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Abstract— Forecasting highly uncertain demand signals is an
important component for successfully managing inventory. We
present a control-relevant approach to the problem that tailors
a forecasting model to its end-use purpose, which is to provide
forecast signals to a tactical inventory management policy
based on Model Predictive Control (MPC). The success of the
method hinges on a control-relevant prefiltering operation that
emphasizes goodness-of-fit in the frequency band most impor-
tant for achieving desired levels of closed-loop performance. A
multi-objective formulation is presented that allows the supply
chain planner to generate demand forecasts that minimize
inventory deviation, starts change variance, or their weighted
combination when incorporated in an MPC decision policy. The
benefits obtained from this procedure are demonstrated on a
case study where the estimated demand model is based on a
AutoRegressive (AR) process.

I. INTRODUCTION

Inventory management is a critical component of supply

chain management. In recent years, a number of approaches

inspired by chemical process control have been proposed

to manage short-term “tactical” decision-making for inven-

tory management problems associated with semiconductor

manufacturing supply chains [1], [2], [3]. These approaches

rely on Model Predictive Control [4], an optimization-based

control technology that has experienced wide success in the

process industries. In these approaches, demand is treated

as an exogenous “disturbance” signal that must be properly

“rejected” by a sensibly-designed control system. In this

paper we highlight the interplay between forecast error and

the decision policy, which relies on potentially erroneous de-

mand forecasts. Specifically, understanding what properties

of forecasts that have the most effect on the end-use decision

policy can be used to develop contextualized algorithms

that are able to simplify and increase the effectiveness of

demand forecasting techniques. The control-relevant demand

forecasting procedure presented in this paper addresses the

issue of how demand forecasts are generated, and in doing so

gives supply chain planners greater flexibility regarding how

the demand “disturbance” is rejected. Such control-relevant
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forecasts will ultimately lead to improved production and

inventory control.

The relationship between demand forecast error and

changes in inventory and starts is examined for a control-

oriented tactical decision policy in a single node of a supply

chain. To accomplish this goal, ideas in control-relevant

identification [5] and control-relevant demand modeling for

production-inventory systems [6] are applied. A control-

relevant understanding of the problem dictates that not all

characteristics of the demand process need to be retained

when the performance criteria of the end-use decision pol-

icy is considered, and consequently, placing an emphasis

during modeling on the most important regions of time

and frequency will have a beneficial effect. A sensibly

designed prefilter applied to demand estimation data can be

used for this purpose. A multi-objective formulation for the

prefilter design problem is presented that allows the user to

minimize inventory variance, starts variance, or a weighted

combination. Results from the case study show that the ap-

proach improves performance in a flexible manner, reducing

inventory variance, factory starts variance, or achieving a

reasonable compromise between these objectives.

The paper is organized as follows. Section II pro-

vides background material on the modeling of a produc-

tion/inventory system using a fluid analogy. Section III shows

the the development of a tactical decision algorithm relying

on Model Predictive Control. In Section IV, the closed-loop

transfer functions describing forecast error are developed and

the effect of erroneous forecasts is studied in both the time

and frequency domains. This analysis serves as the basis for

the procedure that performs control-relevant demand fore-

casting. Section V is a case study that applies the approach

to manage a production/inventory system. The contrasting

results obtained from the multi-objective formulation, and a

comparison with a traditional “open-loop” approach that does

not rely on a control-relevant understanding are presented.

Section VI highlights the important conclusions that can be

drawn from the analysis in this paper, as well as some areas

for future research.
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Fig. 1. Fluid analogy for a production/inventory system

II. MODELING A PRODUCTION/INVENTORY SYSTEM

USING A FLUID ANALOGY

Developing a dynamic model is the first step towards

producing a control system for inventory management. In

most applications dynamic modeling is difficult whereas in

manufacturing the most significant uncertainties are not in

the process model but in the supply and demand signals. To

begin we use a fluid analogy to describe a generic manu-

facturing process; this reduces the process to a collection of

pipes and tanks. This abstraction not only makes the analysis

more reasonable, it also gives it wider appeal. Such a fluid

analogy is shown in Figure 1. The factory is modeled as a

pipe with a particular throughput time θ and yield K. The

inventory is modeled as material (fluid) in a tank. Applying

the principle of conservation of mass to this system leads

to a differential equation relating net stock (tank level, y(t))
to factory starts (pipe inflow, u(t)) and customer demand

(tank outflow, d(t)). This differential equation is represented

by the following z-domain discrete transfer function, where

the demand is composed of the forecasted customer demand,

dF (t − θF ), plus unforecasted customer demand, dU (t).

y(z) =
Kz−θ

z − 1
u(z) −

z−θF

1 − z−1
dF (z) −

1

1 − z−1
dU (z) (1)

Where θF is the forecast horizon and dF (t) represents an

estimate of demand θF days into the future. Based on (1) it

is possible to derive tactical decision policies that manipulate

factory starts to maintain inventory level at a designated

setpoint. If knowledge of future customer demand is avail-

able, it is advantageous to use feedforward compensation. A

decision policy based on this nominal model (kept constant

for purposes of this paper) that relies on a demand forecast

is presented in the ensuing section.
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Fig. 2. Receding horizon representation of Model Predictive Control relying
on demand forecasts, as applied to production/inventory control.

