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Abstract— This paper presents a new robust decision-
making algorithm that accounts for model uncertainty in finite
state/action, Markov Decision Processes (MDPs). In particular
we generate robust and optimal control policies using Sigma
Point sampling methods for dynamic multi-stage problems
where the probabilistic transition model of the MDP may be
fixed, but uncertain. In the case of poorly known transition
model governing a MDP, this paper shows that the total number
of scenarios in a scenario-based robust optimization may be
decreased by generating a small number of appropriately
chosen samples of the model. The robust policy for the worst-
case instance of the data can be approximated by identifying the
minimum objective function obtained from these realizations.
This paper compares the proposed approach to more direct
sampling-based approaches in a machine repair problem. The
numerical examples show reduction in the total number of
simulations required to obtain robust solutions while achieving
optimal results.

I. INTRODUCTION

Markov Decision Processes (MDPs) rely on precise tran-
sition models to find the optimal control policies. However,
the parameters describing the models may be subject to
uncertainty, either because there is not sufficient information
to fully characterize these models, or because the models
may simply be incorrect. A nominal control policy can suffer
a significant performance penalty if this uncertainty is not
accounted for. Poor knowledge in the state transition matrix
of a system, for example, can lead to significant variations
of the objective [1].

Studies on the impact of uncertainty in the parameters of
decision-making processes has been addressed by numerous
authors. The work of Satia in Ref. [2] considered the online
identification of the state transition matrix by observing the
system’s transitions across the states and updating the model
for the transition matrix with these observations. The work
of Kumar et al. [3]–[5] considered the problem of controlled
Markov Chains, when the state transition matrix governing
the chain was poorly known. An additional term in the
objective function was added to account for an exploration
stage to identify the uncertain parameters.

More recent work (e.g., [1], [6]) incorporated the un-
certainty in the state transition matrix directly in MDP
formulation and found policies both “optimal” in minimizing
the cost and robust to the uncertainty in the optimization
parameters. In particular, Ref. [1] considers both finite and
infinite horizon problems, and derives a Robust Value It-
eration (RVI) algorithm that shows that the classical value

L. F. Bertuccelli, PhD Candidate, Dept. of Aeronautics and Astronautics,
MIT, Cambridge, MA 02139, USA, lucab@mit.edu

J. P. How, Professor, Dept. of Aeronautics and Astronautics, MIT,
Cambridge, MA 02139, USA, jhow@mit.edu

iteration algorithm can be used to solve a robust counterpart
problem. Nilim and El Ghaoui [1] also present numerous
computationally tractable uncertainty models that can be
used with the RVI. One of these models is a scenario-based
method that finds a robust policy using random samples
from some unknown transition model. Other approaches
have also proposed techniques for adaptively identifying the
state transition matrix online [7]–[9], but were not primarily
concerned with the robust problem.

Recent work by Jaulmes et al. [10], [11], Mannor et
al. [12] and Delage and Mannor [13] has also addressed
the impact of uncertainty in multi-stage decision problems.
The work by Jaulmes has addressed the uncertainty present
in the parameters of Partially Observable Markov Decision
Processes (POMDPs). The solution method uses a direct
sampling of the uncertain parameters and the solution of
multiple POMDPs in the MEDUSA (Markovian Explo-
ration with Decision based on the Use of Sampled models
Algorithm) to select a control policy from the family of
control policies generated by each realization of the POMDP
models. Additional recent work by Mannor has investigated
the issue of bias and variance in completely observable
MDPs with poorly known model parameters. In particular,
Ref. [12] discusses an analytical approximation to the mean
and variance of the objective function of an infinite horizon
MDP with uncertain parameters.

Using the terminology introduced by Mannor et al. [12],
our main interest in this paper is the parametric variance
of a MDP. Rather than solely being concerned with the
inherent variability of the objective function generated by
the probabilistic modeling of the system (internal variance),
we are primarily concerned with the impact of uncertainty in
the parameters of the state transition matrix on the objective
function and deriving robust control policies that account for
poor modeling of these parameters.

Our computational efficiency is obtained by using Sigma
Point sampling [14] to generate a small set of appropriately
chosen MDP model realizations (e.g., transition matrices),
and finding the optimal robust control policy over these fixed,
but uncertain, models.

This paper is outlined as follows. The general decision-
making problem is introduced in Section II. Section III
introduces our approach using Sigma Point sampling, and
Section IV discusses numerical experiments performed on a
machine repair problem.

