
Synthesis of Optimal Fault-Tolerant Supervisor for Discrete Event Systems

Q. Wen, Member IEEE, R. Kumar, Fellow, IEEE, J. Huang, Member IEEE
Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa 50011

Abstract— In an earlier work [1], [2], we introduced a framework
for fault-tolerant supervisory control of discrete event systems and
presented a necessary and sufficient condition for its existence.
Here we propose an approach to synthesize an optimal fault-tolerant
supervisory controller. Given a discrete event plant with both faulty
and nonfaulty behaviors, an optimal fault-tolerant supervisor we
synthesize enforces a set of behaviors in which (i) a recovery is
guaranteed within a bounded delay following any fault, (ii) the
enforced set of nonfaulty behaviors are maximized, and (iii) the
enforced set of faulty behaviors prior to the recovery are minimized.
An example is given to illustrate the approach.

Keywords: discrete event systems, fault tolerant control, super-
visory control, stability, convergence.

I. INTRODUCTION

In an earlier work [1], [2] we introduced a framework for
fault-tolerant supervisory control of discrete event systems
and presented a necessary and sufficient condition for its ex-
istence. Fault-tolerance is a property requiring that a system
continues to function, possibly with a degraded performance,
even when some of its components fail. Given a plant G, pos-
sessing both faulty and nonfaulty behaviors, and a submodel
GN for the nonfaulty part, the goal of fault-tolerant control
is to enforce a certain specification KN for the nonfaulty
plant GN and another (perhaps more liberal) specification
K ⊇ KN for the overall plant G, and further to ensure that
the plant recovers from any fault within a bounded delay, so
that following the recovery the system state is equivalent to a
nonfaulty state (as if no fault ever happened). The condition
for the existence of a fault-tolerant controller involves the
usual notions of controllability, observability and relative-
closure, together with the notion of stability [3], which is
used to establish bounded delay recovery from a fault.

Some previous work involved controller switching upon
the occurrence of a fault as in [4], or re-computation of
a controller as in [5]. The resulting controlled system can
tolerate some faults but the system performance after faults
will remain degraded since the notion of recovery from faults
was not incorporated. Case studies involving synthesis of
fault-tolerant supervisors can also be found in [6], [7]. Fault-
tolerance in Petri Net is considered in [8], where liveness
enforcing strategies are designed to deal with failures using
system reconfigurations. In [9], authors considered a pair of
specifications, representing the desired and the (more liberal)
tolerable behavior for a plant.

The research was supported in part by the National Science Foundation
under the grants NSF-ECS-0424048, NSF-ECS-0601570 and NSF-ECCS-
08013763.

In this paper we study the synthesis of an optimal fault-
tolerant supervisory controller when the required existence
conditions (as reported in [1], [2]) are not satisfied. An
optimal fault-tolerant supervisor we synthesize enforces a
set of behaviors in which (i) a recovery is guaranteed within
a bounded delay following any fault, (ii) the enforced set
of nonfaulty behaviors are maximized, and (iii) the enforced
set of faulty behaviors prior to the recovery are minimized.
Given (G,GN), where G is a plant and GN is its nonfaulty
part, and a state-based specification (Xg, Xg

m) representing
legal states and legal final states respectively, we compute a
subplant (G̃, G̃N) such that (i) G̃N (v GN) is a maximal
controllable subplant of GN for which there exists G′ with
G̃N v G′ v G and (G′, G̃N) is fault-tolerant, (ii) G̃ is
a minimal such G′, and (iii) safety and nonblockingness
properties are satisfied. The above is guided by the goal to
maximize the achievable nonfaulty behaviors and at the same
time minimize the faulty behaviors that must be tolerated,
without having to sacrifice safety, nonblockingness, and
recovery. We show that G̃N can be uniquely chosen (since
the corresponding property is closed under union), whereas
nonunique minimal choices exist for G̃ (the corresponding
property is closed under the intersection over decreasing
chains). We present an algorithm for computing (G̃, G̃N)
and illustrate the algorithm through an example.

