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Abstract— In a recent paper, we developed a structural
decomposition for MIMO nonlinear systems that are affine in
control but otherwise general. In this paper we exploit the
properties of such a decomposition for the purpose of solving
the stabilization problem. In particular, this decomposition
simplifies the conventional backstepping design, motivates a
new backstepping design procedure that is able to stabilize
some systems on which the conventional backstepping is not
applicable, and allows the stabilization of non-square systems.

I. INTRODUCTION AND PROBLEM STATEMENT

Since the development of the normal form for affine-in-
control nonlinear systems [1–14], there have been a surge
of works that explore the nonlinear analogous of linear
systems structural properties, in establishing the nonlinear
equivalence of linear system structures, in identifying more
intricate structural properties that linear systems do not
display, and in applying the discovered structural properties
to solve nonlinear control problems (see, e.g., [15–21]).

In this paper, we consider a nonlinear system of the form{
ẋ = f(x) + g(x)u,
y = h(x), (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input
and output, respectively, and the mappings f , g and h are
smooth with f(0) = 0 and h(0) = 0.

The work on structural decomposition of such a system
started with the definition of relative degrees, the nonlinear
equivalence of infinite zeros, and the normal form decompo-
sition for the SISO case, i.e., m=p=1 [4]. This definition
of relative degrees was soon generalized to the case with
m = p > 1. In general, the system (1) with m = p ≥ 1
has a vector relative degree [6, 8] {r1, r2, · · · , rm} at x = 0
if Lgj

Lk
fhi(x) = 0, 0 ≤ k < ri−1, 1 ≤ i, j ≤ m in a

neighborhood of x = 0, and det A(0) 6= 0, where A(x) =
{Lgj L

ri−1
f hi(x)}m×m. If the system (1) has a vector relative

degree {r1, r2, · · · , rm} at x = 0, and with the assumption
of the distribution spanned by the row vectors of g(x) being
involutive in a neighborhood of x=0, it can be described by

η̇ = f0(x),
ξ̇i,j = ξi,j+1, j = 1, 2, · · · , ri − 1,

ξ̇i,ri = vi,
yi = ξi,1, i = 1, 2, · · · ,m,

(2)

where vi = ai(x) + bi(x)u, i = 1, 2, · · · ,m, with the matrix
col {b1(x), b2(x), · · · , bm(x)} being smooth and nonsingular.

X. Liu and Z. Lin are with Charles L. Brown Department of Electrical
and Computer Engineering, University of Virginia, P.O. Box 400473,
Charlottesville, VA 22904-4743. Email: {xl8y,zl5y}@virginia.edu

Such a definition of relative degree and the resulting
normal form are nonlinear equivalence of the notion of
infinite zeros and the related canonical form for single input
single output systems. For multiple input multiple output
systems, the vector relative degree is a rather strong structural
property that not even all square invertible linear systems,
with the freedom of choosing coordinates for the state, output
and input spaces, could possess [22].

A major generalization of the form (2) was made in [10,
13, 14], where square invertible systems are considered. By
using the Zero Dynamics Algorithm, under the assumptions
that the ranks of certain matrices are constant and that the
distribution spanned by the row vectors of g(x) is involutive,
the system can be transformed into the following form

η̇ = f0(x),

ξ̇i,j = ξi,j+1+
i−1∑
l=1

δi,j,l(x)vl, j = 1, · · · , ni − 1,

ξ̇i,ni
= vi,

yi = ξi,1, i = 1, 2, · · · ,m,

(3)

where n1 ≤ n2 ≤ · · · ≤ nm, vi = ai(x) + bi(x)u, i =
1, 2, · · · ,m, with the matrix col {b1(x), b2(x), · · · , bm(x)}
being smooth and nonsingular.

As pointed out in [10], when all δi,j,l(x) = 0, the set of
integers {n1, n2, · · · , nm} in (3) corresponds to the vector
relative degrees, which in this case, represent the infinite zero
structure if the system is linear. These integers however are
not related to the infinite zero structure of linear systems
when δi,j,l(x) 6= 0, and thus cannot be viewed as the
nonlinear equivalence of and expected to play a similar role
as infinite zeros ( see [22] for an example showing this ).

