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Abstract— In this paper, we propose a POD-based technique
that is suitable for the design of reliable observers for the
estimation of velocity field from 2D and 3D Navier-Stokes
flow. POD modes are constructed using the method snapshot.
Karhunen-Loeve (Galerkin) projections are used to develop a
reduced-order model obtained by projecting the velocity field
onto the most important POD modes. The resulting finite-
dimensional dynamical system is suitable for the design of non-
linear observers. The prime application considered considered
is the estimation of airflow in building systems. Two examples
are provided to demonstrate the applicability of the technique.

I. INTRODUCTION

Flow control and optimization research has been very

active over the last few years. In contrast, the flow estimation

problem has not been considered to such an extent. One of

the major challenges of the NS equations is the fact that

they are nonlinear. In most cases, a linearized version of the

Navier-Stokes equation is considered. Using existing tools

from linear infinite dimensional system control ([7],[8]), one

can obtain a number interesting results for the control and

estimation of flow systems. Kalman filter based approaches

have been recently reported in [9] and [10]. Using the

linearized NS equations about a velocity field of interest,

the authors design an infinite dimensional Kalman filter. The

infinite dimensional filter is then discretized to produce a

finite dimensional filter. The main drawback of this ”late-

lumping” approach is that the corresponding filter can be a

very large dynamical system as a result of the discretization

step. Real-time implementation is thus limited to coarse

discretizations or simple geometries where one can exploit

symmetries. Essentially, cases where high fidelity discrete

approximations can be obtained with a relatively low dimen-

sional finite dimensional approximation. Another drawback

of this technique is the requirement for a linearized version

of the NS equations. Depending on the specific conditions,

the assumption of linearity can be poor and some important

features can be lost. Nevertheless, it provides a very effective

was to estimate changes in velocity fields that are in the

neighborhood of the linearization conditions.

The state estimation problem is particularly complex since

the number of available sensors are generally quite limited

and sensor placement is often restricted due to the lack of

accessibility and extreme conditions (not suitable for sensor

viability). The knowledge of 2D and 3D NS velocity field

has multiple applications in very diverse areas. In building
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systems, the knowledge of the velocity field in building

systems allows one to monitor contaminant flows inside the

building and to control air quality. Velocity field estimation

play an important in meteorological applications especially

in cases where one is attempting to estimate contaminant

flow using basic ground measurements.

POD-based techniques are generally more suitable for

nonlinear system. Once a projection into a finite dimensional

subspace is obtained (by the method of snapshots for exam-

ple), the nonlinear NS equations can be projected onto the

subspace using Galerkin projection (a.k.a. Karhunen-Loeve

projection). The Galerkin projections express the distributed

state variables as linear combinations of the POD modes.

By setting the variables in this form and substituting to

the original equations, a set of nonlinear ordinary differ-

ential equations is obtained for the coefficients. The main

advantage of the Galerkin projection is that it preserves the

nonlinearity of the complex system in the form of a low-

dimensional set of nonlinear ordinary differential equations.

In this context, the state variables of the reduced order

(finite dimensional) system become the Galerkin projection

coefficients. The estimation problem can be reduced to the

estimation of the Galerkin coefficients. This approach does

allows one to develop a suitable nonlinear filter for the

estimation of the reduced order system which can then be

used to estimate the state variables of the underlying complex

system. As a result, the ability to accurately estimate the

states of the complex system is completely dependent on the

particular choice of the POD modes. In general, the POD

modes should reflect the dynamical features of interest. As-

suming that these features are observable from the available

measurements, one can provide very accurate estimates of

the state of the system. One of the major difficulty with the

Galerkin approach is that the stability of the original system

may not be preserved in the reduced order nonlinear system.

Care must be taken to ensure that stability is preserved.

Recently, Rowley [2]-[5] demonstrated that an appropriate

choice of inner product can alleviate this problem. Using a

simple Lyapunov argument, it was shown how one can use a

suitable, energy-based, inner product to preserve the stability

of the physical system. The loss stability is indicative of

a more general difficulty with this approach. Although the

POD modes reflect the features of the physical system, the

physical attributes are lost in the Galerkin projection since

their design is purely empirical in nature. Care must be

taken in the application of these techniques. In addition to

the sensor location, the appropriate choice of sensor is an

important consideration for the development of an effective

velocity field estimation algorithm. In [11], it is shown that
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the velocity field of the flow between two infinite plates can

be reconstructed exactly by measuring the skin frictions and

the pressure at the wall. Using this result, a reduced-rank

Kalman filter approach is used for the estimation. While the

results obtained are good at the wall, significant deviations

were observed at a distance from the wall. Thus, despite the

knowledge of sensors that allows one to reconstruct exactly

the velocity field in the vicinity of the wall, the problem

of estimation remains unresolved. In this study, the POD-

based approach is developed for the estimation of velocity

field in 2D and 3D Navier-Stokes flow. The effectiveness

of the technique is demonstrated for a 2D flow problem.