II. NOTATION AND PRELIMINARIES

A DES to be controlled, called plant, is modeled as an
automaton, denoted by a five tuple G := (X, Σ, α, x0, Xm),
where X denotes the set of states, Σ denotes the finite set
of events, α : X × Σ → X denotes the partial deterministic
state transition function, x0 ∈ X denotes the initial state, and
Xm ⊆ X denotes the set of marked states. For x ∈ X , we
use Σ(x) ⊆ Σ to denote the set of events defined at x, i.e.,
Σ(x) := {σ ∈ Σ | α(x, σ) is defined}. Σ∗ is used to denote
the set of all finite-length sequences of events, called traces,
which includes the zero-length trace ε. The length of a trace
s, denoted as |s|, is defined to be the number of events in
the trace. A subset of Σ∗ is called a language. The generated
language of G, denoted as L(G) ⊆ Σ∗, contains all traces
s for which α(x0, s) is defined. The marked language of G,
denoted as Lm(G), contains all generated traces that reach
a marked state.

Given two automata G1 := (X1,Σ, α1, x01 , Xm1) and
G2 := (X2, Σ, α2, x02 , Xm2), G1 is said to be a subautoma-
ton of G2, denoted as G1 v G2, if there exists an injective

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB14.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1172

map h : X1 → X2 such that ∀s ∈ L(G1) : h(α1(x01 , s)) =
α2(x02 , s).

For traces s and t, we use s ≤ t to denote that s is a
prefix of t and s < t to denote that s is a proper prefix of
t. For a language K ⊆ Σ∗, pr(K), called the prefix-closure
of K, denotes the set of all prefixes of traces in K, i.e.,
pr(K) = {s ∈ Σ∗ | ∃t ∈ K : s ≤ t}. It is clear that K ⊆
pr(K), and K is said to be prefix-closed if K = pr(K). A
language K is said to be relative-closed with respect to G,
if pr(K) ∩ Lm(G) = K ∩ Lm(G).

We use K\s to denote the set of traces that occur in the
language K after the trace s has occurred, i.e., K\s := {t ∈
Σ∗ | st ∈ K}. For traces s and t, we use s vK t to denote
that the sets of traces that occur in K after s are contained in
those after t, i.e., K\s ⊆ K\t. We write s ∼=K t if s vK t
and t vK s. s vK t implies the behaviors following s are
subsumed by the behaviors following t, whereas s ∼=K t
implies the equivalence of the behaviors following s and t.
We write s vG t to denote s vLm(G) t and s vL(G) t. Also
s ∼=G t if s vG t and t vG s.

Definition 1: [3] Given a plant G = (X, Σ, α, x0, Xm)
and a state set X̂ ⊆ X , x ∈ X is said to be X̂−attractable
in G if there exists m ∈ N such that for all t for which
α(x, t) is defined and either |t| ≥ m or t deadlocks, exists
t′ ≤ t with |t′| ≤ m such that α(x, t′) ∈ X̂ . x ∈ X is said
to be controllably X̂ − attractable in G if there exists a
supervisor S such that x is X̂ − attractable in G‖S.

We use ΩG(X̂), the region of attraction of X̂ , to denote
the set of all X̂-attractable states, and X̂ is called an attractor
for the set ΩG(X̂). We use Ωc

G(X̂), the region of controllable
attraction of X̂ , to denote the set of all controllably X̂-
attractable states, and X̂ is called a controllable attractor for
the set Ωc

G(X̂). A state set X̃ ⊆ X is said to be attractable
to X̂ if X̃ ⊆ ΩG(X̂) and controllably attractable to X̂ if
X̃ ⊆ Ωc

G(X̂). Clearly, X̂ ⊆ ΩG(X̂) ⊆ Ωc
G(X̂).

For control purposes, the event set of G is partitioned
into the set of controllable events Σc ⊆ Σ and the set of
uncontrollable events Σu ⊆ Σ. A language K is said to
be controllable (with respect to G and Σu) if pr(K)Σu ∩
L(G) ⊆ pr(K).

A supervisor is another automaton S := (Y, Σ, β, y0, Ym).
The supervised plant is the synchronous composition of G
and S, denoted G||S := (X × Y, Σ, γ, (x0, y0), Xm × Ym),
where for (x, y) ∈ X×Y and σ ∈ Σ, γ((x, y), σ) is defined
if and only if both α(x, σ) and β(y, σ) are defined and
in which case, γ((x, y), σ) = (α(x, σ), β(y, σ)). It can be
concluded that the generated and the marked languages of
the supervised plant satisfy: L(G||S) = L(G) ∩ L(S) and
Lm(G||S) = Lm(G) ∩ Lm(S), respectively. A supervisor
S is said to be (i) nonmarking if Lm(G||S) = L(G||S) ∩
Lm(G), (ii) nonblocking if pr(Lm(G||S)) = L(G||S), and
(iii) Σu-compatible if it does not disable any uncontrollable
event (equivalently if L(G||S) is controllable).

