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Stability Analysis and State Feedback Control of Networked Control
Systems with Multi-Packet Transmission

Xun-Lin Zhu and Guang-Hong Yang

Abstract— This paper studies the problems of stability analy-
sis and state feedback controller design for continuous-time net-
worked control systems (NCSs). Model of NCSs with multiple-
packet transmission and packet dropout in both the sensor-to-
controller channel and controller-to-actuator channel is derived,
then the stability condition for NCSs with multiple-packet
transmission is presented, and a new method for controller
design is also proposed by using linear matrix inequality (LMI)-
based method. The simulation results illustrate the effectiveness
of the proposed controller design for NCSs with multiple-packet
transmission and packet dropout.

I. INTRODUCTION

As is well known, in modern industrial systems, sensors,
controllers and plants are often connected over a network
medium, such systems are usually called networked control
systems (NCSs). There are many advantages in NCSs, such
as low cost, reduced weight and power requirements, simple
installation and maintenance, and high reliability. Thus,
increasing research interests have been paid to the study of
the stability and stabilization of NCSs.

By decomposing network-induced delays into fixed and
varying parts, the NCSs were modeled as parameter-
uncertain systems and controller design methods based on
delay-dependent stability conditions were presented (see [1]-
[2]). However, the time delay considered in [1] was shorter
than a sampling period. [3] designed the stochastic optimal
controllers for networked control systems with network-
induced delay longer than a sampling period. By using
Lyapunov-Razumikhin function and Lyapunov-Krasovskii
function methods, [4] was dedicated to the design of state
feedback controllers and the admissible upper bounds of time
delay and packet dropout were also presented. In [5], a model
of the NCSs was provided under consideration of both the
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network-induced delay and the data packet dropout. For other
results dealing with time delay and packet dropout, see also
[6]-[9]. The problem of H.. controller design for NCSs was
considered in [10].

All works mentioned above discussed the case of single-
packet transmission of NCSs. However, especially in dis-
tributed NCSs, once the length of sampled data surpasses the
maximum admissible length of the network packet, multiple-
packet transmission is ubiquitous (such as the systems based
on Device-Net). For this case, the sampled data and control
inputs are split into multiple separated packets which may
not arrive at the destination simultaneously. Obviously, the
NCSs with single-packet transmission is a subclass of the
NCSs with multiple-packet transmission.

As for the problem of multiple-packet transmission, to the
best of our knowledge, few papers discussed it thoroughly
except in [11] and [12]. As one can see, [11] presented
the discretized model of MIMO NCS with multiple time
delays, and the closed-loop NCS model only included a
standard controller designed without considering the time
delay effect a priori. [12] considered the case that multiple-
packet transmission exists only in sensor-to-controller chan-
nel and the controller-to-actuator channel must be single-
packet transmission, if multiple-packet transmission also
exists in controller-to-actuator channel, the result of [12] is
not applicable.

This paper presents a model of NCSs with multiple-
packet transmission and packet dropout in both the sensor-
to-controller channel and the controller-to-actuator channel,
the stability analysis and state feedback controller design are
also presented by using LMI-based method (see [13]). Three
examples are finally given to illustrate the effectiveness and
less conservatism of our method.

II. MODELING OF NCSs AND PRELIMINARIES

Throughout this paper, we assume that the sensor is clock-
driven, the controller and actuator are event-driven (realized
via zero-order holders). The controller and the actuator will
be updated until the new data packet arrives. Denote T as
the length of sampling period.

Under a linear control law, the controlled system can be
expressed as

)
x(t) =0(1), 1 <0, 1
where x(¢) € R", u(r) € R?, A and B are constant matrices of

appropriate dimensions. ¢(¢) is a continuously differentiable
initial function. x¢ is the delayed version of x, u is the
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delayed version of u€, and x© and u€ are the input and the
output of controller, respectively.
The plant state is split into r parts

x(t) =

and every part with its time stamp is lumped into a packet.
Similarly, the control signal is split into s parts

[ xT(@) - xT() ", )

Ey=[UfO” - Utn)” ", 3)

and every part with its time stamp is also lumped into a
r

packet, where X;(t) € R, r; € Z", and Y. ri=n; UF(t) €
i=1

R, s, €ZT, and Zs,—

For simplicity, we consider the case that the plant state
and the control signal are split into two parts, respectively.
Fig. 1 illustrates the model of NCSs with multiple packets
transmission.