II. MARKOV DECISION PROCESSES

The Markov Decision Process (MDP) framework that we
consider in this paper consists of a set of states x ∈ S, a
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set of control action u ∈ U , a transition model Au, and a
reward model g(x, u). The time-additive objective function
is defined as

Jµ = gN (xN ) +
N−1∑
k=0

gk(xk, uk) (1)

where µ = [u1, u2, . . . , uN−1] is the control policy.
The goal is to find an optimal control policy, that min-

imizes the expected objective1 over a finite horizon of N
steps given some known transition model Au

min
µ

EJµ(x0) (2)

The optimal control is found by solving

u∗(i) ∈ arg min
u∈U

EJµ(x0) ∀i ∈ S (3)

The optimality of the policy u∗ may not be guaranteed
if there is no uncertainty in these model parameters. For
example, in the event of a model mismatch between the
model’s state transition matrix, Au, and the true underlying
state transition matrix Au, the implemented policy may no
longer be optimal, since in general

min
µ

EJµ(x0, A
u) 6= min

µ
EJµ(x0, A

′,u)

A. Uncertainty: Modeling

The uncertain parameters we will be primarily concerned
about are the entries of the state transition matrix, A. We will
assume that the probabilities of the state transition matrix,
a, are described by an uncertainty set A, that is a ∈ A.
A common description for modeling this uncertainty is the
bounded approach, where A = {a | a− ≤ a ≤ a+}, where
the bounds a− and a+ are used to provide information
on the effective range of the probability. In this paper we
assign a prior distribution fD to the uncertain a ∼ fD as
our current work is concerned with the simultaneous online
identification of the uncertain parameters and control of the
system with state transition observations. Results for the
alternative polytopic description of the uncertainty can be
found in Ref. [1].

Our choice for fD is the Dirichlet distribution2. The
Dirichlet distribution fD for the row of the transition matrix
given by p = [p1, p2, . . . , pN ]T and parameter (or prior
counts) α = [α1, α2, . . . , αN ]T , is defined as

fD(p|α) = K

N∏
i=1

pαi−1
i ,

N∑
i

pi = 1 (4)

where K is a normalizing factor that ensures the probability
distribution integrates to unity. The primary reasons for using
the Dirichlet distribution are that the uncertain pi satisfy
(by construction) both pi ∈ [0, 1] and the explicit unit sum
constraint

∑
i pi = 1. Furthermore, the Dirichlet distribution

1Maximization or minimization of the objective function depends on
whether the objective is seen as a profit (therefore, maximization) or a cost
(therefore, minimization).

2The Dirichlet distribution is the multi-dimensional extension to the Beta
distribution [15].

is defined by parameters αi that can be interpreted as counts,
or times that a particular state transition was observed, thus
easily updating the distribution based on these observations.

B. Robustness
In the presence of uncertainty in the optimization param-

eters, the optimal control policy u∗ generated from incorrect
parameters may no longer be optimal. Even if one had
access to an estimator that could report the best estimates
Â (in some maximum likelihood sense for example), simply
replacing the uncertain parameters A with their best esti-
mates Â may lead to fragile results if one of the worst-
case parameters are the true underlying ones driving the
dynamic system. Thus we introduce a robust counterpart to
the nominal problem. The robust counterpart of Eq. (3) will
be defined as

min
µ

max
A∈A

EJµ(x0) (5)

Like the nominal problem, the objective function is maxi-
mized with respect to the control policy; however, for the
robust counterpart, the uncertainty set A for the transition
matrix is given, rather than the actual state transition matrix
A for the nominal problem. The objective is then minimized
with respect to the worst case realization of the transition
matrix A belonging to the uncertainty set A. The robust
policy is obtained by solving

u∗R = arg min
µ

max
A∈A

EJµ (6)

C. Robustness: Computational Tractability
The solution times for the robust optimization of

Eq. (5)will be heavily dependent (just like in classical
Dynamic Programming) on the number of stages in the
problem, the dimension of the state, the number of control
actions, but also on the choice of the uncertainty model for
the parameters [1]. Robust Dynamic Programming [1] can
be used to solve for the robust policy.

One of the methods proposed by Nilim considered sce-
nario approaches for the uncertainty set. Here, the decision-
maker had access to, or could generate scenarios, that could
form a scenario set As that could then be used in performing
the robust optimization of Eq. (5). This is similar to the
random sampling from the MEDUSA approach, but these
scenario-based approaches may require performing tradeoff
studies on the total number of simulations actually required
to accurately represent the uncertain system.