The following notion was introduced in [1].
Definition 2: Consider a pair of languages (H,HN) with

HN ⊆ H . The pair (H,HN) is said to be fault-tolerant
if exists m ∈ N such that for s ∈ pr(H) − pr(HN), st ∈

pr(H) with |t| ≥ m or st deadlocks, there exist u ∈ pr(HN)
and t′ ≤ t with |t′| ≤ m, st′ ∼=H u and st′ ∼=pr(H) u.
In this case, m is called the delay-bound of fault-tolerance.
Given a plant G with its nonfaulty part GN , (G, GN) is
said to be fault-tolerant if (L(G), L(GN)) is fault-tolerant.
A supervisor S is said to be fault-tolerant if (G‖S,GN‖S)
is fault-tolerant.

The following result was obtained in [1].
Theorem 1: [1] Given a plant G = (X, Σ, α, x0, Xm)

with nonfaulty part GN = (XN , Σ, αN , x0, X
N
m), specifi-

cation ∅ 6= K ⊆ Lm(G) for G and specification ∅ 6=
KN ⊆ Lm(GN) for GN satisfying KN ⊆ K, there exists a
nonmarking, nonblocking (with respect to both GN and G),
Σu-compatible and fault-tolerant supervisor S such that

1) Lm(GN ||S) = KN , L(GN ||S) = pr(Lm(GN ||S)),
2) Lm(G||S) = K, and L(G||S) = pr(Lm(G||S))

if and only if
1) K is relative-closed and controllable w.r.t. G,
2) (K, KN) is fault-tolerant, and
3) KN = K∩Lm(GN) and pr(KN) = pr(K)∩L(GN).

III. FORMULATION OF OPTIMAL FAULT-TOLERANT
CONTROL SYNTHESIS PROBLEM

Theorem 1 provides a condition under which a de-
sired fault-tolerant supervisor exists. When this condition
is satisfied, a trim recognizer of K can be chosen as a
supervisor. Here we study the problem of synthesizing a
fault-tolerant supervisor when the condition of Theorem 1 is
not satisfied. A desirable goal is to maximize the achievable
nonfaulty behaviors and at the same time minimize the faulty
behaviors that must be tolerated, without sacrificing safety,
nonblockingness and recovery. The motivation being, we
allow maximal functionality of the system in the absence of
faults, and at the same time limit the system’s faulty behavior
within a minimal range without sacrificing recovery.

It turns out that the supremal nonfaulty fault-tolerant be-
havior does not exist in general. That is, given a language pair
(K, KN), we cannot always find a fault-tolerant sublanguage
pair (K̃, K̃N), where K̃ ⊆ K and K̃N ⊆ KN , such that
any other fault-tolerant sublanguage pair (K̂, K̂N) satisfies
K̂ ⊆ K̃ and K̂N ⊆ K̃N .

Consider the following example for illustration. Figure 1
shows a plant G and its nonfaulty part GN , where f is a
faulty event and is the only uncontrollable event. From Fig-
ure 1, we can see that there are two subplant pairs (G1, G

N
1)

and (G2, G
N
2), which are fault-tolerant. Note in (G1, G

N
1)

the faulty state 6 is equivalent to the nonfaulty state 3,
whereas in (G2, G

N
2) the faulty state 6 is equivalent to the

nonfaulty state 2. Thus in both cases the system reaches
a state that is equivalent to a nonfaulty state within one
transition of the occurrence of the fault (i.e., the delay bound
for recovery is one in both cases). However the language
(L(G1) ∪ L(G2), L(GN

1) ∪ L(GN
2)) which is realized by

(G,GN) shown in Figure 1 is not fault-tolerant. This is
because there exists no nonfaulty state that is equivalent to
the faulty state 6 where the system can stay with recovery.

