫ x

y

l̂(x, ξ)k̂(ξ, y) dξ , (35)

which is satisfied by

l̂(x, y) =
−θ̂(x− y)

a
. (36)

We can then derive the following system for w:

wt(x) = awxx(x) − ak̂(x, 0)êx(0)−

−
∫ x

0

w(y)

[

l̂t(x, y) −
∫ x

y

l̂t(x, ξ)k̂(ξ, y) dξ

]

dy +

+ T

[
∫ 1

0

θ̂t(ξ)φ(x, ξ) dξ

]

(37)

w(0) = w(1) = 0 . (38)

Rewriting the filter (18)–(20) in the form

φt(x, ξ) = aφxx(x, ξ) + δ(x− ξ)(wx(0) + ex(0)) (39)

φ(0, ξ) = φ(1, ξ) = 0 , (40)

we obtain two interconnected systems driven by signals

ex(0) and θ̂t, which are “asymptotically small” in a sense

(28)-(29).

In the rest of the proof we are going to need the bounds on

k̂, l̂, and l̂t. From (35)-(36) and using Gronwall inequality,

we have
∣

∣

∣
l̂(x, y)

∣

∣

∣
≤ L0,

∣

∣

∣
k̂(x, y)

∣

∣

∣
≤ K0 = L0e

L0 , (41)

where L0 = 1
|a| maxt≥0 ‖θ̂‖∞. Moreover, we have

∣

∣

∣
l̂t(x, y)

∣

∣

∣
≤

∣

∣

∣

θ̂t(x−y)
a

∣

∣

∣
, which according to (28) is bounded

and square integrable.

In the rest of the proof, we give the stability estimates

without the intermediate steps due to the lack of space. We

start with a Lyapunov function

V1 =
1

2
‖φ‖2 .

One can estimate its time derivative as

V̇1 =≤−
(

1 − c1 −
1

2c3

)

‖φx‖2 + l1+

+ l1‖φx‖2 + c2 ‖φxx‖2 +
c3
2
‖wxx‖2 ,
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where l1 is a generic function of time in L1. In the above

estimate we used the inequality
∫ 1

0
φ(x, x)dx ≤ ‖φx‖ as well

as Cauchy-Schwartz and Poincare inequalities and properties

(28)–(29). Here and later by ci we denote arbitrary positive

constants that will be chosen at the end of the proof.

Consider another Lyapunov function

V2 =
1

2
‖w‖2 .

Its time derivative V̇2 = Re
∫ 1

0
wt(x)w

∗(x) dx can be

evaluated separately for the different terms on the right-hand

side of (37):

Term 1:

Re

∫ 1

0

awxx(x)w∗ dx = −‖wx‖2 .

Term 2:

Re

∫ 1

0

−ak̂(x, 0)êx(0)w∗(x) dx

≤ c4‖w‖2 + c5‖φxx‖2 + l1‖w‖2 + l1 .

Term 3:

Re

∫ 1

0

w∗(x)

∫ x

0

w(y)

[

l̂t(x, y) −
∫ x

y

l̂t(x, ξ)k̂(ξ, y) dξ

]

dydx

≤ l1‖w‖2 + c6‖w‖2 .

Term 4:

Re

∫ 1

0

T

[
∫ 1

0

θ̂t(ξ)φ(x, ξ) dξ

]

w∗(x) dx

≤ l1‖w‖2 + c7‖φ‖2 .

We have

V̇2 ≤ −‖wx‖2 + (c4 + c6)‖w‖2 + c7‖φ‖2+

+ c5‖φxx‖2 + l1‖w‖2 + l1 .

Using a third Lyapunov function

V3 =
1

2
‖φx‖2

we get

V̇3 ≤ −
[

1 − c8 −
c9
2

]

‖φxx‖2 + l1‖φx‖2 +
1

2c9
‖wxx‖2.

The fourth, and last, Lyapunov function is

V4 =
1

2
‖wx‖2 .

Its time derivative is

V̇4 ≤− [1 − c10]‖wxx‖2 + c11‖φxx‖2 + l1‖φx‖2

+ l1‖w‖2 + l1‖φ‖2 + l1 .

Taking the total Lyapunov function as

V = V1 + V2 + V3 +
4

3
V4

and choosing c3 = 3/2, c4+c6 = 1/9, c2+c5 = c8 = c10 =
c7 = 1/18, c11 = 2/27, c1 = 1/9, c9 = 4/3, we obtain

V̇ ≤ −1

9
V + l1V + l1 . (42)

Boundedness

Once we proved the inequality (42), by Lemma A.1 we

conclude that all the signals ‖w‖, ‖φ‖, ‖wx‖ and ‖φx‖
belong to L2∩L∞. Using the inverse transformation (34) and

the bound (41), we get that ‖h‖ too belongs to L2∩L∞. From

the definition (33) of h, this implies that the state of the input

filter ψ is also in L2∩L∞. Finally, from the equation of the

observer (24) and from the transformation (4), boundedness

of B(x) and A(x) follows. Note that by Agmon inequality

we also get pointwise (in space) boundedness of all the

signals.