In a recent paper [22], we study the structural properties of
affine-in-control nonlinear systems beyond the case of square
invertible systems. We propose an algorithm that identifies a
set of integers that are equivalent to the infinite zero structure
of linear systems and leads to a normal form representation
that corresponds to these integers as well as to the system
invertibility structure. This new normal form representation
takes the following form

η̇ = f∆(η, zd)+g∆(η, zd)u∆,

ξ̇i,j = ξi,j+1+
i−1∑
l=1

δi,j,l(x)vd,l, j =1, 2, · · · , qi−1,

ξ̇i,qi = vd,i,
y∆ = h∆(η, zd),

yd,i = ξi,1, i = 1, 2, · · · ,md,

(4)

where q1 ≤ q2 ≤ · · · ≤ qmd , ξi = {ξi,1, ξi,2, · · · , ξi,qi
}, i =

1, 2, · · · ,md, zd = {ξ1, ξ2, · · · , ξmd}, vd,i = ai(x)+ bi(x)u,
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with the matrix col {b1(x), b2(x), · · · , bmd(x)} being of full
row rank and smooth, and

δi,j,l(x) = 0, for j < ql, i = 1, 2, · · · ,md. (5)

We note here that md is the largest integer for which the
system assumes the above form. The system is left invertible
if u∆ is non-existent, right invertible if y∆ is non-existent, and
invertible if both are non-existent. In the case that the system
is square and invertible, i.e., the system that was considered
in [10, 13, 14], m = p = md and the parts containing y∆

and u∆ drop off. Thus, the normal form (4) simplifies to

η̇ = f∆(η, zd),

ξ̇i,j = ξi,j+1+
i−1∑
l=1

δi,j,l(x)vl, j = 1, · · · , qi−1,

ξ̇i,qi = vi,
yi = ξi,1, i = 1, 2, · · · ,m,

(6)

where q1 ≤ q2 ≤ · · · ≤ qm, and

δi,j,l(x) = 0, for j < ql, i = 1, 2, · · · ,m. (7)

We note that the normal form (6) is the same as (3) except for
the additional structural property (7). The ξ̇i,j equation in (6)
displays a triangular structure of the control inputs that enter
the system. The property (7) imposes additional structure
within each chain of integrators on how control inputs enter
the system. With this additional structural property, the set
of integers {q1, q2, · · · , qmd} indeed represent infinite zero
structure when the system is linear.

Control design techniques and structural decompositions
of nonlinear systems have been developed interweavingly.
The discovery of structural properties and the corresponding
normal form representation motivates new control designs.
On the other hand, the desire for achieving more stringent
closed-loop performances for a larger class of systems entails
the exploitation of more intricate structural properties. For
example, various stabilization results have been obtained
in this process. In this paper, we would like to revisit
the problem of stabilization. We will show how our new
normal form (4) simplifies the conventional backstepping
design, motivates a new backstepping design technique that
is able to stabilize some systems that cannot be stabilized
by the conventional backstepping technique, and allows the
stabilization of non-square systems.

II. PRELIMINARY RESULTS

In the section, we recall some results on the backstepping
design methodology [9, 13, 18]. The backstepping design
method is readily applicable to systems that have vector
relative degrees and are represented in the form (2), which
contains m chains of integrators. Each of these chains
independently controlled by a separate input. If the zero
dynamics is only dependent on the states of the leading inte-
grators of each chain, i.e., η̇ = f0(η, ξ11, ξ21, · · · , ξm1), and
there exist smooth functions, v?

1(η), v?
2(η), · · · , v?

m(η), with
v?
1(0)= v?

2(0)= · · ·= v?
m(0)=0, such that η̇ = f0(η, v?

1(η),
v?
2η), · · · , v?

m(η)) is globally asymptotically stable at η =0,

then it is straightforward to design a globally stabilizing
feedback law v1(x), v2(x), · · · , vm(x), recursively, by view-
ing the next integrators as a new intermediate input. Such a
design procedure is thus referred to as “backstepping.”

The technique of backstepping, however, cannot as easily
been implemented if the system does not have a vector
relative degree. Additional assumptions are required. In what
follows, we recall from [13] such additional assumptions on
the normal form (3) and the backstepping design procedure
that is implemented under these assumptions.

Assumption 1: The dynamics η is driven only by ξi,1, i =
1, 2, · · · ,m, i.e.,

η̇ = f0(η, ξ1,1, ξ2,1, · · · , ξm,1), (8)

and there exist smooth functions v?
i (η), with v?

i (0) = 0, i =
1, 2, · · · ,m, such that η̇ = f0(η, v?

1(η), v?
2(η), · · · , v?

m(η)) is
globally asymptotically stable at its equilibrium η = 0.