1173

Fig. 1. Plant G with its subplants G1 and G2

It happens that maximal nonfaulty behaviors that are
fault-tolerant also do not exist, for the limit of a class of
monotonically increasing nonfaulty fault-tolerant behaviors
may not be fault-tolerant. To see this, consider the mono-
tonically increasing sequence of plant behaviors, where the
nth behavior in the sequence is generated by the plant
(Gn, GN

n) (Figure 2). The nonfaulty part GN
n contains n

a’s, whereas the overall plant Gn contains a faulty trace
with same number of b’s, i.e., the delay bound for recovery
in (Gn, GN

n) is n. The limiting plant behavior (L(G∞) :=
∪nL(Gn), L(GN

∞) := ∪nL(GN
n)) is not fault-tolerant since

the faulty plant can execute an unbounded number of b’s
before a recovery to the nonfaulty part occurs.

Fig. 2. Plant (Gn, GN
n), n ≥ 1

The examples above show that neither the supremal nor
a maximal nonfaulty fault-tolerant sublanguage exists in
general. Lack of supremal and even maximal nonfaulty fault-
tolerant sublanguages motivate us to restrict our attention
to state-feedback based control, under which the controlled
plant is always a subplant of the uncontrolled plant. In
this setting, we are able to show the existence of fault-
tolerant control that maximizes the nonfaulty behavior while
minimizing the faulty behavior without sacrificing safety,
nonblockingness, and recovery.

Without loss of generality, the specification is given as a
state set pair (Xg, Xg

m), where Xg ⊆ X is the set of legal
states and Xg

m ⊆ Xg ∩ Xm is the set of legal final states.
Since under a state-feedback control the controlled plant
is a subplant of the uncontrolled plant, examining various
state-feedback controllers is equivalent to examining various
subplants of a given plant.

We first define the set of all fault-tolerant subplants,

denoted F (G,GN) as follows:
Definition 3: Given a plant model (G,GN) with GN v

G, the class of fault-tolerant subplants, denoted F (G,GN),
is the set of all subplants (G̃ v G, G̃N v GN) with states
pair (X̃, X̃N) and marked states pair (X̃m, X̃N

m), such that
• X̃ ⊆ Xg, X̃m ⊆ Xg

m;
• Lm(G̃) is relatively-closed and controllable w.r.t. G;
• X̃ ⊆ ΩG̃(X̃N).
We next introduce the class of fault-tolerant nonfaulty

subplants and show that this class is closed under union.
Definition 4: The class of fault-tolerant nonfaulty sub-

plants is defined as: FN
G (GN) := {G̃N v GN |∃G̃ v G :

(G̃, G̃N) ∈ F (G,GN)}.
The following theorem shows that the above class of fault-

tolerant nonfaulty subplants is closed under union.
Theorem 2: Let Λ be an index set such that ∀λ ∈ Λ,

GN
λ ∈ FN

G (GN). Then
⋃

λ∈Λ GN
λ ∈ FN

G (GN).
Proof: We show the existence of G′ v ∪λGλ such that
(G′,∪λGN

λ) ∈ F (G,GN).
Suppose (∪λGλ,∪λGN

λ) is fault-tolerant. Then we claim
that we can choose G′ = ∪λGλ. Since for each λ, Xλ ⊆ Xg ,
we have ∪λXλ ⊆ Xg. Since for each λ, Lm(Gλ) is control-
lable which means no uncontrollable event is disabled in G
to obtain each Gλ, it is the case that no uncontrollable event
is disabled to obtain ∪λGλ, i.e., Lm(∪λGλ) is controllable.
Since for each λ, Lm(Gλ) is relatively-closed which implies
that Xλ∩Xm ⊆ Xλ∩Xg

m, it is the case that ∪λXλ∩Xm ⊆
∪λXλ ∩Xg

m, i.e., Lm(∪λGλ) is relatively-closed.
On the other hand suppose (∪λGλ,∪λGN

λ) is not fault-
tolerant. Then exists a cycle in the faulty part. Since for
each λ, (Gλ, GN

λ) is fault-tolerant which implies the faulty
part of Gλ does not contain any cycle, i.e., a certain edge
of each faulty-part cycle of ∪λGλ is missing in Gλ. Then
each such edge must be labeled with a controllable event
(since Lm(Gλ) is controllable). Let G′ be obtained from
by removing each edge that contributes to a cycle in the
faulty-part of ∪λGλ and is missing in Gλ̄ for a λ̄ ∈ Λ.
Then the faulty-part of G′ is acyclic. Also since only
controllable edges are removed to obtain G′ from ∪λGλ,
the controllability property is preserved. Since Lm(∪λGλ)
is controllable (see above), we can claim that Lm(G′) is
controllable. Further since G′ is obtained from ∪λGλ by
removing certain edges that appear as part of certain cycles,
the state set is preserved upon the removal of such edges
(i.e., X ′ = ∪λXλ). It can then be concluded that relative-
closure property is also preserved, and so Lm(G′) is also
relatively-closed.

