
 
 

 

  

Abstract—It is well known that the relative gain array 
(RGA) and the determinant of the gain matrix provide useful 
information about integral controllability and integrity (e.g., 
failure tolerance), which are important issues in decentralized 
control. The RGA also gives information about robustness with 
respect to modeling errors and input uncertainty. Almost 
exclusively only nominal models have been considered in 
previous studies and applications of these methods. Not until 
recently have there been attempts to consider model uncer-
tainty more explicitly. However, the methods proposed in these 
studies tend to find uncertainty bounds that are too wide. In 
this paper a more accurate procedure based on sensitivity 
analysis is developed for studying the effect of model errors. 
Independent gain uncertainty as well as more structured 
uncertainty can be handled. The method is well suited for 
deriving tight bounds on the tolerable uncertainty. 

I. INTRODUCTION 
HE choice of control configuration for decentralized 
control has long been a challenging topic of great prac-

tical relevance. One of the earliest tools for this purpose was 
the relative gain array (RGA) [1], and it is still by far the 
most widely used tool. Originally, the RGA was introduced 
as a measure of interaction and the idea was to choose a 
control configuration where the interactions are minimized.  

Further developments have shown that the RGA is not a 
very reliable interaction measure. However, it provides solid 
information about fundamental properties such as system 
integrity (failure tolerance) and robustness with respect to 
modeling errors and input uncertainty [2]–[4]. All these are 
important issues in decentralized control. Another crucial 
issue in decentralized control is the question of integral 
controllability. Useful necessary conditions (e.g., [5], [6]) as 
well as sufficient ones (e.g., [7]) have been derived. 

Model uncertainty has not received much attention in the 
study of integral controllability and integrity. Only recently, 
the subject and in particular the usability of the RGA in the 
face of model uncertainty has been tackled [8], [9]. How-
ever, the proposed procedures are not accurate; the obtained 
bounds on the tolerable uncertainty tend to be too wide. This 
was also noted in [10]. 

In this paper, we deal with the problem of model uncer-
tainty in a more direct way than done in [8] and [9]. Useful 
expressions for the sensitivity to model uncertainty are 
derived both for the RGA and the determinant of the gain 
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matrix. These expressions are instrumental in the study of 
the effects of model uncertainty. In particular, an exact 
bound on the tolerable uncertainty is derived for an example 
studied in [8], [9]. The procedure is applicable to indepen-
dent uncertainties in the process gains as well as to more 
structured uncertainty. 

II. INTEGRAL CONTROL AND INTEGRITY 
In this section we discuss some basic issues in decen-

tralized control and summarize known conditions for 
integral controllability and integrity. 

A. Desirable Features in Decentralized Control 
In process control it is desirable to use controllers with 

integral action to enable good disturbance rejection and tight 
setpoint following. The possibility of retuning controllers 
and even taking controllers in a decentralized control system 
out of service (and back) without endangering the stability 
of the remaining control system are also important issues.  

In a fully decentralized control system the plant is 
controlled by a set of single-input single-output (SISO) 
controllers. We consider a given control configuration, 
where the variable parings between the plant and the 
controllers are fixed (for the moment). It is assumed that all 
controllers contain integral action. We now define some 
relevant control system properties (adapted from [7]). 

The system (i.e., the plant with the given control con-
figuration) is Integral Controllable (IC) if it is stable with all 
controllers operating and suitably tuned and remains stable 
when the gains of all controllers are detuned simultaneously 
by the same factor ε , 0 1ε< ≤ . The system is Integral 
Controllable with Integrity (ICI), if it is IC, and remains IC, 
if any number and combination of controllers are taken out 
of service (i.e., put on manual).  The system is Decentralized 
Integral Controllable (DIC) if it is ICI and remains stable 
when any number of controllers are detuned by individual 
factors iε , 0 1iε≤ ≤ . 

Usually DIC is the desired property, but besides being the 
most demanding property, it is also the one most difficult to 
ascertain because of the complexity of the problem (see, 
e.g.,[11]). It is easier to investigate ICI properties, and 
because ICI is a necessary condition for DIC, one often 
starts with an ICI analysis. 