The application to a challenging 3D flow problem arising in

building systems flow estimation is considered.

II. BACKGROUND

In this paper, we consider the estimation of velocity fields

in air flow in building systems. For the purpose of this

study, we assume that the airflow velocity field dynamics

are governed by the incompressible Navier-Stokes equation

given by:

div(u) = 0
∂u

∂t
= −(u · ∇)u+ ν∇2u−∇p (1)

where u : Ω × R → R
3 represents the velocity field

taking values over a spatial domain Ω, p is the pressure

field, ν = 1/Re, Re is the Reynolds number. Here it is

assumed that the velocity and pressure fields are defined on

a closed-subset of R
3 and take values on a normed space V .

This equation constitutes a scaled formulation of the Navier-

Stokes equation where the velocities are scaled by a factor

U , time by U/L, the viscosity by ρUL and the pressure by

ρU2 where ρ is the density, U and L are nominal velocities

and length.

The incompressible flow assumption is justifiable for the

set of conditions considered for the modeling of airflow in

commercial buildings. We note that the approach described

below can be directly applied to the compressible flow

assumption (as demonstrated in Rowley et al.).

III. POD BASED MODEL REDUCTION

In POD based model reduction, the velocity field u(t, x)
is expressed as an expansion in the POD modes φ(x)
defined on the spatial domain Ω. (Note that depending on the

application, temporal models ψ(t) may be more appropriate).

The expansion is given as:

u(x, t) =
n

∑

j=1

aj(t)φj(x) (2)

In general, the decomposition is taken over a Hilbert

space H , the space of smooth divergence-free vector-valued

functions on Ω. The choice of inner product becomes a

crucial aspect of the decomposition. In the incompressible

flow approach however, the standard inner product

〈u , v〉 =

∫

Ω

u(x) · v(x)dV (3)

where u(x) · v(x) represents the standard dot product

between vectors u(x) and v(x) in Euclidean space, dV is

a volume element.

The basis of the technique described here is to restate the

Navier-Stokes equation in terms of the modal decomposition

(2). Assuming that div(φi(x) = 0 (i = 1, . . . , n), substitution

of (2) in (1) yields

n
∑

i=1

ȧi(t)φi(x) = −(

n
∑

j=1

aj(t)φj(x) · ∇)

n
∑

k=1

ak(t)φk(x)

+ν

n
∑

i=1

ai(t)∇
2φi(x) −∇p (4)

Projecting onto the space of POD modes leads to,

〈

n
∑

k=1

ȧk(t)φk(x), φi(x)〉 =

−〈





n
∑

j=1

aj(t)φj(x) · ∇





n
∑

k=1

ak(t)φk(x), φi(x)〉

+ν〈

n
∑

k=1

ak(t)∇2φk(x), φi(x)〉 − 〈∇p, φi(x)〉. (5)

By orthogonality of the modes

〈φi(x), φj(x)〉 =

{

1 i = j
0 i 6= j

, (6)

it follows that (5) reduces to the following set of ordinary

differential equations:

ȧi(t)〈φi(x), φk(x)〉 =

−

n
∑

i=1

n
∑

j=1

ai(t)aj(t)〈(φj(x) · ∇)φi(x), φk(x)〉

+ν
n

∑

i=1

ai(t)〈∇
2φi(x), φk(x)〉 − 〈∇p, φk(x)〉 (7)

which reduces to

ȧk(t) = −

n
∑

i=1

n
∑

j=1

ai(t)aj(t)〈(φj(x) · ∇)φi(x), φk(x)〉

+ν

n
∑

i=1

ai(t)〈∇
2φi(x), φk(x)〉 − 〈∇p, φk(x)〉. (8)

Equation (8) provides the basis for the design of the

observer. Given a set of representative POD modes, the

reduced-order system of ordinary differential equations con-

stitutes a description of the fluid flow dynamics. Thus by

building an observer for system (8), an (indirect) observer

of the fluid flow velocity field u(t, x) is obtained.
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IV. POD MODES

The ability to reconstruct the velocity field u(t, x) using

estimates of the time-varying coefficients ai(t) depends

completely on the choice of POD modes obtained.