It remains to show that (G′,∪λGN
λ) is fault-tolerant. Since

the faulty-part of G′ is acyclic, it suffices to show that for
any faulty state x ∈ X ′ = ∪λXλ exists a path in G′ to the
nonfaulty part ∪λXN

λ . Pick any such state x. Then exists λ
such that x is a faulty state of Gλ. From the fault-tolerance
of (Gλ, GN

λ), exists a path in Gλ from x to GN
λ v ∪λGN

λ . If
this path does not contain any of the edges that were removed
to obtain G′, then we are done. Otherwise this path visits a
state x̄ from where an edge that is present in ∪λGλ but is
missing in Gλ̄ has been removed. From the fault-tolerance

1174

of (Gλ̄, GN
λ̄

) exists a path in Gλ̄ v G′ from x̄ to GN
λ̄
v G′.

This concludes the proof.
Since FN

G (GN) is closed under union, it possesses a supre-
mal element, sup FN

G (GN) ∈ FN
G (GN), with the property

that if G̃N ∈ FN
G (GN), then G̃N v sup FN

G (GN).
In the above, we defined a class of fault-tolerant nonfaulty

subplants. Next, given a nonfaulty subplant, we define a class
of overall subplant that is fault-tolerant.

Definition 5: Given G̃N v GN , the class of overall
subplants that are fault-tolerant w.r.t. G̃N is defined as:

FG̃N (G) := {G̃ v G|(G̃, G̃N) ∈ F (G,GN)}.
G̃ is an infimal element of FG̃N (G) if G̃ ∈ FG̃N (G), and

G′ ∈ FG̃N (G) implies G̃ v G′. G̃ is a minimal element
of FG̃N (G) if G̃ ∈ FG̃N (G) and G′ v G̃ implies G′ 6∈
FG̃N (G).

The following result establishes certain closure properties
of FG̃N (G) under intersection.

Theorem 3: FG̃N (G) does not possess infimal element but
possess minimal elements whenever it is nonempty.
Proof: For the first part, we show that FG̃N (G) is not
closed under intersection. As seen from Figure 3, G1, G2 ∈
FGN (G1 ∪ G2) (since for each i = 1, 2, (Gi, G

N) ∈
F (G1 ∪ G2, G

N)). However it is clear from Figure 3 that
(G1 ∩ G2, G

N) 6∈ F (G1 ∪ G2, G
N), i.e., G1 ∩ G2 6∈

FGN (G1 ∪G2).

Fig. 3. (G1, G̃N) and (G2, G̃N) are fault-tolerant, but (G1 ∩G2, G̃N)
is not

Next we consider the second part. Since G has finite
number of states and transitions, the number of subplants of
G is finite. So, whenever FG̃N (G) is nonempty, there exist
at least one subplant of G in FG̃N (G) for which there exists
no subplant in the set FG̃N (G), and so the existence of a
minimal overall subplant that is fault-tolerant with respect to
G̃N follows.

The set of all the minimal elements of FG̃N (G) is denoted
as MINFG̃N (G), and a minimal element is denoted as
min FG̃N (G).

IV. OPTIMAL FAULT-TOLERANT CONTROL SYNTHESIS

The computation of an optimal fault-tolerant control
discussed above requires the computation of the region of
controllable attraction and a minimal set of controllable
transition for achieving the controllable attractability given
in Algorithm 1. It is obtained by extending that given in [10]
to keep track of a minimal set of controllable transitions that
must be enabled to achieve the controllable attractability.

Algorithm 1: Consider a plant G = (X, Σ, α, x0, Xm)
and a state set X̂ ⊆ X .

1) Initialization step:
Set k = 0, Ωk−1 = ∅, Ωk = X̂ , and ∆k = ∅.

2) Iteration step:
• Ωk+1 = Ωk∪{x ∈ X−Ωk|α(x, Σ)∩Ωk−Ωk−1 6=
∅, α(x, Σu) ⊆ Ωk}.

• ∆k+1 = ∆k ∪ {(x, σ, x′) | x ∈ Ωk+1 − Ωk, σ ∈
Σx, x′ ∈ Ωk}, where Σx = ∅ if α(x, Σu) 6= ∅ and
otherwise Σx = {σx} such that α(x, σx) ∈ Ωk.