We will also need the following additional assumption,
which requires the coefficient functions δi,j,l to display a
certain “triangular” dependency on the state variables.

Assumption 2: The functions δi,j,l depend only on vari-
able ξ`p,`b , with 1) 1 ≤ `p ≤ m and `b = 1; or, 2) `p ≤ i−1;
or, 3) `p = i and `b ≤ j.

Under Assumptions 1 and 2, a feedback law vi =
u?

i (η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1, ξ2, · · · , ξi), i = 1, 2, · · · ,m that
globally stabilizes the whole system can be constructed
from v?

i (η), i = 1, 2, · · · ,m, through a backstepping
procedure. The procedure commences with the subsys-
tem (8), and is followed by backstepping n1 times
through the variables in first chain of integrators to
obtain u?

1(η; ξ1,1; v?
2(η), v?

3(η), · · · , v?
m(η); ξ1), and back-

stepping n2 times through the variables in the sec-
ond chain of integrators to obtain the feedback law
u?

2(η; ξ1,1, ξ2,1; v?
3(η), v?

4(η), · · · , v?
m(η); ξ1, ξ2). This proce-

dure is continued chain by chain for i = 1 through m,
each backstepping ni times through i-th chain of integra-
tors to discover the feedback law u?

i (η; ξ1,1, ξ2,1, · · · , ξi,1;
v?

i+1(η), v?
i+2(η), · · · , v?

m(η); ξ1, ξ2, · · · , ξi). As the back-
stepping is implemented on the integrators chain by chain,
we will refer to the above backstepping procedure as the
chain-by-chain backstepping.

III. BACKSTEPPING DESIGN FOR INVERTIBLE SYSTEMS

In this section we focus on systems that are square invert-
ible and discuss about their stabilization by the backstepping
technique. We will first show that the conventional chain-
by-chain backstepping design technique as described in [13]
and recalled in Section II is applicable to our new normal
form (6), and its implementation on this new normal form is
simpler than on the earlier normal form (3). We then propose
a new backstepping procedure which we refer to as the level-
by-level backstepping. In the level-by-level backstepping
design procedure, the backstepping is first implemented on
the first integrators of all chains and then on the second
integrators of all chains, and so on. We will show that the
level-by-level backstepping will allow the backstepping to
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be implemented on some systems for which the chain-by-
chain backstepping procedure is not applicable. We will also
show that the chain-by-chain backstepping and the level-by-
level backstepping can be mixed and implemented on a same
system to allow stabilization of a larger class of systems.

A. Stabilization by Chain-by-Chain Backstepping

Since the normal form (6) is a special case of the normal
form (3), backstepping is applicable to it. As explained in
[13], the chain-by-chain backstepping requires the system (6)
to satisfy Assumptions 1 and 2. Under these two assump-
tions, the normal form (6) is much simpler than the normal
form (3). This simpler form make the implementation of the
chain-by-chain backstepping simpler.

Example 3.1: A three input three output system in the
form (3) with {n1, n2, n3} = {3, 3, 4} and satisfying As-
sumptions 1 and 2 will take the following form,

η̇ = f0(η, ξ1,1, ξ2,1, ξ3,1),
ξ̇1,j = ξ1,j+1, j = 1, 2,

ξ̇1,3 = v1,

ξ̇2,1 = ξ2,2 + δ2,1,1(η, ξ1, ξ2,1, ξ3,1)v1,

ξ̇2,2 = ξ2,3 + δ2,2,1(η, ξ1, ξ2,1, ξ2,2, ξ3,1)v1,

ξ̇2,3 = ξ2,4+δ2,3,1(η, ξ1, ξ2,1, ξ2,2, ξ2,3, ξ3,1)v1,

ξ̇2,4 = v2,

ξ̇3,1 = ξ3,2 + δ3,1,1(η, ξ1, ξ2, ξ3,1)v1

+ δ3,1,2(η, ξ1, ξ2, ξ3,1)v2,

ξ̇3,2 = ξ3,3 + δ3,2,1(η, ξ1, ξ2, ξ3,1, ξ3,2)v1

+ δ3,2,2(η, ξ1, ξ2, ξ3,1, ξ3,2)v2,

ξ̇3,3 = ξ3,4 + δ3,3,1(η, ξ1, ξ2, ξ3,1, ξ3,2, ξ3,3)v1

+ δ3,3,2(η, ξ1, ξ2, ξ3,1, ξ3,2, ξ3,3)v2,

ξ̇3,4 = v3.

