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Abstract— Output-feedback sliding mode controllers are de-
signed for single-input-single-output (SISO) uncertain nonlinear
plants with state dependent nonlinearities. The sliding surface
is generated using the states of a high gain observer (HGO) and
the control law is peaking free. The control signal amplitude is
either obtained from a simple norm observer or from the HGO
states in conjunction with a dwell-time strategy, depending
on the nonlinearity growth condition. Global or semi-global
exponential stability with respect to a small residual set is
proved without requiring the control to be a priori globally
bounded. The advantages are better transient behavior and
improved domain of stability.
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I. INTRODUCTION

The design of output-feedback control of uncertain sys-

tems with strong nonlinearities has been a challenging prob-

lem in the recent years. So far, globally stable closed-loop

systems have been designed only for a restricted class of

nonlinear plants and it is well known that some (quite simple)

plants with polynomial nonlinearities cannot be globally

stabilized by output-feedback [1].

In general, to solve the problem, some estimate of the

plant state, or at least of the state norm, is necessary. In

this respect, high-gain observers have been utilized owing

to their robustness to plant uncertainties and arbitrarily

small estimation error. However, the price to be paid is the

generation of peaking which may potentially lead to either

bad transient or even instability when the peaking signal is

transmitted to the plant [2].

Oh and Khalil [3], [4] proposed a globally bounded

control (GBC), which amounts essentially to saturating the

control signal, in order to circumvent the deleterious effects

of the peaking phenomena. In particular, this strategy was

applied for output-feedback sliding mode control in which

the switching (sliding) surface was given in terms of the

HGO estimated states. However, the GBC does not guar-

antee global stability, for example, with open loop unstable

plants. In order to increase the stability domain, the control

saturation level has to be increased. This in turn can result

in unacceptable transients since higher peaking signals are

then transmitted to the plant.

In this paper, we propose two alternative control strategies

which avoid the peaking effect according to the class of

nonlinear systems to be controlled. In the simpler case of
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linear growth condition w.r.t. the unmeasured states, we

obtain state norm estimates via non high-gain first order

filters, similar to norm observers [5]. In the general case, such

norm observers are not trivial to design since their existence

is essentially tied to the knowledge of an Input-Output-to-

State Stable (IOSS) Lyapunov function [5]. Thus, to include

strong (e.g., polynomial) nonlinearities, the norm estimates

require high gain. Then, peaking is avoided by introducing

a dwell-time in the controller activation [6], [7].

Both peaking free strategies lead to quite satisfactory

transient behavior. Furthermore, since GBC is not required

as in [3], [4], larger domains of stability are expected. Semi-

global practical stability is achieved with respect to a single

parameter instead of two parameters, i.e., saturation level and

observer high-gain as in [3], [4]. The residual set is smaller

than in previous works loc. cit.. An intrinsic requirement

of the GBC approach is the knowledge of some “domain

of interest” or an estimate of the region of attraction to

determine the controller parameters. In our schemes, no such

explicit knowledge about domains or regions is necessary in

order to stabilize the system and perform output tracking.

Simulations illustrate their effectiveness.

Notation and Definitions: The Euclidean norm of a vector

x and the corresponding induced norm of a matrix A are

denoted by |x| and |A|, respectively. The L∞e norm of signal

x(t) ∈ IRn, is defined as ‖xt,t0‖ := supt0≤τ≤t |x(τ)|; for

t0 = 0, ‖xt‖ is adopted. The symbol “s” represents either

the Laplace variable or the differential operator “d/dt”,

according to the context. The output of a linear system

with transfer function H(s) and input u is written H(s)u.

Classes K, K∞ functions are defined as usual [8, pp. 144].

ISS and ISpS mean Input-to-State-Stable (or Stability) and

Input-to-State-Practical-Stable (or Stability), respectively [9].

Filippov’s definition for the solution of discontinuous differ-

ential equations [10] and the concept of extended equivalent

control [11] are used throughout the paper.