3) Termination step:
If Ωk+1 = Ωk, then stop and set Ωc

G(X̂) = Ωk and
∆G(X̂) = ∆k; else set k = k + 1 and go to step 2.

Remark 1: The complexity of Algorithm 1 can be seen to
be linear in the size of the plant G. This is because at most
|X| iterations are being performed, and in each iteration a
constant amount of computation is being done.

The following algorithm computes a fault-tolerant sub-
plant (G̃N , G̃) such that G̃N = sup FN

G (GN) and G̃ ∈
MINFG̃N (G).

Algorithm 2: Consider plant G = (X, Σ, α, x0, Xm) with
nonfaulty part GN = (XN , Σ, αN , x0, X

N
m), and specifica-

tion (Xg, Xg
m).

Uncontrollable/blocking states removal:
1) Initialization step:

k = 0, Dk = X −Xg.
2) Iteration step:

If x0 ∈ Dk, then terminate (no solution exists); else
• D = Dk ∪ {x ∈ X −Dk | α(x, Σ∗u) ⊆ Dk};
• Dk+1 = D∪{x ∈ X−D | α|X−D(x, Σ∗)∩Xg

m =
∅}.

3) Termination step:
If Dk+1 6= Dk, set k = k + 1 and iter-
ate; else remove from G the states in Dk and
all their incoming and outgoing transitions to ob-
tain G0 = (X0,Σ, α0, x0, Xm,0), and let GN

0 =
(XN

0 ,Σ, αN
0 , x0, X

N
m,0) be its nonfaulty part.

Optimal fault-tolerant subplant computation:
1) Initialization step:

k = 0.
2) Iteration step:

If x0 6∈ XN
k , then terminate (no solution exists); else

• X ′ = {x ∈ XN
k | αk(x, Σ∗u) ⊆ Xk};

• XN
k+1 = {x ∈ X ′ | αk|X′(x, Σ∗) ∩Xm,k 6= ∅};

• Xk+1 := αk(XN
k+1,Σ

∗) ∩ Ωc
Gk

(XN
k+1);

• Gk+1 = (Xk+1, Σ, αk+1, x0, Xm,k+1) :=
Gk|Xk+1 ; GN

k+1 =
(XN

k+1, Σ, αN
k+1, x0, X

N
m,k+1) := GN

k |XN
k+1

.
3) Termination step:

If Xk+1 6= Xk, set k = k + 1 and iterate;
else remove all controllable transitions from Gk that
leave the state set Xk, and also all controllable
transitions in the faulty part of Gk that are not
present in ∆Gk

(XN
k+1). This yields a desired subplant

(supFN
G (GN),min Fsup F N

G (GN)(G)).
The steps of Algorithm 2 can be understood as follows.

The “uncontrollable/blocking states removal” step computes
the supremal relative-closed and controllable subplant by
removing those states which can uncontrollably reach an

1175

illegal state in X − Xg or can never reach a legal final
state in Xg

m. This provides a supremal safe and nonblocking
subplant (G0, G

N
0). Additional pruning is required to also

ensure fault-tolerance (besides safety and nonblockingness)
so all faulty states are attractable to the nonfaulty ones.
This is accomplished in the “optimal fault-tolerant subplant
computation” step. The kth iteration computes a subplant
(Gk+1, G

N
k+1) of (Gk, GN

k) by first computing XN
k+1 which

consists of all nonfaulty states in XN
k that are controllable

and nonblocking with respect to the states in Xk of the over-
all plant Gk. This maximizes the set of nonfaulty behaviors.
Since faulty states in Xk+1 must be controllably attractable
to XN

k+1, only those states in Xk that belong to Ωc
Gk

(XN
k+1)

are kept in Xk+1. Further to achieve the minimality of the
behaviors in the faulty part, only the reachable states of
XN

k+1 are kept in Xk+1, i.e., we set Xk+1 to be the set
of reachable and controllably attractable states of XN

k+1.
The iteration continues if Xk+1 6= Xk and otherwise it
terminates yielding a desired optimal fault-tolerant subplant.
To ensure the minimality of the behavior in the faulty part
only a minimal set of controllable transitions needed to
ensure attractability to the nonfaulty part are kept (which
are computed as ∆Gk

(XN
k+1) in Algorithm 1).