(9)

On the other hand, under the same assumptions, the normal
form (6)-(7), would take the following simpler form

η̇ = f0(η, ξ1,1, ξ2,1, ξ3,1),
ξ̇1,j = ξ1,j+1,

ξ̇1,3 = v1,

ξ̇2,j = ξ2,j+1,

ξ̇2,3 = ξ2,4+δ2,3,1(η, ξ1, ξ2,1, ξ2,2, ξ2,3, ξ3,1)v1,

ξ̇2,4 = v2,

ξ̇3,j = ξ3,j+1, j = 1, 2,

ξ̇3,3 = ξ3,4 + δ3,3,1(η, ξ1, ξ2, ξ3,1, ξ3,2, ξ3,3)v1,

ξ̇3,4 = v3.

(10)

B. Stabilization by Level-by-Level Backstepping

In the backstepping procedure described in Section II, we
first carry out backstepping n1 times through the variables in
the first chain of integrators to arrive at the desired control
action for the first chain of integrators, and then carry out
backstepping n2 times through the variables in the second
chain of integrators to arrive at the desired control action for
the second chain of integrators, and repeat this procedure on
the remaining chains of integrators.

Let us call all ξi,1, i.e., the “leading” variables in each
chain of integrators which connect an input to an output,
the first level integrators, and call all ξi,2 the second level

integrators, and so on. As an alternative to the chain-by-chain
backstepping, we here propose to carry out the backstepping
on all first level integrators, and then repeat the procedure
on all second level integrators until we reach to last level of
integrators. We will refer to such a backstepping procedure
as the level-by-level backstepping, in contrast with the chain-
by-chain backstepping procedure.

To make the level-by-level backstepping possible, the co-
efficients δi,j,l in (6) should satisfy the following assumption:

Assumption 3: The functions δi,j,l depend only on vari-
able ξ`p,`b , with 1) `b ≤ j − 1; or 2) `b = j and `p ≤ i.

We will say that the coefficients δi,j,l in the form (3) or
(6) have the chain-by-chain triangular dependency on state
variables if they satisfy Assumption 2, and have the level-by-
level triangular dependency on state variables if they satisfy
Assumption 3.

Under Assumptions 1 and 3, the level-by-level backstep-
ping procedure for (6) can be described as follows. We
will start with η̇ = f0(η, v?

1(η), v?
2(η), · · · , v?

m(η)). After
the first-level backstepping, we obtain the feedback laws
vi = u?

i (η; ξ1,1, ξ2,1, · · · , ξi,1), i = 1, 2, · · · , α1, where α1 is
the number of chains that contain exactly one integrator, i.e.,
q1 =q2 = · · ·=qα1 =1. For chains that contain more than one
integrator, we have ξi,2 =φ?

i,2(η; ξ1,1, ξ2,1, · · · , ξi,1), i = α1+
1, α1 + 2, · · · ,m. Here, ξi,2 are viewed as inputs. We next
proceed with backstepping on the second level integrators.
After the second level backstepping, we obtain the feedback
laws vi = u?

i (η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1,2, ξ2,2, · · · , ξi,2), i =
α1+1, α1+2, · · · , α2, where α2−α1 is the number of chains
that contain exactly two integrators, i.e., qα1+1 = qα1+2 =
· · · = qα2 = 2. For chains with lengths greater than 2, we
obtain ξi,3 = φ?

i,3(η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1,2, ξ2,2 · · · , ξi,2),
i = α2 + 1, α2 + 2, · · · ,m. Here, ξi,3 are viewed
as inputs. Continuing in this way, we finally ob-
tain vi = u?

i (η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1,2, ξ2,2, · · · , ξm,2;
· · · ; ξ1,qm−1, ξ2,qm−1, · · · , ξm,qm−1; ξi,qm), for chains that
contain qm integrators.

Example 3.2: Consider a system in the form of (6) with
three chains of integrators of lengths {3, 4, 4},

η̇ = f0(η, ξ1,1, ξ2,1, ξ3,1),
ξ̇1,j = ξ1,j+1,

ξ̇1,3 = v1,

ξ̇2,j = ξ2,j+1,

ξ̇2,3 = ξ2,4+δ2,3,1(η; ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3)v1,

ξ̇2,4 = v2,

ξ̇3,j = ξ3,j+1, j = 1, 2,

ξ̇3,3 = ξ3,4 + δ3,3,1(η;ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3, ξ3,3)v1,

ξ̇3,4 = v3.
(11)

Clearly, this system satisfies Assumption 3. In what follows,
we will illustrate how to implement the level-by-level back-
stepping on this system.