II. PROBLEM FORMULATION

Consider a SISO nonlinear uncertain plant described by:

ẋ=Ax+φ(x, t)+Bu , y=Cx , (1)

where x ∈ IRn is the state, u ∈ IR is the control input,

y ∈ IR is the measured output and φ : IRn× IR+ → IRn is

a state dependent uncertain nonlinear disturbance, possibly

unmatched. When no particular growth condition is imposed

on φ, finite-time escape is not precluded a priori and for

each solution of (1) a maximal time interval of definition is

[t0, tM ), where t0 is the initial time and tM may be finite or

infinite.
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A. Basic Assumptions

Without loss of generality, t0 = 0 is the initial time. The

triple (A,B,C) is assumed already in canonical controllable

form with uncertain constant matrices A (lower compan-

ion form) and C = [c1 c2 . . . c(n−ρ+1) 0 . . . 0]. Note that

c(n−ρ+1) = CAρ−1B is the high frequency gain (HFG) of

the subsystem (A,B,C) [8, p.512].

All uncertain parameters belong to some compact set Ωp

such that the necessary uncertainty bounds are available for

design. In Ωp we assume that: (i) φ is locally Lipschitz in x
(∀x), piecewise continuous in t (∀t) and sufficiently smooth;

(ii) (A,B,C) represents a linear plant which is minimum-

phase, observable, of known order n, relative degree ρ and

known HFG sign, as usual in Model Reference Adaptive

Control (MRAC) [12]. Our main additional assumptions are:

(A1) There exists a global diffeomorphism (x̄, t) = T (x, t),
x̄T := [ηT ξT ], η ∈ IRn−ρ, which transforms (1) to the

normal form [8], with ξ=[y ẏ . . . y(ρ−1)]T and

η̇=A0η+φ0(x, t) , ξ̇ = Arξ + Brkp[u + dφ(x, t)] ,

where y = Crξ, kp := CAρ−1B is the constant plant

HFG and (Ar, Br, Cr) is in the Brunovsky’s controller

form. In the η-dynamics: A0 is Hurwitz and |φ0| ≤
ϕ0(|ξ|, t), with ϕ0 being a known non-negative function,

piecewise continuous in t and K in |ξ|.
According to (A1), the nonlinear plant (1) is minimum phase

and has strong relative degree ρ [13]. To obtain norm bounds

for the matched disturbance dφ(x, t), we further assume that:

(A2) There exist known locally Lipschitz functions

ϕT1, ϕT2 ∈ K∞ and constants kT1, kT2 ≥ 0 such that

|x̄| ≤ ϕT1(|x|) + kT1 and |x| ≤ ϕT2(|x̄|) + kT2.

(A3) There exists a known non-negative function ϕd(|x|, t),
piecewise continuous in t and K∞ in |x| such that

|dφ(x, t)|≤ϕd(|x|, t).
Note that (A2)–(A3) are not restrictive since T , T−1 and

dφ are continuous in its arguments. Moreover, no particular

growth condition is imposed on the bounding functions

ϕT1, ϕT2 and ϕd.

B. Control Objective

The aim is, by output-feedback, to achieve global or semi-

global stability properties in the sense of uniform signal

boundedness and asymptotic output tracking, i.e., the output

tracking error

e(t) = y(t) − ym(t) (2)

should tend to zero or to some small residual values.

The desired trajectory ym(t) is generated by the following

reference model:

ym = M(s)r =
km

L(s)(s + am)
r , km, am > 0 , (3)

where r(t) is assumed piecewise continuous, uniformly

bounded and the Hurwitz polynomial L(s) is given by

L(s) :=sρ−1+aρ−2s
ρ−2 + . . . + a0 . (4)

C. Output Error Equation

Let the minimal realization of M(s) in (3) be given by:

ξ̇m = Amξm + Bmkmr , ym = Cmξm , (5)

where ξT
m := [ ym ẏm . . . y

(ρ−1)
m ], Bm := Br, Cm := Cr

and Am := Ar + BrKm, with Km obtained from the

coefficients of the characteristic polynomial of M(s).
Now, consider the ξ-dynamics of the plant in (A1). Re-

placing u by u+Kmξ/kp−Kmξ/kp, we obtain:

ξ̇=Amξ+Bmkp[u−Kmξ/kp+dφ] , y=Cmξ . (6)

From (5) and (6), the state tracking error xe := ξ−ξm and

the output tracking error e satisfy

ẋe = Amxe + kpBm[u + d] , e = Cmxe , (7)

e = k∗M(s)[u + d] , k∗ = kp/km , (8)

where the equivalent input disturbance is defined by1

d(x, t) := −Kmξ/kp + dφ(x, t) − r/k∗ . (9)

III. OUTPUT-FEEDBACK SLIDING MODE CONTROL

In this section, we describe the output-feedback sliding

mode control approach, particulary the sliding surface and

modulation function designs.

Sliding surface: when only y is available for feedback, the

sliding surface is chosen as

σ̂ := Sx̂e = 0 , S :=[ a0 . . . aρ−2 1 ] , (10)

with a0, . . . , aρ−2 defined in (4), x̂e := ξ̂ − ξm and ξ̂ being

an estimate of ξ provided by an HGO due to its robustness

to disturbances and parametric uncertainties.

Modulation (or control gain) function: following the state

feedback design described in [14], the control law u can be

defined by

u = −[sgn(kp)]̺(χ, t)sgn(σ̂(t)) , (11)

where χ(t) is a scalar non-negative absolutely continu-

ous function, obtained from available signals, which upper

bounds the plant state norm |x|, modulo exponentially de-

caying terms. It would be desirable to obtain a peaking free

norm bound χ such that the inequality (see details in [14])

̺(χ, t)≥|d(x, t)| + δ , (12)

holds, modulo exponentially decaying terms, where δ>0 is

an arbitrarily small constant. This inequality, alone, is not

sufficient to achieve global or semi-global tracking due to

the disturbances caused by the inexact HGO estimation. Let

the estimation error be defined by

x̃e :=xe−x̂e = ξ − ξ̂ . (13)

Now, setting σ = Sxe, one can obtain from (4), (7), (10)

and (13), the relationships σ̂=σ−Sx̃e and

σ̂ = k∗ML[u + d] − Sx̃e . (14)

1To conclude that d is a function of x and t, we have considered the
diffeomorphism (x̄, t)=T (x, t) introduced in (A1).
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As shown in [14], (12) and (14) will imply only an ISS

property from x̃e to xe. Furthermore, the estimate ξ̂ provided

by an HGO has an ISpS property from xe to x̃e, with ISpS-

gain given by the HGO small parameter µ. Thus, combining

the above ISS properties, global or semi-global tracking can

be proved through a small-gain analysis.

−

+

M(s)

−̺(χ, t)

SHGO
ẋ=Ax+Bu+φ

y=Cx

Model

Nonlinear Plant
Ideal Sliding Loop

ym

x̂e

r

y
sgn(·)

σ̂u e

Fig. 1. Output-feedback sliding mode controller.

The proposed scheme is depicted in Fig. 1. An eventual

peaking [2] in σ̂ is blocked by the sgn(·) function in (11) and

the control signal u is peaking free since χ is implemented

using only peaking free available signals.

In the following, we give a detailed description of the

proposed controllers, stressing the HGO design and intro-

ducing two different strategies to obtain χ for classes of

nonlinear systems with or without growth restriction w.r.t.

the unmeasured states.

IV. HIGH GAIN OBSERVER

An estimate ξ̂ for ξ in (A1) is provided by the HGO:

˙̂
ξ = Ar ξ̂ + knom

p Bru + HµLoCr(ξ − ξ̂) , (15)

where Lo and Hµ are given by

Lo :=[ l1 . . . lρ ]T , Hµ :=diag(µ−1, . . . , µ−ρ) (16)

and knom
p is a nominal value for kp. The observer gain Lo

is such that N(s)=sρ+l1s
ρ−1+. . .+lρ is Hurwitz.