Remark 2: It can be verified that the number of iterations
of the steps “uncontrollable/blocking states removal” as well
as “optimal fault-tolerant subplant computation” is bounded
by the number of states in G, and each such iteration has a
complexity that is linear in the size of plant G. It follows
that the complexity of Algorithm 2 is quadratic in the size
of plant G.

The correctness of Algorithm 2 is next established.
Theorem 4: Given overall plant G, nonfaulty plant GN

and specification (Xg, Xg
m), Algorithm 2 generates the pair

(G̃N , G̃) with G̃N = sup FN
G (GN) and G̃ ∈ MINFG̃N (G).

Proof: We first prove that G̃N is the supremal element
of FN

G (GN). It is straightforward to see that (G̃, G̃N) is
fault-tolerant since all states in G̃ are in the region of
controllable attraction of G̃N . Further (G̃, G̃N) is safe since
illegal states cannot be uncontrollably reached from any state
in Xk (this is assured by the “uncontrollable/blocking states
removal” step). (G̃, G̃N) is also nonblocking since XN

k+1

is nonblocking with respect to Xm,k for each k and on
termination XN

k+1 = XN
k (meaning at termination XN

k is
nonblocking with respect to Xm,k). To show the supremality
of G̃N we claim that any nonfaulty state not present in X̃N

cannot be in an optimal solution. This is because at each of
the kth iteration only the states from XN

k are removed to
obtain XN

k+1 that are uncontrollable/blocking with respect to
Xk. Only the states from Xk are kept to obtain Xk+1 that
is controllably attractable to and also reachable from XN

k+1.
Next we prove that the plant G̃ is an element of

MINFG̃N (G). It is clear that all faulty states in G̃ are
reachable from and controllably attractable to G̃N =
sup FN

G (GN). We show the minimality of G̃ by showing
that by removing any controllable transition will make
(G̃, G̃N) become non-fault-tolerant. From the construction
of ∆Gk

(XN
k+1), at any faulty state at most one controllable

transition is enabled and if an uncontrollable transition is
defined at a faulty state, no controllable transition is enabled.
From the minimality of the controllable transitions included
in ∆Gk

(XN
k+1) (as guaranteed by Algorithm 1), we can

conclude that removal of any controllable transition from
the faulty part of (G̃, G̃N) will make it non-fault-tolerant.

V. ILLUSTRATIVE EXAMPLE

Fig. 4. Plant (G, GN) used in Section V

Fig. 5. Controllable and nonblocking subplant (G0, GN
0)

The following example illustrates the Algorithm 2. Con-
sider the plant (G, GN) given in Figure 4. Encircled states
denote the final states. There is a single illegal state labeled
dump; the remaining states form the state set Xg . The
specification for the marked states is given as Xg

m = Xg ∩
Xm = Xm. The dotted double arrowed transitions are
uncontrollable and the remaining ones are controllable. All
transitions from a state in XN to a state in X are considered
faulty (and also uncontrollable). Note each transition has a
distinct event label and so it can be identified by the event
labeling the transition.

The subplant (G0, G
N
0) obtained after the removal of

uncontrollable and blocking states is shown in Figure 5. Note
the states 4 and 8 get removed since they can reach the
illegal state uncontrollably. Also note that XN

0 = {1, 2, 3},
and X0 = {1, 2, 3, 5, 6, 7, 9, 10, 11}.

Since x0 = {2} ∈ X0, the computation of the fault-
tolerant subplant proceeds as follows.

1) Iteration no. 1:
• XN

1 = {1, 2, 3};

1176

Fig. 6. (G1, GN
1), (G2, GN

2) and final controlled plant (G3, GN
3) obtained from iterations of Algorithm 2

• Ωc
G0

(XN
1) = {1, 2, 3, 6, 7, 10, 11},

∆G0(X
N
1) = {c8, c12, c14};

• X1 = {1, 2, 3, 6, 7, 10, 11}. The resulting
(G1, G

N
1) is shown in Figure 6.

