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Abstract— This paper presents new algorithms for through-
put optimization in mobile backbone networks. This hier-
archical sensing approach combines mobile backbone nodes,
which have superior mobility and communication capability,
with regular nodes, which are constrained in mobility and
communication capability but which can sense the environment.
An important quantity of interest in mobile backbone networks
is the number of regular nodes that can be successfully assigned
to mobile backbone nodes at a given throughput level. This
paper develops a novel technique for optimizing this quantity
using mixed-integer linear programming (MILP). The MILP-
based algorithm provides a significant reduction in computation
time compared to existing methods and is computationally
tractable for problems of moderate size. An approximation
algorithm is also developed that is appropriate for large-
scale problems. This approximation algorithm has a theoretical
performance guarantee and is demonstrated to perform well in
practice.

I. INTRODUCTION

Detection and monitoring of spatially distributed phenom-

ena often necessitates the distribution of sensing platforms.

For example, multiple mobile robots can be used to ex-

plore an area of interest more rapidly than a single mobile

robot [1], and multiple sensors can provide simultaneous

coverage of a relatively large area for an extended period of

time [2]. However, in many applications the data collected

by these distributed platforms is best utilized after it has

been aggregated. This requires communication among the

robotic or sensing agents. This paper focuses on a particular

hierarchical network architecture called a mobile backbone

network, in which some agents are dedicated to providing

communication support for other agents in the form of a

backbone over which end-to-end communication can take

place. Mobile backbone networks can be used to model a

variety of multi-agent systems. For example, a heterogeneous

system composed of air and ground vehicles conducting

ground measurements in an urban environment can be ap-

propriately modeled as a mobile backbone network: the

ground vehicles are well positioned to make observations

of phenomena at ground level, but their movement and

communication are hindered by surrounding obstacles. Air

vehicles, on the other hand, are poorly equipped to observe

events on the ground but can easily move above ground

obstacles and communicate.
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Previous work has focused on optimal placement of mo-

bile backbone nodes in networks of fixed regular nodes [3].

Existing techniques, while exact, suffer from intractable

computation times, even for problems of modest size. This

paper describes more tractable solutions to previously posed

problems, including an improved exact algorithm and the

first known approximation algorithm with computation time

that is polynomial in the number of regular nodes and mobile

backbone nodes.

A. Previous work in mobile backbone networks

Mobile backbone networks were described by Rubin et

al. [4] and Xu et al. [5]. Srinivas et al. [6] defined two

types of nodes, which may be thought of as representing

robotic agents: regular nodes, which have limited mobility

and communication capability, and mobile backbone nodes,

which have greater communication capability than regular

nodes and which can be placed at arbitrary locations in order

to provide communication support for the regular nodes.

Srinivas et al. [6] formulated the connected disk cover

(CDC) problem, in which many mobile backbone nodes

with fixed communication ranges are deployed to provide

communication support for a set of fixed regular nodes.

The goal of the CDC problem is to place the minimum

number of mobile backbone nodes such that each regular

node is covered by at least one mobile backbone node and

all mobile backbone nodes are connected to each other. Thus,

the CDC problem takes a discrete approach to modeling

communication, in that two nodes can communicate if they

are within communication range of each other, and otherwise

cannot.

This paper uses a more sophisticated model of communi-

cation described by Srinivas and Modiano [3]. In this model,

the throughput (data rate) that can be achieved between a

regular node and a mobile backbone node is modeled as a

decreasing function of both the distance between the two

nodes and the number of other regular nodes that are also

communicating with that particular mobile backbone node

and thus causing interference. For example, as described in

Ref. [3], the throughput τ between regular node i and mobile

backbone node j when using a Slotted Aloha communication

protocol can be approximated by

τ(i, j) ≈
1

e · |A( j)| ·d(i, j)α
, (1)

where e is the base of the natural logarithm, |A( j)| is the

number of regular nodes assigned to mobile backbone node

j, d(i, j) is the distance between regular node i and mobile
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backbone node j, and α is the path loss exponent. Each

regular node is assigned to a single mobile backbone node.

An implicit assumption is made that regular nodes assigned

to one mobile backbone node encounter no interference

from regular nodes assigned to other mobile backbone nodes

(for example, because each “cluster” composed of a mobile

backbone node and its assigned regular nodes operates at

a different frequency than other clusters). It is also assumed

that the mobile backbone nodes can communicate effectively

with each other over the entire problem domain, so that there

is no additional constraint that the mobile backbone nodes

need to be “connected” to one another.