B. Conditions for Integral Controllability 
The stability of the controlled system is obviously 

determined by the roots of the closed-loop characteristic 
equation. Let ( )G s  denote the transfer function of the plant 
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and 1 ( )s K s−  the transfer function of the controller. If 
( ) ( )G s K s  is stable (and contains no pole-zero cancellations) 

the characteristic equation may be written as 
 ( )det ( ) ( ) 0sI G s K s+ = . (1) 

Here, we also assume that ( ) ( )G s K s  is proper. It is an 
interesting fact that it is then sufficient to consider the real-
valued matrix (0) (0)G K  to determine the closed-loop sta-
bility and various controllability properties defined above 
[2], [5], [6], [11]. In the sequel, we only consider cases 
where it is sufficient to use steady-state gain matrices.  
Hence, the argument “0” will be omitted.  

A system is integral controllable if all eigenvalues of GK  
are in the open right-half complex plane [2],[6]. According 
to [12], nonzero eigenvalues on the imaginary axis can also 
be allowed if the controllers contain a proportional part. 
Since the determinant of a matrix is equal to the product of 
the eigenvalues of the matrix, a necessary IC condition is 
 det( ) 0GK > . (2) 

We are mainly interested in decentralized control, which 
means that the controller has a certain multiloop SISO struc-
ture. This implies that G  and K  are square. To simplify the 
notation and the formulation of various statements and inter-
pretations, it is assumed that the inputs and the outputs are 
ordered so that K  is diagonal for the control configuration 
under consideration. If needed, we also scale columns of G  
by –1 so that all gains along the diagonal of G  are nonnega-
tive. Apart from other requirements, we want every control 
loop to be stable by itself. With the above conditioning of 
G , this means that all controller gains have to be positive. 
Since det( ) det( )det( )GK G K= , (2) then simplifies to 
 det( ) 0G > . (3) 

Equation (3) applies to the case when all loops are closed.  
If certain loops are open, a similar criterion applies for the 
subsystem of closed control loops.  Let M  denote the set of 
all possible subsystems along the diagonal of G  and let mG  
be the gain matrix of a given subsystem m M∈ . Then 
 det( ) 0mG > ,  m M∀ ∈ , (4) 
is a necessary condition for IC with full integrity. 

III. BASIC CONTROLLABILITY ANALYSIS 
In this section we summarize the basic methodology for 

analysis of integral controllability and integrity by means of 
the Relative Gain Array (RGA) and related methods. 

A. The Relative Gain Array 
When control loops are closed, the gains in other parts of 

the system are affected due to interaction.  As a measure of 
this interaction, the relative gain was introduced [1]. The 
relative gain for the input-output pairing j iu y−  is defined 

 ij ij ijg gλ = � , (5) 

where ijg  is the open-loop gain between iy  and ju , ijg�  is 

the gain between iy  and ju  when all other outputs are con-
trolled by the remaining inputs. This control is perfect in the 
steady state due to integral action. If the number of inputs/ 
outputs is n , the relative gains for all possible input-output 
pairings can be arranged into an n n×  matrix Λ , called the 
relative gain array (RGA). Because 1( ) 1ij jig G− =� , it follows 
that the RGA can be calculated conveniently according to 
 T( )G G G−Λ = D , (6) 

where TG−  is the transpose of 1G−  and D  denotes multi-
plication of corresponding elements in the two matrices. 

The RGA can be used for pairing inputs and outputs in a 
decentralized control configuration. The basic rule is to 
choose pairings on positive relative gains as close to 1 as 
possible.  It is well known that this rule is not very reliable 
for systems larger than 2 2× , even when dynamics is not an 
issue, but it usually provides a good starting point. After a 
control configuration has been chosen for further study, 
inputs can be rearranged and G  can be conditioned as 
described above to obtain a diagonal pairing and positive 
diagonal gains.  