Since it is desirable that the uncertainties and disturbances

have negligible effects in x̂e (10), the norm of Hµ should be

large, which implies that µ should be small.

A. High Gain Observer Error Dynamics

As in [4], the following transformation is applied to (13)

ζ := Tµx̃e , Tµ := [µρHµ]−1 , (17)

which leads to: (i) Tµ(Ar − HµLoCr)T
−1
µ = 1

µAo and

(ii) TµBr = Br, where Ao := Ar −LoCr. Thus, from the

ξ-dynamics in (A1), (13), (15) and (17), one has

µζ̇ = Aoζ + kpBρ[µν] , (18)

with

ν :=[κu + dφ] and κ=(kp−knom
p )/kp . (19)

B. Peaking Phenomenon

As is well known, HGO estimates may contain peaking

[2]. Indeed, the estimation error x̃e will contain a transient

term of the form (a/µb)e−ct/µ, for some a, b, c > 0. Thus,

these terms eventually exhibit an impulsive-like transient

behavior, as µ → 0, where the transient peaks to O(1/µ)
values before it decays rapidly to zero. This behavior is

known as the peaking phenomenon [8], [2].

However, the peaking phenomenon can be circumvented

by using the peak extinction time (te) concept, where te is

defined as the solution of (a/µb)e−cte/µ = 1, for each value

of µ ∈ (0, 1]. Note that te is a function of µ, which satisfies

te(µ) ≤ t̄e(µ), with t̄e(µ) ∈ K (see [15] and ref. therein).

When no growth conditions are imposed on the unmea-

sured states (Section VI), this concept will be crucial in the

design of a peaking free control signal.

V. SYSTEMS WITH RESTRICTED GROWTH CONDITION

The class of nonlinear systems affinely bounded in the

unmeasured states considered here allow us to implement χ
and the modulation function ̺(χ, t) using signals from first

order state filters similar to norm observers [5]. An HGO is

employed only to generate the switching law (10).

A. Linear Growth Condition

In this section, we assume that:

(A4) The term φ is norm bounded by |φ(x, t)| ≤ kx|x|+
ϕ(y, t), ∀x, t, where kx ≥ 0 is a known scalar and

ϕ : IR× IR+ → IR+ is a known function piecewise

continuous in t and continuous in y, and ϕ(y, t) ≤
Ψϕ(|y|)+kϕ, where Ψϕ ∈K∞ is locally Lipschitz and

kϕ >0 is a constant.

According to (A4), no particular growth condition such as

linear growth or existence of a global Lipschitz constant is

imposed on ϕ. For instance, (A1) and (A4) are satisfied by

systems (1) with φ triangular in the unmeasured states.

B. State Filters (Norm Observers)

Following the usual MRAC approach [12] and the de-

velopment described in [16], considering (A4) and using

[16, Lemma 3], it is possible to find k∗
x > 0 such that, for

kx ∈ [0, k∗
x], a norm bound for x can be obtained through

first order approximation filters (FOAFs) (see details in [16]).

Indeed, one can obtain |x| ≤ χ + π and

χ(t) :=
1

s + λx
[c̄1ϕ(|y(t)|, t) + c̄2|ω(t)|] , (20)

where the exponentially decaying term π accounts for ini-

tial conditions, c̄1, c̄2, λx > 0 are appropriate constants,

ω = [ωT
1 ωT

2 y r]T is the regressor vector [12] and ω1, ω2

are the states of the input/output filters:

ω̇1 = Λω1 + gu , ω̇2 = Λω2 + gy . (21)

The matrix Λ ∈ IR(n−1)×(n−1) is Hurwitz and g is a constant

vector such that (Λ, g) is controllable. Such filters are needed

due to the lack of full state measurement of the uncertain

plant and replace a state observer.
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To compute all the FOAF’s parameters involved in (20),

i.e., c̄1, c̄2, λx, one can use a simple technique based on

Lyapunov quadratic forms, see [16].