Let Assumption 1 be satisfied, i.e., there exist smooth
functions v?

i (η), with v?
i (0) = 0, i = 1, 2, 3, such that the

equilibrium η = 0 of the subsystem

η̇ = f0(η, v?
1(η), v?

2(η), v?
3(η)) (12)
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is globally asymptotically stable. The backstepping pro-
cedure starts with the subsystem (12). To carry out the
backstepping on the first level variables, we first consider{

η̇ = f0(η, ξ1,1, v
?
2(η), v?

3(η)),
ξ̇1,1 = ξ1,2,

with ξ1,2 as the input. This subsystem can be globally
asymptotically stabilized by a control of the form

ξ1,2 = φ?
1,2(η; ξ1,1). (13)

Hence, for the subsystem{
η̇ = f0(η, ξ1,1, ξ2,1, v

?
3(η)),

ξ̇1,1 = φ?
1,2(η; ξ1,1),

with ξ2,1 as the input, v?
2(η) globally asymptotically stabi-

lizes its equilibrium col {η, ξ1,1} = 0. We next look at
η̇ = f0(η, ξ1,1, ξ2,1, v

?
3(η)),

ξ̇1,1 = φ?
1,2(η; ξ1,1),

ξ̇2,1 = ξ2,2,

with ξ2,2 as the input. This subsystem can be globally
asymptotically stabilized by a control of the form

ξ2,2 = φ?
2,2(η; ξ1,1, ξ2,1). (14)

That is, the equilibrium col {η, ξ1,1, ξ2,1} = 0 of
η̇ = f0(η, ξ1,1, ξ2,1, v

?
3(η)),

ξ̇1,1 = φ?
1,2(η; ξ1,1),

ξ̇2,1 = φ?
2,2(η; ξ1,1, ξ2,1)

is globally asymptotically stable. Similarly, the subsystem
η̇ = f0(η, ξ1,1, ξ2,1, ξ3,1),

ξ̇1,1 = φ?
1,2(η; ξ1,1),

ξ̇2,1 = φ?
2,2(η; ξ1,1, ξ2,1),

ξ̇3,1 = ξ3,2,

with ξ3,2 as the input, can be globally asymptotically stabi-
lized by a control of the form

ξ3,2 = φ?
3,2(η; ξ1,1, ξ2,1, ξ3,1). (15)

Thus, after the first level backstepping, the subsystem{
η̇ = f0(η, ξ1,1, ξ2,1, ξ3,1),

ξ̇j,1 = ξj,2, j = 1, 2, 3
(16)

can be written as

η̇I = fI (ηI , ξ1,2, ξ2,2, ξ3,2), (17)

where ηI = col {η, ξ1,1, ξ2,1, ξ3,1}. The equilibrium ηI = 0
of this system (17) is globally asymptotically stabilized by
the virtual inputs ξ1,2, ξ2,2 and ξ3,2 as given by (13) -(15).

To start the second level backstepping, consider{
η̇I = fI (ηI , ξ1,2, ξ2,2, ξ3,2),

ξ̇j,2 = ξj,3, j = 1, 2, 3,
(18)

and view ξ1,3, ξ2,3 and ξ3,3 as its inputs. Following the
same procedure as in the first level backstepping, we find
the controls of the form

ξ1,3 = φ?
1,3(ηI ; ξ1,2),

ξ2,3 = φ?
2,3(ηI ; ξ1,2, ξ2,2),

ξ3,3 = φ?
3,3(ηI ; ξ1,2, ξ2,2, ξ3,2)

(19)

that globally asymptotically stabilize the equilibrium ηII =
col {ηI , ξ1,2, ξ2,2, ξ3,2} = 0 of the subsystem (18). The
subsystem (18) can be written as η̇II = fII (ηII , ξ1,3, ξ2,3, ξ3,3),
whose equilibrium ηII = 0 is globally asymptotically stabi-
lized by the virtual inputs ξ1,3, ξ2,3 and ξ3,3 given by (19).