According to Cramer’s Rule 
 1( ) ( 1) det( ) det( )i j ij

jiG G G− += − , (7) 

where ijG  is the matrix obtained by deleting row i  and 
column j  from G . From (6) it then follows that the relative 
gain ijλ  can be expressed as 

 ( ) ( 1) det( ) det( )i j ij
ij ijG g G Gλ += − , (8) 

which gives a connection to the integral controllability and 
integrity conditions introduced above. 

Assume that we choose pairings with ( ) 0ii Gλ > , 
1, ,i n= … , and that det( ) 0G >  as required by (3). Since 

0iig >  and ( 1) 1i i+− = , it follows from (8) that all principal 

subsystems iiG  satisfy det( ) 0iiG > , which is a necessary 

condition for integral controllability of every subsystem iiG  
when loop i iy u−  is open. 

We can calculate the RGA ( )iiGΛ  for every subsystem of 
size ( 1) ( 1)n n− × − . If all relative gains on the diagonal of 
these subsystems are positive, we know from the previous 
paragraph that every subsystem of size ( 2) ( 2)n n− × −  has 
a positive determinant. We can continue this process down 
to subsystems of size 2 2×  to check the necessary 
determinant criterion for integral controllability of all 
possible subsystems. If any determinant is nonpositive, the 
system does not have full integrity. In that case, we also find 
out in which subsystem the problem lies. Furthermore, it 
reveals whether a sign change of a relative gain occurs via 
0  or ±∞ . The problem of detecting sign changes was also 
considered in [8] and [9]. 

Of course, we could also check the sign of the deter-
minant of all possible subsystems by direct calculation of the 

5193



 
 

 

determinant. Computationally, this would probably be less 
demanding than RGA calculation. However, the RGA also 
gives useful information besides integral controllability and 
integrity. Large or very small RGA values in some sub-
system, or values that imply another pairing than the chosen 
one, could indicate performance problems. 

As mentioned, the determinant criterion is only a necess-
ary condition. A necessary and sufficient condition is that a 
system is ICI if and only if there is a K  such that all eigen-
values of GK are in the closed, nonzero, right half plane. 
For 3 3×  systems it has been possible to derive 

 11 22 33 1λ λ λ+ + >  (9) 
as a necessary and sufficient DIC condition involving only 
relative gains [13]. Obviously, DIC also requires that (9) 
applies to all subsystems of size 3 3×  in a larger system. 

B. The Partial Relative Gain 
The RGA can be used to obtain information about a sub-

system mG  when the rest of the system is uncontrolled.  One 
might also obtain useful information by considering mG  
when the rest of the system is controlled. For this purpose, 
[14], [15] introduced the partial relative gain (PRG) array 
 P T( ) ( ) ( )m m m mG G G G −Λ = Λ =� � �D , (10) 

where mG�  denotes the gain matrix of subsystem m  when 

the rest of the loops are closed. Since mG�  is related to G  by 

 T T( ) ( )m mG G− −=� , (11) 

and T( ) ( )G G−Λ = Λ , the PRG can also be expressed as 

 P T( ) (( ) )m mG G−Λ = Λ . (12) 

According to this relationship, large PRG values for sub-
system m  implies an ill-conditioned gain matrix inverse and 
thus an ill-conditioned subsystem which is difficult to 
control. This was demonstrated by an example in [14], [15]. 
An ill-conditioned subsystem m  does not necessarily mean 
that the relative gains of ( )mGΛ  or ( )m GΛ  have to be large. 

The PRG can also be related to relative gains of the open-
loop system according to 

  ( ) ( ) ( )
ijm

ij m ij ijG G Gλ λ λ=� , (13) 

where 
ijmG  is the gain matrix for the subsystem outside m  

except for the loop i j− , which is included (and which 
belongs to m ). Here the index “ ij ” refers to the same loop 
in all (sub)systems, not necessarily to the position in a given 
matrix. If ( )

ijm
ij Gλ  is smallest of the three relative gains in 

(13), ( )ij mGλ �  will be the largest, and vice versa. 
As can also be seen from (13), the PRG does not provide 

any information about ICI that cannot be obtained from the 
ordinary RGA for various subsystems. However, if ( )ij Gλ  

and ( )ij mGλ �  are calculated, ( )
ijm

ij Gλ  can be determined 
from (13) instead of from a separate RGA calculation.  If the 

full system has size n n× , there are n  subsystems of size 
( 1) ( 1)n n− × −  and ( 1) / 2n n −  subsystems of size 2 2× . 
The relative gains in all these subsystems are given by n  
RGA and n  PRG calculations. 