Building upon this throughput model, we pose the mobile

backbone network optimization problem as follows: our goal

is to place a number of mobile backbone nodes, which can

occupy arbitrary locations in the plane, while simultaneously

assigning the regular nodes to the mobile backbone nodes,

such that the number of regular nodes that achieve a given

minimum throughput level is maximized. This is a sub-

problem of the maximum fair placement and assignment

(MFPA) problem considered in Ref. [3], in which the ob-

jective is to maximize the minimum throughput achieved by

any regular node, such that all regular nodes are assigned.

Thus, an improved algorithm for maximizing the number of

regular nodes assigned at a given throughput level also yields

an improved algorithm for the MFPA problem.

A typical example of a solution to this problem is shown in

Fig. 1 for a group of regular nodes denoted by ◦. The mobile

backbone nodes, denoted by ⋆, have been placed such that

they maximize the number of regular nodes that achieve the

given minimum throughput level. This example is typical in

that the clusters of regular nodes and mobile backbone nodes

are relatively small, and the regular nodes are distributed

intelligently among the mobile backbone nodes, with fewer

regular nodes being allocated to the mobile backbone nodes

with larger cluster radii. In this case, all regular nodes have

been successfully assigned to mobile backbone nodes.

A key insight discussed in Ref. [3] is that although the mo-

bile backbone nodes can occupy arbitrary locations, they can

be restricted to a relatively small number of locations without

sacrificing optimality. Specifically, each mobile backbone

node can be placed at the 1-center of its set of assigned

regular nodes in an optimal solution. The 1-center location

of a set of regular nodes is the location that minimizes the

maximum distance from the mobile backbone node to any

regular node, and it is easily computable [7]. Fortunately,

although there are 2N possible subsets of N regular nodes,

there are only O(N3) distinct 1-center locations [8]. Leverag-

ing the fact that there are a limited number of possible mobile

backbone node locations (polynomially many in N), Ref. [3]

solves the MFPA problem by performing an exhaustive

search over all possible placements of K mobile backbone

nodes for each possible value of the minimum throughput,

determining the optimal assignment for each placement by

solving an integer network flow problem. The computation

time of this search-based algorithm is thus polynomial in the

number of regular nodes, but exponential in the number of

Fig. 1. A typical example of an optimal mobile backbone network.
Mobile backbone nodes, indicated by ∗, are placed such that they provide
communication support for regular nodes, shown as ◦. Each regular node
is assigned to one mobile backbone node. Dashed lines indicate the radius
of each cluster of nodes.

mobile backbone nodes.

II. MIXED-INTEGER LINEAR PROGRAMMING APPROACH

TO SIMULTANEOUS PLACEMENT AND ASSIGNMENT

A primary contribution of this paper is the develop-

ment of a single optimization problem that simultaneously

solves the mobile backbone node placement and regular

node assignment problems, thus eliminating the need for

an exhaustive search over possible mobile backbone node

placements. This is accomplished through the formulation

of a network design problem. In network design problems,

a given network (represented by a directed graph) can be

augmented with additional arcs for a given cost, and the goal

is to achieve some desired flow characteristics at a minimum

cost by intelligently “purchasing” a subset of these arcs [9].

The network design problem that produces an optimal

placement and assignment is constructed as follows. A source

node, s, is connected to each node i in the set of nodes

N= {1, . . . ,N} (see Fig. 2). These nodes represent regular

node locations. The arcs connecting s to i ∈ N are of unit

capacity. Each node i ∈ N is in turn connected to a subset of

the nodes in M= {N + 1, . . . ,N + M}, where M is O(N3).
Node i ∈ N is connected to node N + j ∈ M iff regular

node i is within the radius of 1-center location j. The arc

connecting i to N + j is of unit capacity. Finally, each node

in M is connected to the sink, t. The capacity of the arc

connecting node N + i ∈ M to the sink is the product of a

binary variable yi, which represents the decision of whether

to place a mobile backbone node at location i, and a constant

ci, which is the maximum number of regular nodes that can

be assigned to a mobile backbone node at location i at the

desired throughput level. For example, for the approximate

Slotted Aloha throughput function described by Eq. (1),

ci =

⌊

1

e · τ · rα

i

⌋

, (2)

where τ is the desired minimum throughput and ri is the

radius associated with 1-center location i. This means that if

2017



1

2

i

N

N+1

N+2

N+j

N+3

N+M

ts

…
…

…
…

y1c1

y2c2

yjcj

yMcM

y3c3

Fig. 2. The network design problem corresponding to the joint placement
and assignment problem for mobile backbone networks. Unlabeled arc
capacities are equal to one.

at most ci regular nodes are assigned to the mobile backbone

node at location i, each of these regular nodes will achieve

throughput at least τ . Denote the set of nodes for this network

design problem by N and the set of arcs by A .