For the third level backstepping, we define
η̇II = fII (ηII , ξ1,3, ξ2,3, ξ3,3),

ξ̇1,3 = v1,

ξ̇2,3 = ξ2,4 + δ2,3,1(η; ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3)v1,

ξ̇3,3 = ξ3,4+δ3,3,1(η; ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3, ξ3,3)v1,
(20)

with v1, ξ2,4 and ξ3,4 as its inputs. This system can be
globally asymptotically stabilized by the controls of the form

v1 = u?
1(η; ξ1, ξ2,1, ξ3,1; ξ2,2, ξ3,2). (21)

The subsystem (20) under the control (21) can be written as
η̇III = fIII (ηIII ; ξ2,4, ξ3,4), and its equilibrium ηIII = col {ηII ,
ξ1,3} = 0 is globally asymptotically stabilized by the virtual
inputs ξ2,4 and ξ3,4 as given by{

ξ2,4 = φ?
2,4(ηII ; ξ1,3, ξ2,3),

ξ3,4 = φ?
3,4(ηII ; ξ1,3, ξ2,3, ξ3,3).

Finally, define
η̇III = fIII (ηIII ; ξ2,4, ξ3,4),

ξ̇2,4 = v2,

ξ̇3,4 = v3,

on which we carry out the last level of backstepping to obtain

v2 = u?
2(η; ξ1; ξ2; ξ3,1, ξ3,2, ξ3,3),

v3 = u?
3(η; ξ1; ξ2; ξ3).

The inputs v1, v2 and v3 globally asymptotically stabilize
the equilibrium col {η, ξ1, ξ2, ξ3} = 0 of the system (11).

Remark 3.1: The structural property (7) of the normal
form (6) makes the level-by-level backstepping possible. It
is not possible to implement the level-by-level backstepping
technique on the normal form (3). For example, in the
system (9), which is in the form (3), backstepping the virtual
input from ξ2,1 = v?

2(η) to ξ2,2 by the dynamical equation
ξ̇2,1 = ξ2,2 + δ2,1,1(η, ξ1, ξ2,1, ξ3,1)v1 is infeasible. At this
stage, v1 is not yet available.

Remark 3.2: The chain-by-chain and level-by-level back-
stepping procedures require different dependency of the co-
efficients δi,j,l on the state variables. For example, both (10)
and (11) are in the form (6). In (11), δ2,3,1 allows dependency
on ξ3,2. As Assumption 2 does not allow such dependency,
the chain-by-chain backstepping is not applicable to the
system (10). On the other hand, δ3,3,1 in system (10) allows
dependency on ξ2,4. However, Assumption 3 does not allow
such dependency. Hence, the level-by-level backstepping is
not applicable to the system (10).
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C. Stabilization by Mixed Chain-by-Chain and Level-by-
Level Backstepping

A system with a vector relative degree is a special case
of both systems (3) and (6) with all δi,j,l = 0. Thus, both
chain-by-chain backstepping and level-by-level backstepping
can be implemented on it. Furthermore, backstepping can be
switched across chains and levels as long as a variable of
lower level in a chain is backstepped earlier than variables
of higher levels in the same chain.

Example 3.3: Consider the system (2) with a vector rela-
tive degree {2, 3, 3},

η̇ = f0(ξ1,1, ξ2,1, ξ3,1),
ξ̇1,1 = ξ1,2,

ξ̇1,2 = v1,

ξ̇2,j = ξ2,j+1,

ξ̇2,3 = v2,

ξ̇3,j = ξ3,j+1, j = 1, 2,

ξ̇3,3 = v3.

(22)

Let Assumption 1 hold. We can carry out backstepping in the
order of Ξ = {ξ2,1, ξ2,2, ξ3,1, ξ1,1, ξ2,3, ξ3,2, ξ1,2, ξ3,3}. After
the backstepping of ξ2,3, we obtain v2, thus, v2 depends
on all the variables from ξ2,1 to ξ2,3 in Ξ, i.e., v2 =
u?

2(η, ξ2,1, ξ2,2, ξ3,1, ξ1,1, ξ2,3). Similarly, we obtain

v1 = u?
1(η, ξ2,1, ξ2,2, ξ3,1, ξ1,1, ξ2,3, ξ3,2, ξ1,2),

v3 = u?
3(η, ξ2,1, ξ2,2, ξ3,1, ξ1,1, ξ2,3, ξ3,2, ξ1,2, ξ3,3).