From (A4) and (20), one has |φ(x, t)|≤ kxχ(t)+ϕ(y, t),
modulo π term. Thus, from (A2)–(A3) and (9), one can write

|d|≤ d̂+π̂, where π̂ is a decaying term and

d̂(t) := ϕ̂(|χ(t)|) + cr , (22)

with an appropriate constant cr > 0 and ϕ̂∈K. Hence, one

possible choice for ̺ satisfying (12) is

̺(χ, t) := d̂(t) + δ , (23)

with d̂(t) in (22) and δ>0 being an arbitrary small constant.

VI. GENERAL NONLINEAR SYSTEMS

In this section, we consider a wider class of nonlinear

systems without any type of growth condition imposed on

φ. In this case, the foregoing approach can not be applied and

the upper bound (20) is not valid. Thus, we will use HGO

state not only to define the sliding surface but also use the

HGO estimates (with peaking) to design χ and appropriate

modulation function ̺(χ, t) as in [3], [4].

In [3], [4], a globally bounded sliding mode control law

is applied by using saturation functions in order to avoid

the peaking phenomena. As a consequence, the region of

interest of the control effort must be first estimated in order to

tune the saturation level and guarantee semi-global stability.

One major problem in this approach is that, to enlarge the

domain of stability, it is necessary to increase the level of

the saturation function. Then, considerable peaking energy

is transmitted to the plant, which leads to large transients

particularly for smaller initial conditions since the control

signal would still preserve a large peaking, only bounded by

saturation level. This can be observed from the simulations

discussed in Section VIII.

A. High Gain Observer plus Dwell-Time

Inspired by the recent developments in supervisory control

and logic-based switching schemes [6], [7], a novel strategy

is proposed based on the peak extinction time and dwell-

time concepts to cope with the problems induced by peaking,

particularly the shrinking of the region of attraction. The new

scheme is developed trying to retain the desirable qualities

of the state-feedback based sliding mode controller such

as good transient performance and global or semi-global

stability. Our key idea consists in combining the high gain

estimates from HGO with an appropriate dwell-time strategy

to obtain a peaking free norm bound χ. In this respect,

we only apply the HGO estimates after a certain dwell-time

τD, which is chosen just large enough to allow the peaking

transients of the HGO to settle down, and small enough to

ensure that the trajectories do not leave a prescribed compact

set, thus avoiding finite time escape. It will be shown that

this choice is possible for µ sufficiently small and

τD := t̄e(µ) , (24)

where t̄e(µ) is the known upper bound for the peaking

extinction time te, given in Section IV-B.

B. Norm Bound from HGO

Due to the high gain properties of the HGO, it can be

shown that: while the plant state x remains within any

given compact ball, the observer error x̃e (13) can be made

arbitrary small by reducing the parameter µ. Indeed, the

following proposition can be demonstrated.

Proposition 1: Consider (1) under the assumptions (A1)–

(A3) and τD defined in (24). Let t∗∈ [0, tM ) be the first time

instant such that |x| exits a given ball B :={x : |x|≤R} of

radius R> |x(0)| and ξ̂ (15) be the estimate for the state ξ
given in (A1). Then, if the HGO parameter µ is sufficiently

small such that τD(µ)∈ [0, t∗), one has

|ξ−ξ̂|≤ k̃Rµ , k̃R > 0 , ∀t∈ [τD, t∗) , (25)

where k̃R is a constant possibly depending on R. Moreover,

|x(t)|≤ϕT2

(

c0|ξ̂(t)| +
c1

s + λ1
ϕ0(c2|ξ̂(t)|, t)

)

+∆ := χ(t) ,

(26)

∀t ∈ [τD, t∗), modulo exponentially decaying terms, where

c0, c1, c2, λ1,∆ > 0 are appropriate constants and ϕ0, ϕT2

are given in (A1) and (A2), respectively.

Proof: See Appendix.

Thus, using (A2)–(A3) and (9), a peaking free modulation

function ̺(χ, t) can be obtained:

̺(χ, t) =

{

0 , ∀t ∈ [0, τD)

d̂(t) + δ , otherwise ,
(27)

such that (12) holds ∀t ∈ [τD, tM ) with (22) redefined for

χ given by (26). The stability results are summarized in the

next section.