If K mobile backbone nodes are available to provide com-

munication support for N regular nodes at given locations,

and a throughput level is specified, the goal of the network

design problem is to select K arcs incident to the sink and

a feasible flow x such that the net flow through the graph is

maximized. This network design problem can be solved via

the following mixed-integer linear program (MILP):

max
x,y

N

∑
i=1

xsi (3a)

subject to
M

∑
i=1

yi ≤ K (3b)

∑
j:(i, j)∈A

xi j = ∑
l:(l,i)∈A

xli i ∈ N \{s, t} (3c)

xi j ≥ 0 ∀ (i, j) ∈ A (3d)

xi j ≤ 1 ∀ (i, j) ∈ A : j ∈ N \{t}
(3e)

x(N+i)t ≤ yici ∀ i ∈ {1, . . . ,M} (3f)

yi ∈ {0,1} ∀ i ∈ {1, . . . ,M}. (3g)

The objective of this problem is to maximize the flow x

through the graph (Eq. (3a)). The constraints state that at

most K arcs (mobile backbone node locations) can be se-

lected (3b), flow through all internal nodes must be conserved

(3c), arc capacities must be observed (3d - 3f), and yi is

binary for all i (3g). Note that, for a given specification of the

y vector, all flows x are integer in all basic feasible solutions

of the resulting (linear) maximum flow problem.

A solution to problem (3) provides both a placement

of mobile backbone nodes and an assignment of regular

nodes to mobile backbone nodes. Mobile backbone nodes

TABLE I

AVERAGE COMPUTATION TIMES FOR THE MILP-BASED AND

SEARCH-BASED ALGORITHMS, FOR VARIOUS NUMBERS OF REGULAR

(N) AND MOBILE BACKBONE NODES (K) IN THE MAXIMUM FAIR

PLACEMENT AND ASSIGNMENT (MFPA) PROBLEM, USING ILOG

CPLEX 9.020.

N K MILP Algorithm Search-based Approach

3 2 3 sec 20 sec
4 2 4 sec 81 sec
5 2 5 sec 202 sec
6 2 6 sec 507 sec
6 3 6 sec > 30 min
8 3 8.5 sec > 30 min

10 3 9 sec > 30 min
15 5 18 sec > 30 min
20 5 47 sec > 30 min
25 5 196 sec > 30 min

are placed at locations for which yi = 1, and regular node

i is assigned to the mobile backbone node at location j if

xi(N+ j) = 1.

We make the following observations about this algorithm:

Remark 1: If K mobile backbone nodes are available and the

goal is to assign as many regular nodes as possible such that

a desired minimum throughput is achieved for each assigned

regular node, the above MILP problem needs only to be

solved once for the desired throughput value and with a

fixed value of K. To solve the MFPA problem, which is

the primary problem of interest in Ref. [3], it is necessary to

solve the above MILP problem multiple times for different

throughput values in order to find the maximum throughput

value such that all regular nodes can be assigned. There are at

most O(N4) possible minimum throughput values; searching

among these values using a binary search would require

O(log(N4)) solutions of the MILP problem.

Remark 2: It should be noted that the worst-case complexity

of mixed-integer linear programming is exponential in the

number of binary variables. However, this approach per-

forms well in practice, and simulation results indicate that

it compares very favorably with the approach developed

in Ref. [3] for cases of interest (See Table I). Note that

while the computation time of the search-based algorithm

increases very rapidly with the problem size, the MILP-based

algorithm remains computationally tractable for problems of

practical scale.

III. APPROXIMATION ALGORITHM

The MILP formulation of the previous section provides an

optimal solution in tractable time for moderately-sized prob-

lems. For large-scale problems, an approximation algorithm

with computation time that is polynomial in the number of

regular nodes and the number of mobile backbone nodes is

desirable. This section describes such an algorithm.

The primary insight that leads to the approximation algo-

rithm is the fact that the maximum number of regular nodes

that can be assigned is a submodular function of the set

of mobile backbone node locations selected. Given a finite

ground set D = {1, . . . ,d}, a set function f (S) defined for all

subsets S of D is said to be submodular if it has the property
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that

f (S∪{i, j})− f (S∪{i}) ≤ f (S∪{ j})− f (S)

for all i, j ∈ D, i 	= j and S ⊂ D\{i, j} [10]. In the context of

our network design problem, this means that the maximum

flow through the network is a submodular function of the set

of arcs incident to the sink that are selected.