Alternatively, we can also implement the backstepping in the
order of {ξ3,1, ξ3,2, ξ2,1, ξ3,3, ξ1,1, ξ2,2, ξ1,2, ξ3,2} to arrive at
the following stabilizing feedback laws

v1 = u?
1(η, ξ3,1, ξ3,2, ξ2,1, ξ3,3, ξ1,1, ξ2,2, ξ1,2),

v2 = u?
2(η, ξ3,1, ξ3,2, ξ2,1, ξ3,3, ξ1,1, ξ2,2, ξ1,2, ξ3,2),

v3 = u?
3(η, ξ3,1, ξ3,2, ξ2,1, ξ3,3).

Backstepping in different orders leads to different depen-
dency of controls on state variables, which can be exploited
to meet certain constraints or performance requirement.

In the absence of a vector relative degree, both normal
forms (10) or (11) contains coefficient functions δi,j,l. The
implementation of both chain-by-chain and level-by-level
backstepping require structural dependency on state variables
of δi,j,ls. Such structural dependency constraint can be
weakened by utilizing mixed chain-by-chain and level-by-
level backstepping.

Example 3.4: Consider a system in the form of (6),

η̇ = f0(η, ξ1,1, ξ2,1, ξ3,1),
ξ̇1,j = ξ1,j+1,

ξ̇1,3 = v1,

ξ̇2,j = ξ2,j+1,

ξ̇2,3 = ξ2,4+δ2,3,1(η; ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3)v1,

ξ̇2,4 = v2,

ξ̇3,j = ξ3,j+1, j = 1, 2,

ξ̇3,3 = ξ3,4+δ3,3,1(η, ξ1, ξ2, ξ3,1, ξ3,2, ξ3,3)v1,

ξ̇3,4 = v3.
(23)

Let Assumption 1 be satisfied. It is obvious that δ2,3,1

here is the same as that in (11), and δ3,3,1 is the same
as that in (10). Neither Assumption 2 nor Assumption 3
is satisfied. As a result, neither the chain-by-chain nor
the level-by-level backstepping can be implemented on this
system. However, a mixed chain-by-chain and level-by-
level backstepping will successfully stabilize this system. In
particular, we can carry out backstepping in the order of ξ1,1,
ξ1,2, ξ1,3, ξ2,1, ξ2,2, ξ3,1, ξ3,2, ξ2,3, ξ2,4, ξ3,3, ξ3,4 to obtain

v1 = u?
1(η, ξ1,1, ξ1,2, ξ1,3),

v2 = u?
2(η, ξ1,1, ξ1,2, ξ1,3, ξ2,1, ξ2,2, ξ3,1, ξ3,2, ξ2,3, ξ2,4),

v3 = u?
3(η, ξ1, ξ2, ξ3).

IV. GLOBAL ASYMPTOTICAL STABILIZATION OF
NON-SQUARE NONLINEAR SYSTEMS

To achieve stabilization of the systems in the normal form
(4), some further decomposition is required. In this section,
we will first carry out such further decomposition on the
normal form (4) and then discuss about the stabilization of
the further decomposed system.

A. Further Decomposition of the Normal Form (4)

Consider the following subsystem of (4),{
η̇ = f∆(η, zd) + g∆(η, zd)u∆,

y∆ = h∆(η, zd). (24)

Assume that there exists a transformation under which the
dependency of f∆, g∆ and h∆ on zd is restricted to yd =
col {ξ1,1, ξ2,1, · · · , ξmd,1}, which is part of the vector zd.
Such an assumption is standard in the backstepping literature.

Assumption 4: The subsystem (24) of (4) takes the form,{
η̇ = f∆(η, yd) + g∆(η, yd)u∆,

y∆ = h∆(η, yd). (25)

To derive the zero dynamics of the system under As-
sumption 4, we let yd = 0 in (4). It then follows from the
dynamical equations that zd = 0 and vd = 0. Consequently,
the system reduces to{

η̇ = f∆(η, 0) + g∆(η, 0)u∆,
y∆ = h∆(η, 0), (26)

from which the zero dynamics of the system can be derived.
Indeed, the derivation of the zero dynamics from the above

dynamics has been done in [10, 14] for the case of m = p =
md. In this case, y∆ and u∆ are absent from (4), leading to
(6), and the zero dynamics can be obtained as η̇ = f∆(η, 0).

For the general case, by the structural decomposition
algorithm of [22], we know that the system (26) does not
contain any dynamics that is both controllable (by u∆) and
observable (through y∆). Otherwise, we would have addi-
tional chains of integrators that connect inputs and outputs.