«

4 Controller

Fig. 1. An NCS with multiple-packet transmission

Just as shown in Fig. 1, at the instant ¢, the state data pack-
ets, which are waiting for transferring, in Sy, S are X, (k;, T)
and X, (k;,T) (ki,, ki, € ZT), respectively. Meanwhile, the
controller input data packets X (¢), X$ (¢), which are waiting
to be updated, are equal to X;(kiT), Xo(kaT) (ki, ko €
Z1), respectively. Throughout this paper, we suppose the
controller will calculate the control inputs based on the
latest available plant states. Thus, the process of state data
transmission can be described as follows:

Case 1 : If the switch is in position S3, i.e., the state data
packets X (k;, T') and X>(k;,T) are dropped in the sensor-to-
controller channel, then

X (1) =X (ki T),

X§ (1) =Xo(koT).

Case 2 : If the switch is in position S, then

Xo(ki,T), if ki, >k
c . C o 2\Rip L), ) 25
Xy () =Xi(kiT), X3(1) = { X, (koT), otherwise.
Case 3 : If the switch is in position Sy, then
X (ki T), if ki >k
c _ C _ 1Ky ) 1] 3]
Xy (t) =X (koT), Xy (1)= { X, (ki T), otherwise.

Therefore, there exist kj,, kj, € Z7T, such that

o= ko |- [ X |

7 (1) () =t — ko T (i
() , where T°(1) =1 —k;;T (i=1, 2),

then 77¢ represents the delay of the ith state data part, and

f@:[xﬂ—ﬁ%D}.

Xo(t = 75°(1))

The process of control signal transmission is similar to the
process of state data transmission, here it is omitted.

Denote #; (k€ Z™) as the instant that the actuator receives
the kth control signal, & (k € Z™) as the instant that
the controller sends the kth control signal to the actuator.
Suppose u(z‘k+ ) is based on the outputs of controller at the
instant t,fl and t,g, respectively, i.e.,

Define 7°¢(¢) =

= Dy (1f,) + Dau (1)), )
where
Dy = diag{l;,, 0}, D> =diag{0, I, }.

Similarly, the input of controller at the instant tk is based
on the states of plant at the instant le and k2T the input
of controller at the instant tk2 is based on the states of plant
at the instant kéT and k%T, respectively, i.e.,

“i6)-| iié?g?i =[5 553 ]

= Clx(kl )+C2x (3T

fclx(kz )+sz(k%T : (5)

where

G = diag{lrp 0}1 G = dlag{ov Irz}»

and ki, k3, k), k3 €Z".
Thus, for ¢ € [t, 1), We obtain

u(t) =u(t;") = D1KCix(k{T) + D KCox(K3T)

+DoKCix(kAT) + D, KCox(K3T). ©
Denote 1 — kT as 7;;(t), i.e,
Tij(1) =1 — KT Vi€ [tk tktr), (7

analogous to the case of two-packet transmission, for the
case of multiple-packet transmission, for ¢ € [f, fy1), wWe
have

s T s r
=Y Y DKCx(KiT) =Y Y D;KCix(t — (1)),
j=li=1 j=li=1
®)
Ci:diag{07 Tty [V[a Tty 0}7 (9)
H_/
i
DJ _dlag{oa B ISja ) 0} (10)
———
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Assumption 1. The pair (A, B) is stabilizable.

Assumption 2. There exist constants /;; such that
OSTij(l)Sh,’j, Vi:l,2,~~~,r,j:1,2,~~~,s. (11D
Denoting & = maxi<j<,, 1<j<s{hi;}, then the model of NCSs

with multiple-packet transmission under Assumption 1 and
2 can be described as

X(t) = Ax(t) + i iBDjKC,’)C(I— ‘Cij(l‘)),

12)
j=li=1
x(t) = ¢(1), t€[—h, 0] (13)
OSle(t)Shljy i:172a "'ar;jzla 27 Ty S
(14)

For convenience of analysis, the system (12)-(14) can be
rewritten as follows:

m

X(t) = Ax(t) + ) Apx(r — 7 (t), (15)
=1
x(t) = (1), t €[—h, 0] (16)
OSTI(I)SI’”, l:l7 27 e om. (17)
where
A1 =BDjKC;, 7(1) = j(1), hi = hij,
VI:(J—l)Xr+l, l:l7 2’ R ]:1, 27 S, S
(18)

In this paper, we will analyze the stability criteria of
the closed-loop system (15)-(17) and study the problem of
state-feedback controller design.