Let H be a Hilbert space with inner product 〈 , 〉. It

is assumed that a data ensemble is given, {uk ∈ H|k =
1, . . . ,m}, which provides a representative sample of the

system dynamics. In general, the ensemble {uk} is composed

of a number of experiments designed to highlight various

aspects of the process dynamics. These experiments are

typically formed a set of snapshots of the velocity field uk

taken at specific times tk.

These snapshots are usually obtained using CFD simu-

lation of the process and the times tk of the snapshots are

designed to highlight various aspects of the system dynamics.

The snapshots can also be obtained through experiments by

placing sensors at predefined locations.

For the purpose of this study, the Hilbert space H is the

set of functions defined on the spatial domain Ω where the

fluid flows. (Here the spatial domain is the geometry of a

room in a building system). Let S be a subspace of H of

fixed dimension n < m. The projection of any element uk of

H is given by PSuk where PS is the orthogonal projection

operator. The objective of proper orthogonal decomposition

is to find a subspace S of fixed dimension n < m such

that error E(‖uk − PSuk‖) is minimized, where ‖ · ‖ is the

induced norm on H and E(·) is the expectation operator.

The solution of the optimization problem leads to the

eigenvalue problem (see [1] for a detailed development),

Rφ = λφ (9)

where R : H → H is the linear operator given by

R = E(uk ⊗ u∗k) (10)

where u∗ ∈ H∗ is the adjoint (dual) of a u ∈ H and H∗

is the space if functionals u∗(·) = 〈·, u〉. The operation ⊗
represents the standard tensor product. Thus for any u, v and

w in H, (u⊗ v∗)(w) = u〈w, v〉.
In practice, the snapshots uk are a sampled value of the

nvelocity field u(x, tk) at time tk evaluated at a finite num-

ber, N , of location xi (i = 1, . . . , N ) over the spatial domain

Ω. Since, in general, the number of spatial locations N is

large, the corresponding spectral decomposition problem can

become prohibitively complex.

As an alternative, one can compute the POD modes using

the method of snapshots. Starting with an ensemble {uk}
(with k = 1, . . . ,m where m << N ), the POD modes are

taken as linear combinations of the elements of the ensemble.

That is,

φ(x) =

m
∑

k=1

ckuk. (11)

Note that this choice is not arbitrary since elements of the

range of the linear operator R are by construction in the span

of the ensemble {uk}.

Rewriting the eigenvalue problem yields

Uc = λc (12)

where U is a m by m matrix with elements Uij = 1
m
〈ui, uj〉.

(Thus the problem is reduced to an m dimensional eigenvalue

problem. Note that this is true even when the original

problem is infinite dimensional.)

In this study, the method of snapshots was used to extract

the POD modes from a CFD simulation that yield snapshots

over a detailed grid over a small number of time instants.

V. OBSERVER DESIGN

A. Reduced Order Nonlinear System

The dynamical system (8 yields a set of quadratic differ-

ential equations of the form:

ȧk(t) = Lka(t) + a(t)TQka(t) (13)

where Lk are is a row vector with elements are given by

Lik = 〈∇2φi(x), φk(x)〉 (14)

and Qk is an n by n matrix with elements

Qijk = 〈(φj(x) · ∇)φi(x), φk(x)〉 (15)

for k = 1, . . . , n. In general, the pressure term is ignored.

This can be justified as follows.

Since the POD modes are such that div(φ) = 0, it follows

that
∫

Ω

∇p · φk(x)dV =

∫

Ω

div(pφk(x))dV

=

∫

∂Ω

pφk(x) · nΩdS (16)

where nΩ represents the unit vector normal to the spatial

domain Ω. Hence, the pressure term will vanish altogether

over a closed domain (φk(x) = 0 on the boundary of Ω,

∂Ω).

B. Measurements

It is assumed that several measurements are available. If

one assumes that p velocity field measurements are available

at p predefined locations, these measurements must first

be expressed in terms of the modal decomposition. For

example, if one measures the average velocity, uavg(t, x0) =
(u(t, x0) + v(t, x0) + w(t, x0)), at a point xo, then the

corresponding measurement becomes

uavg(t, x0) =
n

∑

i=1

ai(t)(φ
1
i (x) + φ2

i (x) + φ3
i (x)) (17)

where φj
i (x) represents the jth element of the ith POD

mode. Since the POD modes are time independent, the

resulting output map can be written in the form

uavg(t, x0) = Ca(t) (18)
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where C is a 1 by n matrix and a(t) is the n-dimensional

vector of time varying coefficients of the Galerkin approxi-

mation of u(t, x). In general, the output map will be written

as

y(t) = Ca(t)

which is constructed by expressing the measured quantity

using the POD modes.