III. MODEL PREDICTIVE CONTROL

The application of Model Predictive Control [4], [7], [8]

to the inventory management problems considered in this

paper follows along the lines of the conceptual framework

presented in [1]. In a computation interval the factory starts

are optimized over a move horizon to minimize predicted de-

viations from inventory targets given an anticipated demand

signal, as shown in Figure 2. The starts level corresponding

to the first entry in the move horizon is implemented and the

process is repeated. A meaningful MPC objective function

formulation is as follows:

min
∆u(k|k)...∆u(k+M−1|k)

J (2)

where ∆u(k|k) . . .∆u(k+M−1|k) represents the computed

sequence of starts changes made at time k, and the individual

terms of J correspond to:

Keep Inventories at Inventory Planning Setpoints

J =

︷ ︸︸ ︷

P∑

ℓ=θ

Qe(ℓ)(ŷ(k + ℓ|k) − r(k + ℓ))2 (3)

Penalize Changes in Starts

+

︷ ︸︸ ︷

M∑

ℓ=1

Q∆u(ℓ)(∆u(k + ℓ − 1|k))2

subject to constraints on inventory capacity (0 ≤ y(k) ≤
ymax), factory inflow capacity (0 ≤ u(k) ≤ umax), and

changes in the quantity of factory starts (∆umin ≤ ∆uk ≤
∆umax). Equation 3 is a multi-objective expression that

addresses the main operational objectives in the supply

chain. The first term is a setpoint tracking term intended to

maintain inventory levels at user-specified targets over time.

The second term is a move suppression term that penalizes

changes in the factory starts. The emphasis given to each one

of the sub-objectives in (3) (or to specific system variables

within these objective terms) is achieved through the choice

of weights (Qe(ℓ) and Q∆u(ℓ)). These can potentially vary

over the prediction and move calculation horizons (P and

M , respectively).
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IV. ACHIEVING CONTROL-RELEVANT DEMAND

FORECASTING

In this paper we are primarily concerned with the role

that customer demand d(t) plays in supply chain dynamics,

since it is essential when designing an inventory control

system that the demand characteristics be known [9]. Since

this demand is unknown in advance it has to be predicted

to be able to compute the best sequence of factory starts

according to Equation 2. Historically, such a prediction has

been based on a least-squares fit of the data to a certain

model structure. Therefore, the family of models used to

characterize the demand has played an important role. In this

paper we also contend that the intended use of the model will

also play a prominent role.

A. Time- and Frequency-Domain Analysis of Forecast Error

Fig. 3(a) shows the time-domain inventory and starts

responses to a unit pulse in forecast error. The controller

anticipates the future demand change and increases starts

accordingly beginning at day 10. When no demand change

is realized, starts are reduced to return the inventory level to

the setpoint. For unconstrained MPC and using Equation 1

for the production/inventory system, the closed-loop system

is linear [7] and its frequency responses can be adequately

represented via nonparametric methods. These responses

are represented by Finite Impulse Response models, from

which frequency responses are generated. Fig. 3(b) shows

that the response of the MPC decision policy to forecast

error is characterized by notch filters, where high and low

frequencies are attenuated, and only forecast error in an

intermediate bandwidth is amplified. For this simulation the

throughput time θ is 3 days and there is no yield loss

(K = 1). MPC tuning parameters are as follows: inventory

deviation penalty Qe = 1, starts change penalty Q∆u = 5,

prediction horizon P = 20 days, and a move calculation

horizon of M = 10 days.

Understanding Fig. 3(b) is critical towards developing a

control-relevant demand modeling procedure. The MPC de-

cision policy is relatively insensitive to “very fast” (i.e., high-

frequency) and “very slow” (i.e., low-frequency) forecast

errors; hence having an accurate demand model in these

frequency bands is much less important than in the interme-

diate bandwidth where forecast error is amplified. The size of

the bandwidth of importance will be determined by how the

decision policy is tuned and the process throughput time.

In addition, the outcome of interest will further influence

the frequency band of importance to the problem; consider

that the bandwidth associated with how starts changes are

affected by forecast error lies at higher frequencies than for

inventory.

B. Control-Relevant Modeling based on Historical Data

We now describe in this subsection how to achieve control-

relevant demand modeling using prefiltered AR model esti-

mation. Given access to a data set that contains past demand

values it is possible to develop an auto-regressive model
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Fig. 3. Characteristic time-domain (a) and frequency-domain (b) responses
of a production/inventory system to a forecast error pulse.