Remark 1. If m = 1, then the system (15)-(17) is the same
as the system with single-packet transmission which has
been considered in [5], for convenience of comparison, the
main result (Corollary 1) in [5] is listed as follows.

Lemma 1. [5] The system (15)-(17) with m = 1 is asymptoti-
cally stable if there exist matrices P >0, T > 0, and matrices
X; (i=1, 2, 3) such that

Al A NI —(GA)T+Xi+P N
* Apo —N§+X2—(X3BK)T h N,
A: T < O,
* * X3+X5 +mT hiN3
* * * *th
(19)
where

A =N +NF —X1A - (X,A)T,
Ajp=NI =Ny — (X,A)T — M BK,
Az = —N>— NI —X,BK — (X2BK)T.

III. MAIN RESULTS

In this section, we analyze asymptotic stability of the
closed-loop system (15)-(17), and propose a method of
designing state feedback controllers.

A. Stability Analysis

Theorem 1. The system (15)-(17) is asymptotically stable if
there exist symmetrical matrices P > 0, R; > 0, S; > 0 and
matrices My, My, ---, Mby2, such that

Q <0, (20)
where
_ Ql Qz _ _ T
o=@ 2 ) iy
m
YR —S) P
Ql _ i=1
* Y, 12S;
i=1
Q=] Q1 Qn - Q |,
S0
921_ 0 0 (1_17 27 ) m)7
Q3 = diag{Q31, Q32, -+, Qam},
—28; S; .
i = [ . fR,-l*Si (=12, -, m),
M=[ M M] M, 1"
d=[A -1 Ay 0 -~ A, 0].
Proof: Construct a Lyapunov functional as
V() =Vi(t) +Va(r) + V5(), (21)
with
Vi(r) = x"(1)Px(t),
m
— 1 T .
Va(t) —l_; Je—n X" ()Rix(s)ds, 22)

Va(r) = g S0 St g 3T (5)hiS:(s)dsdp.

Using the Cauchy-Schwarz inequality [14], and denoting

§=Rk"(0), (), Xt =), x"(t—m), -, x"(t~
Tu(t)), xT (t —hy)]T, one gets
V() <LTQ¢ (23)

So, it is not difficult to see that (20) guarantees V (t) < 0, this
immediately implies the asymptotic stability of the system
(15)-(17), thus it completes the proof. ]
Remark 2. By using the Cauchy-Schwarz inequality,
a stability condition of the system (15)-(17) is derived
in Theorem 1. Since the Newton-Leibniz formula is not
employed, the structure of the derived inequality in Theorem
1 is simple. In addition, there are some redundant variables
among M; (i=1, 2, ---, 2m+2), which will be verified in
the following.

By using the elimination Lemma ([13], p.22), Q <0 is
equivalent to

o= 4104, <0, (24)

where .47, denotes the full-rank matrix representations of
the right annihilator of A.
By the Schur complement, & < 0 is equivalent to

<0, 25)
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where
= | Q Q ~ ~ T
o[ @8] iy
. T
1\71:[1131 YRS 0 - 0|,
=1

and Q, Qy, Q3, & are defined in (20). So, it follows that
Q < 0in (20) is equivalent to ® < 0 in (25).

Comparing with (25), it is easy to see that
My, My, ---, Mjyuyp are all redundant in (20). So,
the simplified form of Theorem 1 is given as follows.

Theorem 2. The system (15)-(17) is asymptotically stable if
there exist symmetrical matrices P > 0, R; > 0, S; > 0 and
matrices M|, M,, such that

Q <0, (26)
where
~_ Q[ Qz _ _ T
0= 2] oy,
M=[M[ M[ 0 - 0],

and Qq, Q,, Q3, &7 are defined in (20).

From Theorem 2, we can derive a stability condition for
the system (15)-(17) with m =1 as follows.

Corollary 1. For given scalar hj, the system (15)-(17) with
m = 1 is asymptotically stable if there exist symmetric
matrices P >0, R >0, § > 0 and matrices M|, M,, such

that
| 01 O,
@)_[ i @3]<0, (27)
where
© — R—S—MA— (MA)T P+M;— (MA)T
= * h%S—i—Mz%—MzT ’
©, | S—MBK 0
27| —MyBK 0 |’
-28 S
03 = * —R-S

Now, by comparing Corollary 1 and Lemma 1, we can get
the following result.