If pressure is measured at a point x0, the pressure can be

expressed in modal form as follows:

p(t, x0) =

n
∑

i=1

ai(t)pi(x) (19)

where pi(x0) is the pressure associated to mode i φi(x0).
Assuming that the available measurements include veloc-

ity measurements and pressure measurements, the complete

dynamical system considered in this study takes the form:

ȧk(t) = Lka(t) + a(t)TQka(t) , k = 1, . . . , n

y(t) = Ca(t) (20)

The objective of this study is to consider the design of

an observer for the system (20). Assuming that the POD

modes provide an accurate description of the features of the

flow field, the estimation of the Galerkin coefficients ai(t)
yields an estimate of the velocity field using the expression

(2). Note that if the initial conditions ai(0) are known, then

the predictions of the dynamical system (20) will be in

agreement with actual value ai(t) and a good estimate of the

flow field should result. However, the initial conditions are

generally not known and the value of ai(t) must be replaced

by an estimate âi(t). n addition, the flow system is subject to

uncertainties and disturbances that must be filtered in some

way.

Given the dynamical system 20 and assuming that the

system is observable, one can rely on a number of potential

approaches to provide estimates of the Galerkin coefficients.

In addition, the flow system is subject to uncertainties and

disturbances that must be filtered in some way. The use of

an observer for the estimation of the Galerkin coefficients

was proposed in [5] for the design of an feedback control

scheme. In order to reduce the complexity of the observer

design, only the linear approximation of (20) was considered.

It is clear that a nonlinear observer approach would provide

improvement in the performance of the observer. This aspect

of the problem is treated in this study.

Alternative POD-based estimation have been proposed in

the literature. One technique of potential interest is described

in the next section.

C. Observer design

In this section, we discuss the design of a suitable observer

for the dynamical system. The linear approximation of (20)

about ai(0) = 0 is given by:

ȧk(t) = Lka(t), k = 1, . . . , n

y(t) = Ca(t) (21)

In this case, a linear observer can be designed of the form:

˙̂a(t) = Lâ(t) +K(y(t) − Câ(t)), k = 1, . . . , n

(22)

In [12], the performance of different observers for varying

number of POD modes. As expected, observers based that

use larger numbers of modes tend to outperform simpler

observers. The choice of POD modes is also shown to be

important. POD modes based on the method of snapshots

are shown to provide rather poor observers. POD modes

based on a balanced truncation [4] are argued to provide

superior performance. However, the results remain biased

by the potential detrimental affect of the quadratic term on

the estimation of the ai(t). The application of more suitable

nonlinear filters is therefore of interest in this case.

In this study, we consider the application of the extended

Kalman filter for the estimation of the Galerkin coefficients.

We also consider the application of numerical observer. The

subject of Kalman filtering is well known. We refer the reader

to the wide literature available on the subject. The extended

Kalman filter yields a design for the nonlinear system (20)

which is based on a time-varying linear approximation of the

nonlinear system. The performance and limitations of EKF

are well documented.

A numerical observer for nonlinear systems was proposed

in ([6]). In this formulation, state estimates are chosen to

minimize the least-squares error between the past measured

outputs and the past predicted outputs. Formally, the observer

is based on the following optimization problem:

minâ(t) J(ât)
∫ t

t−T
‖y(τ) − Cap(τ)‖dτ

subject to

ap(t) = â(t)
ȧp

k(t) = Lka
p(t) + ap(t)TQka

p(t)
yp(t) = Cap(t) , k = 1, . . . , n

(23)

The estimate â(t) is given as the minimizer of this

problem. A real-time optimization version of this observer,

given in [6], consists of evaluating the gradient of J with

respect to â(t), ∇â(t) and to use a steepest descent update

to obtain the following numerical observer:

˙̂a(t) = −Γ∇â(t)J(â(t)) (24)

where Γ is a positive definite matrix which acts as an estimate

of the Hessian of J with respect to â(t), ∇2
â(t)J(â(t)).

For the purpose of this study, we have considered the

application of the EKF for the estimation of the Galerkin

projection coefficients a(t) based on the nonlinear system

(20). The next section summarizes some results on the

application of the POD based observer for the estimation

of airflow velocity field in a 2D and a 3D environment.