AR(na) [10]. This model uses past demand values d(t) to

generate the prediction d̂(t) as

d̂(t+1) = a1d(t)+a2d(t−1)+ . . .+ana
d(t−na +1) (4)

and is amenable to control-relevant prefiltering and the

identification of customer demand models. Other model

families can be used, for instance the more general class

of ARMAX models. In inventory control, however, the most

common situation is that only past values of the demand are

known with enough confidence to base the forecast on. The

following analysis can be extended to the general ARMAX

class of models.

Assume that the true demand model also has the AutoRe-

gressive (AR) form, where a normalized demand signal x(t)
is obtained by subtracting the mean and obvious trends from

d(t).
A(z)x(t) = ξ(t) (5)
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ξ(t) is a suitable perturbation signal (white noise with zero

mean). The polynomial A(z) has the form

A(z) = 1 + a1z
−1 + · · · + ana

z−na (6)

Given an estimate of polynomial A, denoted as Â, the

predictor model expressed as

x̂(t | t − 1, Â) =
(

1 − Â(z)
)

x(t) (7)

computes the one-step-ahead prediction resulting in the one-

step-ahead prediction error

ex(t | t − 1, Â) = x(t) − x̂(t | t − 1, Â) (8)

In order to relate the performance of the predictor with the

power spectrum characteristics of the signals it is necessary

to write a formula for the prediction error. It is easy to show

that

ex(t | t − 1, Â) =
Â(z)

A(z)
ξ(t) (9)

is the way in which the one-step-ahead prediction error is

related to the probabilistic model and to the polynomial

estimate Â. For ease of notation we will refer to ex(t |
t − 1, Â) simply as e(t) in the following paragraphs. If a

prefilter L(z) is applied to the data, the filtered prediction

error is obtained as L(z)e(t). The control relevant estimation

problem should determine values for Â such that

V =
1

N

N∑

t=1

(L(z)e(t))
2

(10)

is minimized. This minimization should put more emphasis

at the frequencies relevant for the control problem; to this

end the prefilter L(z) must model the frequency responses

for the system response to forecast error described in Section

IV-A. Using Parseval’s theorem one obtains

lim
N→∞

V =
1

2π

π∫

−π

∣
∣L(ejω)

∣
∣
2

∣
∣
∣
∣
∣

Â(z)

A(z)

∣
∣
∣
∣
∣

2

z=ejω

Φξ(ω)dω (11)

The stochastic variable ξ is not known but it is expected

that the power spectrum Φξ would have a broad support, in

particular it is expected to have a non negligible tail at high

frequencies. A constant distribution over ω can be a good

approximation (in fact it is exact in the case when ξ is white

noise).

A supply chain planner may choose to reduce either

inventory deviation, stockout, or changing a factory setup

depending on their associated costs. It is useful then to

use the following metric to measure the performance of the

control system.

Je =

∞∑

t=0

(1 − γ)e2
c(t) +

∞∑

t=0

γ∆u2(t) (12)

where ec is the control error (inventory deviation from

setpoint) and γ is used as a weight to emphasize reduction

on either inventory deviation from setpoint (γ = 0) or

factory starts variance (γ = 1). The control-relevant prefilter

corresponding to the objective (12) is

|L(ejω)|2 = (1 − γ)|Lec
(ejω)|2 + γ|L∆u(ejω)|2 (13)

where the prefilters Ly(e(jω)) and L∆u(e(jω)) are obtained

from the unconstrained MPC impulse response to forecast

error analysis as described in Section IV-A.

C. Algorithm for Developing Control-Relevant Prefilters

This section summarizes the algorithm for arriving at the

prefilters that accomplish control-relevant demand modeling.

The control-relevant filter is developed from the underlying

process dynamics, controller tuning parameters, and the

value of the user-adjustable parameter γ. The procedure is

easy to implement using MATLAB R© software. It consists

of the following steps:

1) Open-Loop Model Specification: Identify an open-loop

manufacturing process model to obtain values for the

nominal throughput time θ and the nominal process

yield K.

2) MPC Initialization: Choose a move calculation horizon

M greater than the nominal throughput time. Corre-

spondingly, choose a prediction horizon P greater than

the move calculation horizon. Then choose weights for

penalizing starts changes and inventory deviation from

setpoint (Q∆u and Qe, respectively). Enable Type-II

output disturbance rejection; the system incorporates

an integrating process and Type-I control action is

insufficient to reject ramp disturbances.

3) Closed-Loop Simulation: In closed-loop simulation in-

troduce a forecast error pulse with a magnitude of one

unit and duration of one time interval. Measure the

corresponding change in inventory deviation and starts

change (which may be obtained by differencing the

starts signal).