Theorem 3. If A <0 in Lemma 1 is feasible, ® < 0 in
Corollary 1 is also feasible.
Proof: Pre- and post-multiplying both sides of A with

1 0 0 —n'1
o 1 0 'l
M=1907 0 28)
000 1
and its transpose, it follows that
A <0, (29)

where

~h'T  m't P
A= «  —h'T 0 |-X[A BK —I]
* * mT

-(X[A BK -1,
x=[x{ x{ x{]".
By using the elimination Lemma and the Schur complement,
A1 <0 is equivalent to

Ay <0, (30)
where
~h'T+PA+ATP h'T+PBK mA'T
Ay = * ~h'T h (BK)TT
* * —-mT
Let
R=0, S=h{'T, M{ = —P, My = —I T,
then ® in Corollary 1 becomes
Asi mATT h{'T+PBK 0
| o+ —mT h TBK 0
B e A A R
* * * fhflT
where
Az1 = —h{'T+PA+ATP.
Note that
A 0
T _ 2
H2A3H2—|: " 7]’1171T :l <0, 32)
where
I 0 0 0
0 0 I I
=10 70 0|
0 0 0 I

s0, Ay < 0 is equivalent to Az < 0. This implies that ® < 0
in Corollary 1 is feasible. |
Remark 3. Theorem 3 shows that Theorem 2 with m =1 is
less conservative than Lemma 1.

B. Stabilization of NCSs via State Feedback

Based on Theorem 2, we are now in a position to
design the feedback gain K to render system (15)-(17)
asymptotically stable.

Obviously, (26) implies M is nonsingular, so there exists
a matrix U, such that M; = M,U. Denoting
M, ZMQ_I, P :MQPMZ, R; :M2R1M2T7
S,’ :MQS,’MJ, Vi= 1,2,“' ,m,
we can obtain
AM} = BD;KC:M?,,

where [=(j—1)Xr+i, j=1,2, -+, s, i=1,2, -+, r.
If

M, =diag{M>i, My, ---, M},

3136



where Mp; € R (j=1, 2, ---, r), then
Cl]qu:dlag{()7 e Iri’ e O}
i
x diag{M3,, M3,, ---, M3}
:diag{O, e Mle., e 0} (33)
i
Partitioning K as
K: [ K] K2 Kr ] y
and denoting
0 -« I, -+ 0
G[ - N —— R
i

where K; € RP*" (i=1, 2, ---, r), and introducing new
variables F; = K;M1. (i=1, 2, ---, r), it is easy to see that

AMY = BD;KC:MY
=BD; x { L,_Fi 0 }
= BDFG;, l (34)
and

Mg :dlag{Mglv Mng ) MZTr}

r
:Zdlag{07 B Mg;? ) 0}
i—1 M_/
1
G/ M3,G;;, (35)

-

i=1

pre- and post-multiplying both sides of Q in (26) with
diag{M,>, M, ---, M>} and its transpose, we can obtain
the following theorem.

Theorem 4. For given h; (i=1, 2, ---, m) and U,
the system (15)-(17) is asymptotically stable if there exist
symmetrical matrices P >0, R; >0, 5;>0 (i=1, 2, ---, m)
and matrices Fj, Mb; (j=1, 2, ---, r), such that

(36)

where

Ql = i=1 m

* Y. 1S

_ =1
Q=[Qn Qn - Qo |,
= ;0 .
{221— |: 0 _O :| _(l_la 27_ B m)a
Q3 = diag{Q31, Q32, -+, QLn},

~ =25, Si
Q3i_ |: * _Ri_gl (l_la 27 ) m),
M=[U" 10 01",
o=[H Hy Ni 0 -+ N, 0],

r
H =AY GIMLG,,

i=1
H,=-Y G'MLG;,

i=1
N, = BD;F;G,,
Vi=(G—1)xr4i, i=1,2, -, r j=1,2, -+, s.
The state-feedback gain is then given by

K=[Fh B F ]

x diag{Ms,", My,"', -~ M;T}. (37)

Remark 4. In contrast with the controller design method
given in [12], Theorem 4 involves slack variables M, M>.
By defining M| = M, U, the controller gain K can be obtained
by solving a set of LMIs. However, the stabilization result
in [12] is only applicable to the case of multiple-packet
transmission occurred in state channel and single-packet
transmission in control channel. In addition, the restrict
PB = BM in [12] is not needed in Theorem 4, which will
introduce less conservatism. An example in the following
section will verify this fact.