2) Iteration no. 2:
• XN

2 = {2, 3};
• Ωc

G1
(XN

2) = {2, 3, 6, 7, 10, 11},
∆G1(X

N
2) = {c8, c12, c14};

• X2 = {2, 3, 6, 7, 10, 11}. The resulting (G2, G
N
2)

is shown in Figure 6.
3) Iteration no. 3:

• XN
3 = {2, 3};

• Ωc
G2

(XN
3) = {2, 3, 6, 7, 10, 11},

∆G2(X
N
3) = {c8, c12, c14};

• X3 = {2, 3, 6, 7, 10, 11}.
Since X3 = X2, the iteration stops. After removing the

controllable transitions {c2, c9} that leave the state set X3 =
X2 and also all controllable transitions in the faulty part of
G2 that are not included in ∆G2(X

N
3) = {c8, c12, c14}, we

get the desired fault-tolerant subplant shown in Figure 6.
We can see that state 2 and 3 are the only nonfaulty states

from where after the occurrence of a fault it is possible to
recover within a bounded delay. State 1 does not have this
property since it is possible to uncontrollably reach state 5
from where a bounded delay recovery is not possible (state
5 is contained in a cycle of uncontrollable transitions). On
the other hand state 4 does not have this property since it is
possible to uncontrollably reach the illegal state from state
4. It can be seen then that the computed nonfaulty part is
supremal. The faulty states 6, 7, and 10 must be present
in the overall subplant since those states are uncontrollably
reached from the nonfaulty states 2 and 3. Since the only
way to recover from the faulty state 10 is through state
11, state 11 must also be included in the overall subplant.
Finally removing any controllable transition in the faulty part
renders the overall subplant “fault-intolerant”. It follows that
the computed faulty part is minimal.

VI. CONCLUSION

A notion of fault-tolerant supervisory control was in-
troduced in our prior work [1], [2] where the controlled

system must not only satisfy the desired safety and progress
properties but must also be fault-tolerant, i.e., following
the occurrence of any fault a recovery to a nonfaulty or
nonfaulty-equivalent state must occur within a bounded
delay. Here we formulated the notion of an optimal fault-
tolerant supervisor to be one that maximizes the nonfaulty
behavior and at the same time minimizes the faulty behavior
that must be tolerated, and also ensures safety, nonblocking-
ness, and bounded-delay recovery. We showed that while the
problem in general does not admit an optimal solution, an
optimal solution does exist over the class of state-feedback
control policies. We presented an algorithm to find such
an optimal solution. The complexity of the algorithm is
quadratic in the size of a given plant.

REFERENCES

[1] Q. Wen, R. Kumar, J. Huang, and H. Liu, “Fault-tolerant supervisory
control of discrete event systems: Formulation and existence results,”
in Proceedings of Dependable Control of Discrete Systems, Pairs,
France, 2007.

[2] ——, “A framework for fault-tolerant supervisor control of discrete
event systems,” IEEE Transaction on Automatic Control, 2007, to
Appear.

[3] Y. Brave and M. Heymann, “On stabilization of discrete event pro-
cesses,” International Journal of Control, vol. 51, no. 5, pp. 1101–
1117, 1990.

[4] H. Darabi, M. A. Jafari, and A. L. Buczak, “A control switching theory
for supervisory control of discrete event systems,” IEEE Transactions
on Robotics and Automation, vol. 19, no. 1, pp. 131–137, 2003.

[5] K. R. Rohloff, “Sensor failure tolerant supervisory control,” in Pro-
ceedings of the 44th IEEE Conference on Decision and Control, and
the European Control Conference 2005, 2005, pp. 3493 – 3498.

[6] K.-H. Cho and J.-T. Lim, “Failure diagnosis and fault tolerant supervi-
sory control systems,” IEICE Transactions on Information and System,
vol. E79-D, no. 9, pp. 1223 – 1231, 1996.

[7] ——, “Synthesis of fault tolerant supervisor for automated manufac-
turing systems: A case study on photolithographic process,” IEEE
Trans. on Robotics and Automation, pp. 348 – 351, 1998.

[8] M. V. Iordache and P. J. Antsaklis, “Resilience to failure and recon-
figurations in the supervision based on place invariants,” Proceedings
of the 2004 American Control Conference, pp. 4477 – 4482, 2004.

[9] S. Lafortune and F. Lin, “On tolerable and desirable behaviors in su-
pervisory control of discrete event systems,” Discrete Event Dynamical
System: Theory and Application, vol. 1, no. 1, pp. 61–92, 1991.

[10] R. Kumar, V. K. Garg, and S. I. Marcus, “Language stability and
stabilizability of discrete event dynamical systems,” SIAM Journal of
Control and Optimization, vol. 31, no. 5, pp. 1294–1320, September
1993.

1177