VII. STABILITY ANALYSIS

In order to fully account for the initial conditions of the

error system (7) and (18), let:

zT (t) :=[z0(t), xT
e (t), ζT (t)] , (28)

z0(t) :=[|η(ti)|, |x̺(ti)|]e−γ(t−ti) ,

where ti∈ [0, tM ) is a generic time instant and z0 denotes the

transient state [11], [14] due to state conditions (at t = ti)
of the stable systems corresponding to the η-dynamics and

the filters used in the modulation function design.

The following theorem is independent of the strategy used

to obtain χ and, thus, it holds for both proposed schemes.

Theorem 1: Consider the error system (7) and (18) with

control law (11) and modulation function (27). Assume that

(A1)–(A3) hold. Then, for sufficiently small µ > 0, the

complete error system, with state z(t), is globally/semi-

globally exponentially stable w.r.t. a small residual set of

order O(µ) independent of the initial conditions. Moreover,

under these conditions, all signals in the closed loop system

are uniformly bounded. In particular, if (A4) holds the above

statements are still valid for the modulation function (23).

Proof: See Appendix.

Remark 1: (Smaller Residual Set) The residual set in

Theorem 1 is of order O(µ) while in GBC approach [3],

[4] this set is of order O(
√

µ).
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Remark 2: (Ideal Sliding Mode) If, additionally to the

assumptions of Theorem 1, ̺ ≥ |Kmξm−kmr|+δ with δ>0
then the sliding mode σ̂(t)≡0 is reached in finite time. This

implies that finite frequency chattering is avoided.

Remark 3: (Stability Domain and Transient Behavior) In

Theorem 1, the control system is semi-global in only one

parameter (µ), while the GBC approach [3], [4] has one

more parameter to be adjusted – the saturation level. We

conjecture that this two-parameter dependence is the reason

for smaller stability domains observed in the simulations with

the GBC. Indeed, it is interesting to note that increasing the

saturation level, while µ is kept constant, the GBC stability

domain is reduced. In order to recover the domain using

GBC it is necessary to reduce µ, i.e., to increase the HGO

gain. However, while the stability domain is increased, the

transient behavior is degraded due to large peaks transmitted

to the plant allowed by the larger saturation level.

VIII. SIMULATION RESULTS

Consider the nonlinear plant (ρ = 3):

ẋ1 = x2 + αy2

ẋ2 = x3

ẋ3 = −3x3 − 3x2 − βx1 + εx3
2 + kpu

y = x1

where only y is measured and the uncertain parameters are

|α| ≤ 0.5, −1.5 ≤ β ≤ −0.5, |ε| < 2 and 0.5 ≤ kp ≤ 2.

In this plant, the η-dynamics is absent. Thus, computing

the time derivatives ẏ(t), ÿ(t) and
...
y (t), one can obtain

the global diffeomorphism (T, T−1), the ξ-dynamics and

the input disturbance dφ in (A1). Moreover, in (A2)–(A3):

ϕT1(a)=2ᾱ2a3 + 3ᾱa2 + 3a; ϕT2(a)=3ᾱa2 + 3a; kT1 =
kT2 =0; ϕd(a)=6ᾱ3a4 + (8ᾱ2 + ε̄)a3 + 4ᾱa2 + (6 + β̄)a,

where ᾱ = 0.5, β̄ = 1.5 and ε̄ = 2 are the upper bounds for

α, β, ε, respectively.

The control objective is to track the output ym of the

reference model M(s)= 1
(s+1)3 with state space realization

(5), r(t) = 0.5 sin(0.2π t) and Km = [−1 − 3 − 3]T . The

HGO is implemented with µ = 0.01, N(s) = (s + 5)3,

Lo =[15 75 125]T and knom
p =1.