Corollary 2. For given scalar /; and matrices U, the system
(15)-(17) with m =1 is asymptotically stable if there exist
symmetric matrices P >0, R >0, § > 0 and matrices F, M>,
such that

R S 2
‘P_[ . %]<o, (38)
where
g _ | R=S—-UAM] —MATUT P+ UM] —MAT
' * hiS+My+M]  |°
S—UBF 0
o= pr 0}’
-25 8
¥ = * —R-§ }

The state-feedback gain is then given by

K=FM,". (39)

Remark 5. A tuning parameter matrix U is employed in
Theorems 4 and Corollary 2. By applying a numerical opti-
mization algorithm [9], such as fminunc in the Optimization
Toolbox, the tuning parameter matrix can be obtained.

IV. NUMERICAL EXAMPLES

In the following, we will present three examples. Example
1 is given to compare with the result presented in [5],
Example 2 is delivered to compare with the result presented
in [12], and Example 3 is presented to illustrate the
effectiveness of the designed state feedback controllers for
NCSs with multiple-packet transmission.
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Example 1. Consider a system [5] with single-packet trans-
mission

0-[8 3, Jeoe[ & o

and the controller is implemented through a network as
u(t) = Kx(t — d(t)), where K = | —=3.75 —11.5 | and
0 <d(t) < hy. We can find the maximum allowable value of
h is 1.0081 by Corollary 1, while the corresponding value
of h; was 0.8695 by Lemma 1 (Corollary 1 in [5]).

(40)

Example 2. Consider the state-space plant transmitted by
two packets in state channel, and by one packet in control
channel. This example is borrowed from [12].

x| _| 08 0.1 X1 0

{XQ}{ 0.2 o.ostzb{ I }“'
For simplicity, we assume that #; = h;. The admissible upper
bounds of A; were found to be h; =0.3102 (i=1, 2) and
the corresponding feedback gain K = [ 0.0756 —4.1729 |
in [12], while we can obtain the maximum upper bound
h; =13.6784 (i=1, 2) and the corresponding feedback gain
K=[ —0.0291 0.0762 | by Theorem 4 with U =0.00011.
Obviously, it can be found that the method presented in this
paper may provide less conservatism than the one presented
in [12].

(41)

Example 3. Consider the following system

i ~08 01 013 0047 [ x
o ] 02 005 0 012||xm
BT 0 —003 —025 01 || x
i 01 0 002 003 || x

0 02

1 0 171

Tlo1 o l:ug]
0o 1
(42)

Case 1 : Single-packet transmission in both state channel
and control channel. Using Theorem 4 with U = 0.0001/,
the maximum allowable transfer intervals is found as h; =
10.7434, and the corresponding state-feedback gain is

K— —-0.0122 —-0.0829 0.0181 —0.0516
| —0.0128 —0.0024 —0.0181 -—0.0715 |-

Case 2 : Single-packet transmission in control channel, and
two-packet in state channel. It is assumed that hy = hjy,

X = M ,and Xp = f . Then using Theorem 4 with
4

U = 0.00017, the maximum allowable transfer intervals are
found as h; =9.0160 (i = 1,2), and the corresponding state-
feedback gain is

~0.0536
k= { 0.0052

—0.0998
0.0096

—0.0324

—0.0581
—0.0453 ’

—0.0818

Case 3 : Two-packet transmission in both state and control

channel. It is assumed that iy = hy = h3 = hg, X1 = il ,
2

_| 3 c_,C 1€ _ ,C :
X, = N and U; = uy, Uy = u;. Using Theorem 4

4
with U = 0.0001/, it is found that, the maximum allowable
transfer intervals are h; = 8.9317 (i=1, 2, 3, 4), and the
corresponding state-feedback gain is

K— —0.0519 -0.0878 —0.0917
- 0 0 —0.0076

V. CONCLUSION

In this paper, a model for NCSs with multiple-packet trans-
mission and packet dropout in both the sensor-to-controller
channel and controller-to-actuator channel is given. A stabil-
ity criterion and a new method for state feedback controller
design are also presented by using LMI-based method. For
the case of single-packet transmission, it has been shown that
the newly proposed methods are less conservative than some
existing results. The numerical examples have illustrated the
effectiveness of the proposed methods.

—0.0801
—0.0627 |-
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