C. The Block Relative Gain  
Fully decentralized control is a special case of block 

decentralized control, where multiple-input, multiple-output 
(MIMO) control is used for part of the system. The block 
relative gain (BRG), defined as 
 B 1 T T( ) ( ) ( )m m m m mG G G G G− −Λ = =� , (14) 
has been introduced as a measure for studying the feasibility 
of such control structures [16], [17].  

It is clear that determinant criteria such as (3) and (4) are 
necessary conditions for integral stability and integrity also 
in the case of block-decentralized control [17]. It can be 
shown that 
 ( )Bdet ( ) ( 1) det( )det( ) det( )i j ij

ij ijG G G G+Λ = − , (15) 

where “ ij ” refers to the ij th block.  This expression is anal-
ogous with that for the relative gain, (8). Results for the 
RGA concerning the determinant of gain matrices are thus 
directly applicable to the BRG. 

IV. INDEPENDENT GAIN UNCERTAINTY 
In this section we study the sensitivity of the determinant 

conditions and the relative gain to independent variations in 
the open-loop gains.  This provides useful information also 
for simultaneous gain variations. 

A. Preliminary Analysis 
The determinant of a matrix G  can be expressed in terms 

of submatrix determinants (i.e., minors) by expansion along 
a row or a column of the matrix.  If we choose to expand 
along a row, we have 
 det( ) ( 1) det( )i i

iG g G+

∀

= −∑ A A
A

A
 ,   any i . (16) 

If ijg  changes by the amount ijgΔ , the new gain matrix 
G G+ Δ  satisfies 
 det( ) ( 1) det( ) det( )i j ij

ijG G g G G++ Δ = − Δ + . (17) 

This means that det( ) 0G G+ Δ = , i.e., the gain matrix 

becomes singular if det( ) 0ijG ≠  and 

 ( 1) det( ) det( )i j ij
ij ij ijg G G g λ+Δ = − − = − . (18) 

This condition has been derived before, of course [3]. 
The determinant of G  may become zero only if the gain 

ijg  changes in the direction indicated by (18).  It is also 

clear that only a small change can be tolerated if | |ijλ  is 

large, but if | | 1ijλ < , the change can be larger than 100 %.  
Of course, if there are simultaneous changes in several 

gains, G  may become singular for smaller changes.  How-
ever, even in the case of simultaneous changes, (18) gives 
the worst direction. 
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B. Effect of Gains on Determinants 
In this section we show how bounds on the allowable gain 

changes can be determined in the case of independent 
simultaneous changes. Proofs of the theorems are omitted 
due to space limitations. 

Theorem 1. Sensitivity of det( )G  to gain variations. 

 det( ) ( 1) det( )i j ij
ijG g G+∂ ∂ = −  (19a) 

If det( ) 0G ≠ , we can equivalently write1 

 T Tdet( ) det( )G G G G−∂ ∂ =  (19b) 

 det( ) det( )ij ij ijG g G gλ∂ ∂ = , 0ijg ≠  (19c) 

 T( det( ) ) det( ) ( )G G G G G∂ ∂ = ΛD , 0ijg∀ ≠ . (19d) 

We note that (19a) and (19b) directly show in which 
direction a gain change will move det( )G . Furthermore, 
(19c) and (19d) show that the relative sensitivity is given by 
the RGA. 