(a) Linear growth condition: If ε = 0, (A4) is trivially

satisfied. In this case, if the peaking is injected to the plant

input, a strong degradation of the system transient will occur

(curves not shown). To avoid peaking, one could apply the

strategy based on state filters described in Section V-B. Due

to the lack of space we will restrict our attention only to the

more general case when ε 6=0.

(b) No growth condition: For ε 6= 0, the system has a

strong nonlinearity in the unmeasured state x2 and the simple

state filters approach cannot be applied. Thus, we use the

dwell-time strategy to generate a peaking free control law.

The modulation function (27) is implemented with δ =1, d̂
given in (22) with ϕ̂(a) = c1ϕT1(2a)+ϕd(2a), cr ≥ |r|/|k∗|
and χ given in (26) with ϕ̂T2(a) = ϕT2(2a) and ∆ = 1.

Note that, the first order filter in (26) can be neglected since

the η-dynamics was dropped, i.e., the norm bound χ is just

a function of |ξ̂(t)| and c0 = 1 in (26). In this example,

if the peaking from HGO states is completely transmitted

to the plant, finite time escape can be provoked. Indeed,

considering the initial state x(0)=[1 0 0]T , finite time escape

occurs at t=0.262 (curves not shown). Fig. 2 shows the re-

markable performance obtained with the dwell-time strategy

(τD =10µ) and the same initial conditions.
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Fig. 2. HGO plus dwell-time: (a) state tracking error trajectories xe, (b)
control signal u and (c) zoom in u plot showing the dwell-time τD = 0.1.

One alternative way to avoid peaking consists in applying

a GBC [4] using a proper saturation level usat, which would

accommodate for the necessary control strength. However,

as expected, saturation may reduce the domain of stability.

When we fix the parameter µ, the domain of stability is

reduced by increasing usat due to the high levels of peaking

transmitted to the plant. Indeed, for x(0)=[x1(0) 0 0]T , µ=
0.01 and usat = 500, stability is achieved with |x1(0)| ≤ 2.

On the other hand, in our scheme the domain of stability

is considerable bigger (|x1(0)| ≤ 6) with the same µ. In

addition, when x1(0)=2, our scheme presents the maximum

control amplitude equal to 500. Thus, to guarantee a fair

comparison between both controllers, we consider x1(0)=2
and µ=0.01, while usat =500 in the GBC.

In Fig. 3 (a), it can be observed that for x1(0) = 2, the

performance is similar to both controllers. However, for

smaller initial conditions (x1(0) = 1; 0.01), a significant

transient degradation in the tracking error results with the

GBC approach compared to the transient in the HGO plus

dwell-time scheme (τD =0.1) as illustrated in Fig. 3 (b)-(c).

This comes from the fact that in the latter case the magnitude

of control is automatically adjusted and becomes smaller

for smaller initial conditions leading to a more uniform

transient behavior in the whole stability domain. In contrast,

in the GBC approach, a larger stability domain requires larger

saturation level, as well as higher observer gain. This does

not prevent the peaking deleterious effect for smaller initial

conditions precluding such an uniform transient behavior.
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Fig. 3. Non uniform transient for different initial conditions: (a) x1(0) = 2,
(b) x1(0) = 1 and (c) x1(0) = 0.01. Plant output x1 [HGO plus dwell-
time: solid-line; GBC: dot-dash] and ym [dash] trajectories.

IX. CONCLUSIONS

The variable structure tracking controllers for uncertain

nonlinear SISO systems developed in this paper use high gain

observers and norm observers. The estimated HGO states

are used in the computation of the switching law while the

modulation of the control law is generated using signals from

the state filters or HGO states associated with a dwell-time

strategy. The proposed schemes were shown to be peaking

free, independently of the observer gain. They were also

shown to lead to global or semi-global exponential stability,

w.r.t. a small residual set, without the need for globally

bounding the control signal. The only parameter required

to increase the domain of stability is the observer gain. In

order to avoid peaking after the initial time, a monitoring

function, similar to the one of [15], to detect the onset of

peaking is under development.
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X. APPENDIX

A. Proof of Proposition 1

The proof of (25) follows from [3, Lemma 1]. Applying [16, Lemma

2] to the η-dynamics in (A1), one has |η(t)|≤ k0

s+λ0
ϕ0(|ξ(t)|, t), modulo

exponentially decaying term, where k0, λ0 > 0 are appropriate constants.
Thus, from (A1)–(A2) and (25), we can obtain (26), with ∆ accounting for
the effect of the O(µ) estimation error (25) and the constant kT2 in (A2).