VI. RESULTS

A. 2D Room Case Study

In the first case study, we consider the application of

the POD based approach for the estimation of the velocity
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in a two-dimensional room. The room is assumed to be 8

ft by 16 ft. It contains one inlet flow of ambient air and

one outlet flow. A single window is also added. A far field

approximation is used to simulate the effect of outdoor flow

disturbances when the window is open. The diagram also

depicts the mesh used in the CFD simulation. The velocity

is assumed to be measured at a single measurement location

at an airflow return outlet.

Far FieldRoom

Inflow

Outflow

Open

Window

Measurement location

Fig. 1. Geometry of the two-dimensional room.

A nominal inlet flow of 0.1 m/sec is considered for the

generation of the snapshots. The snapshots are generated to

capture changes in inlet flowrate and the opening and closing

of the outlet to the far field. Starting with a flowrate of 0.1

m/sec with outlet closed, the flowrate is then changed to 0.5

m/sec. The outlet is then opened and the flow is reduced

from 0.5 to 09.1 m/sec. The corresponding CFD simulation

are monitored at every 5 seconds until equilibrium is reached

after each change. The POD modes are generated using the

method of snapshots. Two modes are retained which explain

99% of the variation.

The Galerkin projection on the POD modes yields a two

dimensional dynamical system. An extended Kalman filter

was used as the observer in this case. The dynamical equation

was first discretized using a sampling time of 5 seconds.

A transient CFD simulation is then used to demonstrate the

applicability of the observer. Starting from the equilibrium

is obtained for the equilibrium velocity field at an inlet flow

of 0.2 m/sec, the inlet flow is decreased at time t = 0 to 0.6

m/sec. The outlet, initially closed is then opened halfway

through the simulation. The initial values for the estimates

of the Galerkin projection coefficients are â1(0) = 0 and

â2(0) = 0. The estimates of â1(t) and â2(t) are shown in

Figure 2.

Figures 3 show a sample comparison of the velocity field

from CFD calculations and the estimated velocity field.

Results demonstrate the effectiveness of the technique. The

performance of the estimator is summarized in Figure 4

where the total mean squared error in the estimate of the
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Fig. 2. Estimated Galerkin projection coefficients for the 2D Room
example. The data shows the four different modes of operations resulting
from opening/closing the window and changing the inlet flowrate.

velocity. The peaks in the mean squared error show the times

when the conditions are changed by modifying the flowrate

or closing/opening the outlet flow to the far field.
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Fig. 3. Mean squared velocity field estimation results for the 2D room at
t=250 sec. Thee actual velocity field is shown on the left and the estimated
velocity field on the right.

B. 3D Room Case Study

In order to demonstrate the applicability of the technique

in a 3D flow environment, a CFD simulation of the air flow

of the lobby of a two story building is considered. The room

is shown in Figure 5.

The room is connected to the rest of the building through

four corridors. The doors are presented as dark shaded areas.

The lobby contains one entrance and one back door. For the

purpose of this study, only the main entrance door is used.

A CFD simulation of the room was developed. Several

snapshots were captured using two different flowrates with

the main entrance door open and closed. In this case, 3

POD modes were shown to express more that 97% of the
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Fig. 4. Total mean squared error in the estimate of the velocity field for
the 2D room example.

Fig. 5. Schematic of the 3D room case study. The area of interest is the
large room located in the forefront of the two-story building.

variation. A simple 3 dimensional reduced-order model was

developed as prescribed above. One velocity sensor located

at the main entrance was assumed to be available. A second

measurement located on the 1st floor near the back-door

was used. A transient simulation was performed using the

CFD simulation model and two different flowrates where

the main entrance door was opened and closed. Figure 6

shows the comparison between the CFD simulation and the

estimated velocity field using the two-dimensional reduced

order model. As in the 2D case, the approach provides a

very effective and reliable estimation of the entire velocity

field. The results demonstrate the ability of the estimator to

reconstruct the 3D velocity field from limited measurements.

VII. CONCLUSIONS

A POD-based observer design method is developed for

the estimation of velocity field from the 2D and 3D Navier-

Stokes flow. In building systems, the POD-based approach

Fig. 6. Simulation results for the 3D room case study. Shown are six slices
of the mean squared velocity field for the CFD and the estimated velocity
field.

provides very simple low-order representation of the flow

that are both accurate and reliable. Further work will be fo-

cussed on the incorporation of contamination flow estimation

for large building systems.
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