Regulation to zero

Using Lemma A.2, we get that ‖w‖, ‖wx‖, ‖φ‖ and ‖φx‖
go to zero as t → ∞. Using the relation, directly derived

from (34),

hx(x) = wx(x) +

∫ x

0

l̂x(x, y)w(y) dy + l̂(x, x)w(x)

and the bound (41), we can then state than ‖hx‖ → 0 when

t → ∞. From the definition (33) we obtain the expression

for hx(x)

hx(x) = ψx(x) +

∫ 1

0

θ̂(ξ)φx(x, ξ) dξ

which implies that ‖ψx‖ also goes to zero. From the expres-

sion of the spatial derivative of the observer error

ex(x) = Bx(x) − ψx(x) −
∫ 1

0

θ(ξ)φx(x, ξ) dξ

we obtain that ‖Bx‖ → 0 as t→ ∞. Since ‖B‖ is bounded,

by Agmon inequality this implies that B(x, t) → 0 for all

x ∈ [0, 1] as t→ ∞. Since (4) is an invertible transformation,

we get

A(x, t) → 0 as t→ ∞ , ∀x ∈ [0, 1] .

VIII. REACTION - ADVECTION - DIFFUSION SYSTEM

Our approach extends in a straightforward manner to a

more general system in which an advection term appears

together with the diffusion and the reaction terms. Consider

the plant

Ăt(x, t) = a1Ăxx(x, t) + a2(x)Ăx(x, t) + a3(x)Ă(x, t)
(43)

with boundary conditions

Ă(0, t) = 0

Ă(1, t) = Uc(t)

where Uc(t) is the control signal. We assume that only Ăx(0)
is available for measurement. The functions a2(x) and a3(x)
are unknown and the constant a1 is known and satisfies

Re(a1) > 0. With a transformation

A(x, t) = Ă(x, t)e
1

2a1

R

x

0
a2(s) ds
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we eliminate the advection term from (43) at the cost of

multiplying the input with a new unknown parameter. The

transformed system is

At(x, t) = aAxx(x, t) + b(x)A(x, t)

A(0, t) = 0

A(1, t) = θ1Uc(t) ,

where a = a1 and

b(x) = a3(x) −
a2
2(x)

4a1
− a′2(x)

2

θ1 = e
1

2a1

R

1

0
a2(s) ds .

The only difference compared to the design for reaction-

diffusion system is the need to estimate the constant θ1 along

with the function θ(x). The estimation error (26) becomes

êx(0) = Bx(0) − θ̂1ψx(0) −
∫ 1

0

θ̂(ξ)φx(0, ξ) dξ

and the update laws become

θ̂t(x) = γ(x)
êx(0)φ∗x(0, x)

1 + ‖φx(0, ·)‖2 + |ψx(0)|2

and
˙̂
θ1 = γ1

êx(0)ψ∗
x(0)

1 + ‖φx(0, ·)‖2 + |ψx(0)|2 .

As the control signal has to be multiplied by 1/θ̂1 before

being applied to the original plant, projection is required to

keep θ̂1 positive.

IX. SIMULATION

We now present the results of numerical implementation

of the controllers developed in the paper. The simulations

are done using the finite-difference scheme with a 100-step

spatial discretization. In Fig. 1 b(x) is shown (solid line),

while a = 0.0234(1 − j). In Fig. 2 the open-loop unstable

behavior of the system has been plotted.

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x

Fig. 1. Real part (solid) and imaginary part (dashed) of the parameter b(x)
(bold line) together with the approximate constant b̄ (thin line).
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−2000
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1000

Timex

Fig. 2. Real part of the state of the open-loop system. The imaginary part
is qualitatively the same.
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−20
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20
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Fig. 3. Real part (top) and imaginary part (bottom) of the state of the
closed-loop system.

The evolution of the closed-loop system with adaptive

output feedback controller (with θ̂ initialized to zero) is

shown in Fig. 3. The control signal is shown in Fig. 4.

Even though the objective of the control design is stabiliza-

tion and not necessarily the identification of the parameters

of the system, the final profile of the parameter estimate θ̂
turns out to be close to the true parameter θ(x) as can be seen

in Fig. 5. This suggests that the plant needs a rather accurate

knowledge of the system parameter b(x) to be controlled to
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Fig. 4. Real part (solid) and imaginary part (dashed) of the control signal
in the controlled case.

zero. To verify this intuitive statement, we approximated the

unknown function b(x) by a its mean value b̄ (plotted as a

thin line in Fig. 1). The controller designed on the basis of

this approximation fails to stabilize the plant, as illustrated

in Fig. 6.
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−15

−10
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Fig. 5. Real part (top) and imaginary part (bottom) of the parameter θ

(solid) with the final profile of its estimate θ̂ (dashed).

APPENDIX

Lemma A.1 (Lemma B.6 in [6]): Let v, l1, and l2 be real

valued functions defined on R+, and let c be a positive

0

0.5

1 0
0.5

1

−2

−1

0

1

x 10
7

Timex

Fig. 6. Real part of the state of the closed-loop system with non-adaptive
controller designed on the basis of b̄. The imaginary part is qualitatively the
same.

constant. If l1 and l2 are nonnegative and in L1 and satisfy

the differential inequality

v̇ ≤ −cv + l1(t)v + l2(t) , v(0) ≥ 0

then v ∈ L1 ∩ L∞.

Lemma A.2 (Lemma 3.1 in [7]): Suppose the function

f(t) defined on [0,∞) satisifes the following conditions:

a. f(t) ≥ 0
b. f(t) is differentiable and there exists a constant M

such that f ′(t) ≤M , ∀t ≥ 0
c. f ∈ L1

Then limt→∞ f(t) = 0.
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