Let us now assume that ijg  is bounded by 

 ij ij ijg g g≤ ≤  ,  ijg∀ . (20) 

Let 0G  denote the nominal gain matrix and consider 
 0G G Wα= +  (21) 

 

T
0

T

T
0

( ) if ( ) 0
0 if ( ) 0

( ) if ( ) 0.

ij ij ij

ij ij

ij ij ij

g G G
w G

g G G

−

−

−

⎧ − <
⎪

= =⎨
⎪ − >⎩

 (22) 

When α  is increased from 0, the value of det( )G  will start 
to decrease until det( ) 0G =  is reached for some α α= . 
From (19b) it follows that α α=  denotes the largest uncer-
tainty of the form (21) that can be tolerated if there are no 
sign changes in the elements of TG−  for (0, )α α∈ . If 

1α > , det( ) 0G >  for all uncertainties restricted by (20).  

If there are sign changes in TG−  for some (0, )α α∈ , 
there is another set of uncertainty directions which will yield 
det( ) 0G =  for some α α< . In this case, α  is only an 
upper bound of the tolerable uncertainty. 

A sign change of T( )ijG−  indicates that the opposite 

bound of ijg  should be considered in the definition of ijw . 
As shown in the application, this is an effective way of 
reducing the number of “matrix vertices” that need to be 
checked. For an n n×  matrix there is originally 2n  possi-
bilities, but if there are two sign changes, for example, the 
number is reduced to 2. 

Obviously, α α=  satisfying 0det( + ) 0G Wα =  can be 
found numerically or graphically by plotting 0det( + )G Wα  

against α . Furthermore, TG−  could be plotted against α  to 
check for sign changes of the sensitivities. 
 

1 Here we use the convention that the derivative of a scalar with respect 
to a column vector results in a row vector. 

However, α  can also be determined by an eigenvalue 
calculation. Since 
  1

0 0 0det( ) det( + ) det( )det( + )G G W G I WGα α −= = , (23) 

the smallest 0α α= >  that satisfies 1
0det( + ) 0I WGα − =  is  

 1
01 / ( )WGα σ −= − , (24) 

where ( )σ ⋅  is the smallest eigenvalue of ( )⋅ , which in this 
case will be negative.  

C. Effect of Gains on Relative Gains 
As shown by (8), relative gain calculation can also be 

used to determine sign changes of subsystem determinants.  
However, apart from that, it may also be of interest to 
determine the range of relative gain variations. 

Theorem 2. Sensitivity of RGA to gain variations. Here we 
restrict the theorem to variations of nonzero gains.  Then, 

 �( )T T T( )ij
ij ijG G Gλ λ − −∂ ∂ = −  (25a) 

 �( )T( ) ( ) ( )ij
ij ijG G G Gλ λ∂ ∂ = Λ − ΛD   (25b) 

where �ijG  is the matrix obtained from G  by replacing the 
elements of row i  and column j , except element ij , by 
zeros. 

The sensitivities in Theorem 2 can be used to determine 
the maximum relative gain variations as illustrated in the 
application. 

V. STRUCTURED UNCERTAINTY 
A large class of structured uncertainty descriptions can be 

formulated as 
 0 i i

i
G G Gδ

∀

= + ∑  ,  1 1iδ− ≤ ≤ . (26) 

We can study the relevant sensitivities with respect to every 
iδ .  If they are treated independently, it suffices to consider 

one uncertainty, and for notational convenience we use (21) 
as an uncertainty model. Thus, iα δ=  and iW G=  in the 
equations below. 

A. Effect of Scalar Uncertainty on Determinants 
Theorem 3. Sensitivity of det( )G  to scalar uncertainty. 

 
,

det( ) ( 1) det( )k k
k

k
G G wα +

∀

∂ ∂ = −∑ A A
A

A
 (27a) 

If det( ) 0G ≠ , we can write 

 1det( ) det( ) trace( )G G WGα −∂ ∂ = ⋅  (27b) 

 
,

det( ) det( ) k k k
k

G G w gα λ
∀

∂ ∂ = ∑ A A A
A

, 0kg∀ ≠A . (27c) 

Here, (27) directly give the worst direction since there is 
only one free variable (α ). We can choose the sign of W  
so that det( ) 0G α∂ ∂ < , which means that the worst direc-
tion corresponds to a positive α . According to (27b), this 
sign is given by the requirement 1trace( ) 0WG− < . The 
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smallest α α=  such that det( ) 0G =  can now be determined 
by the procedure of Section IV-B.  