4) Choosing Emphasis: The closed-loop simulation yields

FIR filters that act to minimize inventory deviation

and starts change variance, respectively. Calculate the

amplitude ratio of each filter and normalize it by the

supremum. Then choose a value for the parameter

γ to meet a supply chain objective or performance

requirement. Finally, combine the amplitude ratios

according to Equation 13.

5) Filter Generation A curve fitting procedure is then

used to obtain an Infinite Impulse Response filter that

matches the amplitude ratio of the control-relevant

prefilter. A standard curve fitting algorithm for rational

discrete-time transfer functions can be used for this

purpose, such as the output-error minimizing algo-

rithm as implemented in the MATLAB R© function

invfreqz. The resulting filter will be applied to the

historical demand signal to develop a control-relevant

AR forecasting model.
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V. CASE STUDY

For this case study we use an MPC-based tactical decision

policy to manipulate factory starts to keep the inventory

level at a target subject to uncertain demand. The demand

used for the experiments is generated by an AutoRegressive

Moving Average (ARMA) process whose amplitude ratio is

shown in Figure 4. The manufacturing process is modeled

as a pipe with a throughput time of 3 days and no yield

loss. The MPC prediction horizon (P ) is 20 days, the MPC

move optimization horizon M is 10 days, and MPC weights

for penalizing starts changes and inventory deviation from

setpoint (Q∆u and Qe) are 5 and 1, respectively. At each

control interval we execute the prefilter design procedure

outlined in Section IV-C. Therefore, the AR forecasting

model is updated at each time interval to reflect new demand

information. In a control interval the demand modeling

procedure must gather historical demand data, filter the data

according to a control-relevant objective, identify an AR

model from the filtered data, develop a prediction from the

resulting AR model, and use the prediction in the optimal

control move calculation.

Figure 5 displays inventory control performance as a func-

tion of the user-adjustable parameter γ for an aggregation of

ten simulation results. A planner can choose to minimize

inventory deviation from setpoint by selecting values of γ

close to zero. Factory thrash is minimized by selecting γ

close to one. When filtering is used to minimize inventory

deviation (γ = 0.0) we obtain the desired result. However,

this also resulted in the highest level of factory thrash.

The converse is true for the factory thrash minimizing filter

(γ = 1.0). The use of intermediate values of γ results in a

trade-off between factory thrash and inventory deviation. The

control-relevent modeling procedure yields the most benefit

when applied to low order models. As the model order

increases the benefit with respect to minimizing inventory

deviation decreases.
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Fig. 5. Summary of closed-loop results for a demand model based on the
ARMA (10,10,5) process whose amplitude ratio is shown in Figure 4. In
(a) inventory deviation from setpoint is shown as a function of model order
and γ; (b) summarizes factory thrash similarly.

Figure 6 displays performance as a function of the user-

adjustable parameter γ for a single simulation. During the

first 1000 days of the simulation the controller is run in

feedback-only mode; no demand forecast is used. As ex-

pected, improved performance can be obtained by including a

demand prediction in the MPC move calculation. From days

1000 to 2000 the demand prediction is generated without

the benefit of the control-relevant filtering procedure shown

in this paper. The rest of the simulation shows the effect of

applying a control-relevant forecast, in terms of increasing γ,

on inventory deviation ||y − r||2 and factory thrash ||∆u||2.

Setting γ = 0 results in a 36% reduction in inventory

deviation relative to the unfiltered case, but causes significant

fluctuations in factory starts. Using a value of γ = 1 yields

a 26% reduction in factory thrash relative to the unfiltered

case. Choosing intermediate values of γ gives substantial

flexibility to a supply chain planner.
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Fig. 6. This closed-loop simulation begins in feedback-only mode; the controller manipulates factory starts to keep the inventory level at a setpoint subject
to uncertain demand. From days 1000 to 2000 a demand forecast is available to the controller, but the prediction is generated from unfiltered data. The
time series from day 2000 on shows the benefit of the control-relevant forecasting procedure and the effect of the parameter γ on inventory deviation and
factory thrash.

VI. CONCLUSIONS

We have developed a control-relevant “end-use” inspired

framework for demand forecasting meaningful for supply

chain management. The success of the method hinges on

a control-relevant prefiltering operation applied to demand

estimation data that emphasizes a goodness-of-fit in regions

of time and frequency most important for achieving desired

levels of closed-loop performance. This framework allows a

supply chain planner to minimize inventory deviation from

setpoint, factory thrash, or a weighted combination of the

two objectives. In practice, applying control-relevant demand

forecasting as presented in this paper will enhance a planner’s

ability to meet management objectives, such as keeping

inventory within desired limits while simultaneously mini-

mizing costly changes to the factory schedule. Extensions

of the demand modeling procedure to multivariable systems

where the MPC policy manages inventory in a multi-echelon

supply chain are currently under investigation.
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