For the system (1), let C0 be the smallest distribution that
is invariant for (1) and contains the distribution spanned
by the column vectors of g(0), and dO be the smallest
codistribution that is invariant for (1) and contains the
codistribution spanned by the row vectors of dh(0) [7, 10].

Lemma 4.1: Consider the system (26). Assume that the
distributions C0, ker dO and C0 + ker dO of (26) all have
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a constant dimension. Then there exist coordinates ẑ =
col {za, zb, zc} such that (26) takes the following form

ża = fa(za, zb),
żb = fb(zb),
żc = fc(za, zb, zc) + gc∆(za, zb, zc)u∆,
y∆ = h∆b(zb),

(27)

with C0 =span {∂/∂zc} and ker dO=span {∂/∂za, ∂/∂zc}.
Now, by Lemma 4.1, (4) can be further decomposed into

ża = fa(za, zb, yd),
żb = fb(zb, yd),
żc = fc(za, zb, zc, yd) + gc∆(x)u∆,
żd = Addzd + [Bdd + Bδ(x)]vd,
y∆ = h∆b(zb, 0),
yd = Cddzd,

(28)

where vd = col {vd,1, vd,2, · · · , vmd}, Add = blkdiag {ℵq1 ,
ℵq2 , · · · ,ℵqmd

}, Bdd = blkdiag {ϑq1 , ϑq2 , · · · , ϑqmd
}, Cdd

= blkdiag {%q1 , %q2 , · · · , %qmd
}, with %k = [ 1 0 ] ∈ R1×k,

ϑk = [ 0 1 ]T ∈ Rk, ℵk =
[

0 Ik−1

0 0

]
∈ Rk×k, and

Bδ(x) =


0 0 . . . 0 0

δ2,∗,1 0 . . . 0 0
...

...
. . .

...
...

δmd−1,∗,1 δmd−1,∗,2 . . . 0 0
δmd,∗,1 δmd,∗,2 . . . δmd,∗,md−1 0

 ,

with δi,∗,l(x) = col {δi,1,l(x), δi,2,l(x), · · · , δi,qi−1,l(x), 0}
and (5) hold.

By setting y∆= 0 and noting that zb is observable through
y∆, it can be shown that zb = 0. Thus, the zero dynamics
can be deduced from (28) as ża = fa(za, 0, 0).

B. Global Asymptotical Stabilization of Systems in Form (28)

We first consider the case where zc is non-existent in (28),
ża = fa(za, zb, yd),
żb = fb(zb, yd),
żd = Addzd + [Bdd + Bδ(za, zb, zd)]vd,
y∆ = h∆b(zb, 0),
yd = Cddzd.

(29)

In this case, p > m. The dynamics of za and zb are controlled
only by yd. We view the following subsystem,{

ża = fa(za, zb, yd),
żb = fb(zb, yd),

as ˙̃η = fo(η̃, ξ1,1, ξ2,1, · · · , ξmd,1) with η̃ = col {za, zb}.
Also, we ignore the equation y∆ in (29). Thus, the stabiliza-
tion for (29) is indeed the same as in the square invertible
case. To implement backstepping, we first find smooth func-
tions v?

i (za, zb), with v?
i (0, 0) = 0, i = 1, 2, · · · ,md, such

that the equilibrium col {za, zb} = 0 of{
ża = fa(za, zb; v?

1(za, zb), v?
2(za, zb), · · · , v?

md
(za, zb)),

żb = fb(zb; v?
1(za, zb), v?

2(za, zb), · · · , v?
md

(za, zb))

is globally asymptotically stable. The backstepping tech-
niques as described in Section III can now be implemented

to arrive at feedback law vd = u?
d, which globally asymp-

totically stabilizes the full system (29).
For the stabilization of the general system (28), we need

an additional assumption.
Assumption 5: The function Bδ(x) is independent off zc,

i.e., Bδ(x) = Bδ(za, zb, zd).
Under Assumption 5, we can first ignore the dynamics

of zc and find the controls vd to stabilize (29). The full
system can then be stabilized by finding the controls u∆ that
stabilizes the dynamics of zc.

V. CONCLUSIONS

We exploited the properties of a recently developed struc-
tural decomposition for the stabilization of general MIMO
systems, and showed that this decomposition simplifies the
conventional backstepping design, motivates a new backstep-
ping design procedure that is able to stabilize some systems
for which the conventional backstepping is not applicable,
and allows the stabilization of non-square systems.
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