If we are interested in finding the smallest α α=  such 
that iδ α∀ < , we can apply the same procedure to the 
uncertainty description 
 0 i

i
G G Gα

∀

= + ∑ , (28) 

where the signs of every iG  are (initially) chosen as above. 

However, now the sign of every 1trace( )iG G−  needs to be 

checked as α  is increased. A positive 1trace( )iG G−  indi-
cates that a sign change of iG  should be considered. 

B. Effect of Scalar Uncertainty on Relative Gains 
Theorem 4. Sensitivity of RGA  to scalar uncertainty. We 

restrict the theorem to nonzero gains.  Then, 

 ( )1 1trace (( ) )ij
ij ij W G Gλ α λ − −∂ ∂ = ⋅ −�  (29a) 

 ( )
,

( ) ( )ij
ij ij k k k k

k
G G w gλ α λ λ λ

∀

∂ ∂ = −∑ �
A A A A

A
. (29b) 

VI. APPLICATION TO ROBUSTNESS ANALYSIS 
As an application we shall investigate the robustness 

properties for decentralized control of a system that has been 
introduced in [18]. The system has also been used in previ-
ous studies of the effect of uncertainty on the RGA [8]–[10]. 

A. Problem Formulation and Previous Studies 
When conditioned as described in Section II-B for the 

proposed control configuration, the system has the nominal 
gain matrix 

 0

0.66 0.61 0.0049
1.11 2.36 0.012

33.68 46.2 0.87
G

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥− −⎣ ⎦

 (30) 

and the RGA is 

 0

1.94 0.67 0.27
( ) 0.66 1.90 0.23

0.28 0.23 1.51
G

− −⎡ ⎤
⎢ ⎥Λ = − −
⎢ ⎥− −⎣ ⎦

. (31) 

According to the RGA, the diagonal control configuration is 
the only one that can possess integrity. In addition to 

0det( ) 0.51G = , we have 11
0det( ) 1.50G = , 22

0det( ) 0.41G = , 

and 33
0det( ) 0.88G = , which means that the nominal system 

satisfies necessary integrity and integral controllability con-
ditions. Moreover, the diagonal relative gains satisfy (9), so 
the nominal system is decentralized integral controllable.  

In [8] it was assumed that every gain is uncertain 
according to 
 0,ij ij ijg g g= + Δ ,  0,| | | |ij ijg gαΔ ≤  (32) 
and the main issue was to determine a bound on α  such that 
the recommended nominal variable pairings for decentra-
lized control would not be affected and the control system 
would remain robust. Expressions for ij klgλ∂ ∂ , , , ,i j k l∀ , 

similar to (25), were derived, and the total effect on ijλ  was 
estimated for various values of α  by applying the formula 
for a total differential. The estimates indicated that the 
system could tolerate 0.5α = . 

In [9] a technique based on structured singular values for 
evaluation of relative gains of norm-bounded uncertain 
systems was developed. It was stated that the method can be 
used for calculation of a tight bound on the worst-case 
relative gain and derivation of necessary and sufficient 
conditions for a sign change of a relative gain. For this 
example, the calculations gave 0.302α =  as the largest 
value with no sign changes of the diagonal relative gains. 

However, in [10] a minimization of det( )G  subject to the 
constraints in (32), combined with a numerical search over 
α , showed that det( ) 0G =  was reached for 0.178α = . 
According to (8), the worst-case relative gains are undefined 
at this point. This also means that the system does not have 
the property of robust integral controllability and integrity 
if 0.178α ≥ . 

As such, this does not prove that the system is ICI for all 
0.178α < . It is still possible that some principal subsystem 

mG  might violate (4) for some 0.178α < . However, for a 
3 3×  system, this would be revealed by a sign change of a 
diagonal relative-gain value as shown by (8).  