It has been shown that for maximization of a nonde-

creasing submodular set function f , where f ( /0) = 0, greedy

selection of elements yields a performance guarantee of

1− (1− 1
P
)P > 1− 1

e
, where P is the number of elements

to be selected from the ground set and e is the base of the

natural logarithm [11]. This means that if an exact algorithm

selects P elements from the ground set and produces a

solution of value OPT , a greedy selection of P elements

(i.e., selection via a process in which element i is selected

if it is the element that maximizes f (S∪ {i}), where S is

the set of elements already selected) produces a solution of

value at least (1− (1− 1
P
)P) ·OPT . For the network design

problem considered in this paper, P = K (the number of

mobile backbone nodes that are to be placed), and OPT is

the number of regular nodes that are assigned in an optimal

solution. Note that greedy selection of K arcs amounts to

solving at most O(N3K) maximum flow problems on graphs

with at most N +K +2 nodes. Thus, the computation time of

the greedy algorithm is polynomial in the number of regular

nodes and the number of mobile backbone nodes.

We now prove that the objective function in the problem

under consideration is submodular.

Theorem 1

If G is a graph in the network design problem described in

Section II, the maximum flow that can be routed through G

is a submodular function of the set of arcs selected.

Proof: We begin by restating the submodularity condi-

tion as follows:

f ∗(S)+ f ∗(S∪{i, j}) ≤ f ∗(S∪{i})+ f ∗(S∪{ j}) (4)

where f ∗ is the maximum flow through G, as a function

of the set of selected arcs. Next, we note that for a fixed

selection of arcs S, the problem of finding the maximum

flow through G can be expressed as an equivalent matching

problem on a bipartite graph with node sets L and R1. This is

accomplished as follows: node set L in the bipartite matching

problem is simply node set N in the maximum flow problem.

Node set R is derived from node set M in the maximum

flow problem, with one modification: if the arc from node

N + i ∈ M to t has outgoing capacity ci, then R contains ci

copies of node N + i, each of which is connected to the same

nodes in L as the original node N + i. Thus, each node N + i

in the maximum flow problem becomes a set of nodes N + i

in the bipartite matching problem, and the cardinality of this

set is equal to ci. An example of this reformulation is shown

in Fig. 3.

1A set of edges in a graph is a matching if no two edges share a common
end node. A maximum matching is a matching of maximum cardinality [12].

t
s

N+3

N+2

N+1

c1=1

c2=3

c3=2

1

2

N=4

3

(a) A graph over which a maximum flow problem can be formulated.
Unlabeled arc capacities are equal to one.

N+1

N+3

N+2

1

2

N=4

3

(b) A bipartite matching problem that is equivalent to the maximum flow
problem above.

Fig. 3. An example of conversion from a maximum flow problem to an
equivalent bipartite matching problem, for N = 4, M = 3.

For any feasible flow in the original graph, there is a

corresponding matching in the bipartite graph with cardi-

nality equal to the volume of flow; likewise, for any feasible

matching in the bipartite graph, there is a corresponding flow

of volume equal to the cardinality of the matching. Therefore,

the maximum flow through the original graph is equal to the

cardinality of a maximum matching in the bipartite graph.

The graphs expressing the relation in Eq. (4) are shown

in the top row of Fig. 4: the sum of the maximum flows

through the left two graphs must be less than or equal to the

sum of the maximum flows through the right two graphs.

Converting these maximum flow problems into their equiv-

alent bipartite matching problems, we obtain the condition

that the sum of the cardinalities of maximum matchings in

bipartite graphs G1 and G2 in Fig. 4 is at most the sum of

the cardinalities of maximum matchings in G3 and G4.

Consider a maximum matching M1 in graph G1, and

denote its cardinality by Ns. This means that Ns nodes from

set S are covered by matching M1. Note that M1 is a feasible

matching for G2 as well, since all arcs in G1 are also present

in G2.

It is a property of bipartite graphs that if a matching Q is

feasible for a graph H, then there exists a maximum matching

Q∗ in H such that all of the nodes covered by Q are also

covered by Q∗ [12]. Denote such a maximum matching for

matching M1 in graph G2 by M2, and note that Ns nodes
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Fig. 4. Schematic representation of the graphs involved in the proof of the submodularity condition. The top graphs relate to the original maximum flow
problem, while the bottom graphs are their equivalent reformulations in the bipartite matching problem. For clarity, not all arcs are shown.

from set S are covered by M2. Denote the number of nodes

covered by M2 in node sets i and j by Ni and N j, respectively.