B. Proof of Theorem 1

Only a sketch of the proof is presented due to space limitations. In
what follows Π denotes an exponential decaying term of the form Π(t) :=
Ψπ(|z(ti)|)e

−γ(t−ti), where Ψπ is a generic class K∞ function and γ >0
a generic constant. Let t∗ ∈ [0, tM ) be the first time such that |x| exits a
given compact ball B := {x : |x| ≤ R} of radius R > |x(0)|. Furthermore,
ki > 0 denotes constants not depending on the initial conditions, kR

i > 0
denotes constants possibly depending on R and Ψi(·)∈K∞.

The analysis detailed in [14] can be directly applied here and the
following ISS/ISpS properties can be demonstrated ∀t∈ [ti, t

∗):

|xe(t)| ≤ k1‖(x̃e)t,ti‖ + Π , (29)

|x̃e(t)| ≤ µkR
1 ‖(xe)t,ti‖ + Π + O(µ) . (30)

In particular to obtain (30), the inequality

|ν|≤kR
2 ‖(xe)t,ti‖+Π+k2 , (31)

must be satisfied, as shown in [14]. In such case, from ν (19), u (11),

̺ (27), d̂ (22), χ (26), ξ̂ (25) and noting that d̂ is a valid upper bound
for dφ, one has |ν| ≤ Ψ1(‖(ξ)t,ti‖)+Π+k3. Thus, one can conclude
that |ν| ≤Ψ2(‖(xe)t,ti‖)+Π+k4, reminding that xe := ξ−ξm and ξm

is uniformly bounded. In addition, since ∀t ∈ [0, t∗), |xe(t)| < kR
3 , thus

Ψ2(‖(xe)t,ti‖)≤kR
4 ‖(xe)t,ti‖ whereby (31) results.

Due to the definition of ̺(χ, t) in (27), we would obtain (29)-(30) valid
only ∀t∈ [τD, t∗), i.e., ti =τD . However, since peaking is not transmitted
to the plant state x and xe in (7) is ISS with respect to [u+ d(x, t)],
one can conclude that xe cannot escape far from the initial conditions set
∀t∈ [0, τD(µ)) and µ sufficiently small. Thus, one has

|xe(t)|≤kR
5 |xe(0)|+O(µ) , ∀t∈ [0, τD) ⊂ [0, t∗) . (32)

From the application of the small-gain theorem [9] to the inequalities
(29)-(30) one can conclude that the xe(t) and the complete error state
z(t) are bounded ∀t ∈ [tD, t∗) provided µ < /(kR

1 k1). Using (32), we
can extend the results ∀t ≥ 0. Moreover, z(t) →O(µ) exponentially and
cannot escape in finite time, i.e., t∗, tM → +∞. Since R (> |x(0)|)
and thus |x(0)|, |z(0)| can be chosen arbitrary large as µ→0, semi-global
exponential stability is concluded.

If the linear growth condition (A4) holds for φ in (1), ̺(χ, t) in (11)
can be implemented with (23), (22) and χ in (20) ∀t∈ [0, t∗), i.e., ti =0.
Since χ is a function of ω and y, one can still prove (31) following the
same steps from the proof of [15, Theorem 1]. Thus, (29)-(30) are valid
∀t∈ [0, t∗) and semi-global exponential stability can be directly obtained
from the small-gain theorem [9] ∀t≥ 0 not using (32). If the nonlinearity
φ satisfies a global Lipschitz condition, the constant kR

1 in (30) will not
depend on R and the stability properties become global.

394