B. Integral Controllability Bounds  
The worst-case uncertainty directions for det( )G  can be 

determined according to (19b) in Theorem 1. We have 

 T
0

2.948 1.104 55.47
0.598 0.805 19.56
0.008 0.005 1.732

G−
−⎡ ⎤

⎢ ⎥= −
⎢ ⎥
⎣ ⎦

, (33) 

which means that an increase of the gains corresponding to 
negative elements will decrease det( )G  while the opposite 
applies for the other gains. In accordance with (22) we then 
choose 

 a

0.66 0.61 0.0049
1.11 2.36 0.012

33.68 46.2 0.87
W

− −⎡ ⎤
⎢ ⎥= − −
⎢ ⎥− − −⎣ ⎦

 (34) 

after which (24) gives  
 a 0.205α = . (35) 

A check with 0.2α =  in (21) shows that elements (2,3) 
and (3,2) in the inverse of the resulting gain matrix have 
other signs than in 1

0G− . The opposite directions should 
therefore be checked by changing the signs of these 
elements in aW . 

Of the three possibilities, the weight 

 b

0.66 0.61 0.0049
1.11 2.36 0.012

33.68 46.2 0.87
W

− −⎡ ⎤
⎢ ⎥= −
⎢ ⎥− −⎣ ⎦

 (36) 

gives the lowest bound 
 b 0.178α = . (37) 
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In principle, there could be an even number of sign 
changes in some element of TG− , which means that they 
might not be detected by this procedure. The correct bound 
could thus be lower than that in (37). There are various ways 
of tackling this problem. According to (7), the sign of 

1( ) jiG−  is changed if an only if the sign of det( )ijG  changes 

for some bα α< .  Such sign changes could be checked for 

every ijG  by a similar eigenvalue calculation as above. 
A more practical approach is first to consider only those 

gains which have the strongest effect on the determinant. 
Equation (19d) and the RGA in (31) suggests 

 c

0.66 0.61 0
1.11 2.36 0

0 0 0.87
W

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

, (38) 

which gives the same bound as in (35). A Calculation of 
TG−  with cW  and 0.2α =  now shows the directions in the 

remaining unchanged elements that decrease det( )G . This 
gives bW  and the solution in (37). 

C. Bounds on Relative Gains 
We can calculate bounds on the relative gains for various 

α  values.  Let us choose 0.1α = , which is one of the 
values considered in [8] and [10].  Direct calculation from 
the gain matrices obtained with the weight bW  and the 
values 0.1α = −  and 0.1α =  gives 

 
11

22

33

1.48 3.65
1.64 2.85
1.44 1.75.

λ
λ
λ

≤ ≤
≤ ≤
≤ ≤

 (39) 

However, these are not necessarily the correct bounds for 
| | 0.1α ≤  because the worst-case directions for det( )G  
might not be the worst-case directions for the relative gains. 

The sensitivities in (25) in Theorem 2 show that the 
worst-case directions for 11λ  coincide with bW  in (36), but 
for 22λ  and 33λ  they give, respectively, 

 d

0.66 0.61 0.0049
1.11 2.36 0.012

33.68 46.2 0.87
W

−⎡ ⎤
⎢ ⎥= − −
⎢ ⎥− −⎣ ⎦

 (40) 

 e

0.66 0.61 0.0049
1.11 2.36 0.012

33.68 46.2 0.87
W

− − −⎡ ⎤
⎢ ⎥= − − −
⎢ ⎥− − −⎣ ⎦

. (41) 

For 0.1α = −  and 0.1α =  these weights give 

 22

33

1.46 3.42
1.29 2.01

λ
λ

≤ ≤
≤ ≤

 (42) 

which are the same as those obtained in [10] by much more 
demanding nonconvex optimization methods. 

VII. CONCLUSION 
We have developed a method for analyzing the effect of 

model uncertainty on integral controllability and integrity in 

decentralized control. Useful uncertainty sensitivity express-
ions for the determinant of the gain matrix as well as for the 
RGA have been derived.  By means of these, the number of 
possible worst-case combinations of the model uncertainties 
can be drastically reduced to a manageable number.  In this 
way, integral controllability and integrity issues can be 
effectively studied and tight bounds on the tolerable uncer-
tainties can be obtained. The method allows independent 
uncertainties in all process gains as well as more structured 
uncertainties. 
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