Then, the total cardinality of these maximum matchings for

graphs G1 and G2 is equal to 2Ns +Ni +N j.

Now consider the matching obtained by removing the

edges incident to node set j from M2. Note that this matching

is feasible for graph G3, and its cardinality is Ns + Ni.

Likewise, the matching obtained by removing the edges

incident to node set i from M2 is feasible for graph G4,

and its cardinality is Ns + N j. Since these matchings are

feasible (but not necessarily optimal) for G3 and G4, the

sum of the cardinalities of maximum matchings for these

graphs must be at least 2Ns + Ni + N j. This establishes the

submodularity property for the matching problem as well as

for the maximum flow problem.

IV. EXPERIMENTAL EVALUATION OF THE

APPROXIMATION ALGORITHM

As described in the previous section, greedy selection

of mobile backbone node locations results in assignment

of at least
⌈

(1− (1− 1
K
)K) ·OPT

⌉

≥
⌈

(1− 1
e
) ·OPT

⌉

regular

nodes, where K is the number of mobile backbone nodes that

are to be placed and OPT is the number of regular nodes

assigned by an exact algorithm (such as the MILP algorithm

described in Section II) [11]. However, this observation is

based on a general result for nondecreasing submodular func-

tions and not for the specific problem under consideration

in this paper. Therefore, it is of interest to experimentally

examine the performance of the greedy algorithm for our

problem of interest.

To this end, we have performed computational experiments

on a number of problems of various sizes. Regular node

locations were generated randomly in a finite 2-dimensional

area, and a moderate throughput value was specified (i.e.,

one high enough that there was no trivial selection of mobile

backbone node locations that would result in assignment of

all regular nodes). Results were averaged over a number of

trials for each problem dimension.

Fig. 5 shows the performance of the approximation algo-

rithm relative to the exact (MILP) algorithm. In Fig. 5(a),

the average percentage of regular nodes assigned by the

exact algorithm that are also assigned by the approximation

algorithm is plotted, along with the theoretical lower bound

of
⌈

(1− 1
e
) ·OPT

⌉

, for various problem sizes. In this figure,

a data point at 100% would mean that, on average, the

approximation algorithm assigned as many regular nodes

as the exact algorithm for that particular problem size. As

the graph shows, the approximation algorithm consistently

exceeds the theoretical performance guarantee and achieves

nearly the same level of performance as the exact algorithm

for all problem sizes considered.

Fig. 5(b) shows the computation time required for each of

these algorithms, plotted on a logarithmic axis. As the figure

shows, the computation time required for the approximation

algorithm scales gracefully with problem size. The average

computation time of the approximation algorithm was about

10 seconds for N = 40 and K = 8, whereas the MILP

algorithm took nearly three hours to solve a problem of

this size. Both the MILP algorithm and the approximation
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(a) Performance of the approximation algorithm developed in this paper,
relative to an exact solution technique, in terms of number of regular nodes
assigned at the given throughput level.
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Fig. 5. Comparison of the exact and approximation algorithms developed
in this paper. Although the MILP-based exact algorithm developed in this
paper significantly outperforms existing techniques in terms of required
computation time, our experiments indicate that the greedy approximation
algorithm achieves nearly the same level of performance with an even
greater reduction in computation time.

algorithm were implemented using ILOG CPLEX 9.020.

V. CONCLUSIONS AND FUTURE WORK

This work has developed new algorithms for solving the

problem of mobile backbone network optimization. Both an

exact MILP-based technique and the first known approxi-

mation algorithm with computation time polynomial in the

number of regular nodes and the number of mobile backbone

nodes were described.

Based on simulation results, we conclude that the MILP-

based approach provides a considerable computational ad-

vantage over existing techniques for mobile backbone net-

work optimization. This approach has been successfully

applied to a problem in which a maximum number of regular

nodes are to be assigned to mobile backbone nodes at a given

level of throughput, as well as to a related problem in which

all regular nodes are to be assigned to a mobile backbone

node such that the minimum throughput achieved by any

regular node is maximized.

For cases in which a MILP approach is impractical due to

constraints on computation time, the greedy approximation

algorithm developed in this paper presents a viable alter-

native. This algorithm carries the benefit of a theoretical

performance guarantee, and simulation results indicate that it

performs very well for the problem of assigning a maximum

number of regular nodes such that each assigned regular node

achieves a minimum throughput level.

Future work will explore the use of mobile backbone

network optimization methods in the context of cooperative

exploration [13].
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