The idea of our paper stems from the Sigma Point sam-
pling approach used to approximate a Gaussian distribution
with a small deterministic number of samples [14]. The key
idea that we extract from this is the following: Approximate
the uncertainty in the state transition matrix with a set of
deterministically sampled transition matrices. Thus, unlike
the sampling approach of [10] (which uses a small number
of arbitrary samples) a Sigma Point implementation of an
MDP with uncertainty in the probabilistic description will
deterministically select transition matrices that capture the
full spectrum of the uncertainty about these distributions.
This is explained in greater detail in the next section.
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III. SIGMA POINT SAMPLING

A. Sigma Point Sampling

Sigma Point sampling [14] is a deterministic sampling
technique that selects statistically relevant samples to ap-
proximate a Gaussian distribution for nonlinear filtering
problems; the key idea is that it is easier to approximate
a Gaussian distribution rather than linearizing an arbitrary
nonlinear system. The Sigma Point algorithm is defined as
follows for a Gaussian random vector x. If the random vector
x is normally distributed with mean x̄ and covariance R,
x ∼ N(x̄,R), then the Sigma Points Mi can be formed
deterministically as follows

M0 = x̄, w0 = κ/(N + κ)

Mi = x̄ +
(√

(N + κ)R
)
i
, ∀i = 1, . . . , N

Mi = x̄−
(√

(N + κ)R
)
i
, ∀i = N + 1, . . . , 2N

The notation (R1/2)i denotes the ith row of the square root
matrix of R. Each of the samples carries a weight wi =
1/(2(N + κ)) and a tuning parameter κ is used to modify
the weights appropriately. For example, in the Gaussian case,
an optimal choice of κ is to ensure that N + κ = 3. After
these samples are propagated through the dynamic model,
the posterior distribution can be recovered as

x̄+ =
∑
i

wiM+
i

R+ =
∑
i

wi(M+
i − x̄+)(M+

i − x̄+)T (7)

where M+
i are the Sigma Points propagated through the

dynamic model. While this algorithm was developed for
Gaussian distributions, we can obtain a two-moment ap-
proximation for the Dirichlet distribution to deterministically
select samples from an uncertain probability distribution
since:

1) the Dirichlet distribution is well-approximated by a
mean and a covariance.

2) the samples Mi satisfy the requirements of a proba-
bility mass function, namely [15]:

∑
iMi = 1, and

0 ≤Mi ≤ 1
The first point is satisfied since the parameters αi can be
recovered from a set of Dirichlet-distributed random vari-
ables only using first and second moment information [16].
Thus, it remains to show that the Sigma Point samples in the
case of a Dirichlet satisfy a probability mass function subject
to an appropriate choice of the weights wi. The following
propositions (proves in the Appendix) show that the Sigma
Points generated for a probability distribution in fact satisfies
the assumptions of a probability mass function, subject to an
appropriate choice of weights.

Proposition 1: If E[p] and Σ are the mean and covariance
of a Dirichlet distribution, then each Sigma Point satisfies a
probability mass function (pmf); namely, each

Yi = E[p]± βΣ1/2
i (8)

satisfies 1T Yi = 1, where Σ1/2
i is the ith column of the

square root of the covariance matrix Σ
The following additional proposition constrains the choice of
the parameter β to ensure that the Sigma Points generated
completely satisfies the requirements of a probability mass
function.

Proposition 2: If E[p] and Σ are the mean and covariance
of a Dirichlet distribution, the maximum positive value for
the parameter β, βmax, that guarantees that each Sigma Point
Yi = E[p]± βmax,iΣ

1/2
i is a pmf, is given by

βmax,i =
1

|Σ1/2
ij |

min (E[p]i, 1−E[p]i) (9)

where Σ1/2
ij is the (i, j)th entry of the square root of the

covariance matrix Σ, and E[p]i is the ith row of the mean
probability vector. Then, βmax = mini βmax,i.

Based on this statistical description on the uncertainty in
the distribution E[p], the Sigma Point sampling algorithm
applied to uncertain MDPs selects the following Sigma
Points (note that each Sigma Point Yi in fact represents
a deterministic realization of a row of the uncertain state
transition matrix)

Y0 = E[p]

Yi = E[p] + βmax

(
Σ1/2

)
i
∀i = 1, . . . , N (10)

Yi = E[p]− βmax

(
Σ1/2

)
i
∀i = N + 1, . . . , 2N

Remark 1: The Sigma Point algorithm for an NS dimen-
sional vector requires 2NS + 1 total samples. Hence, even
for a 100-state system, only 201 total samples are generated.
Random sampling methods like MEDUSA [11] often use a
heuristic number of samples, or need large-scale Monte Carlo
investigation of the total number of simulations required
to achieve a desired confidence level since the sampling
is done in a completely random fashion. The Sigma Point
algorithm however, explores along the principal components
of the probability simplex identifying samples that have
a β deviation along those components, and so captures
the statistically relevant regions of uncertainty. Furthermore,
since the number of samples scales linearly with the number
of dimensions, the uncertainty can be absorbed readily in
more sophisticated problems, without necessarily adding
significant computation.
Remark 2: The two-moment approximation of the Dirich-
let distribution implies that there might be inaccuracies in
the third and higher moments of a reconstructed Dirichlet
distribution. However, the higher moments of the Dirichlet
decay to zero very rapidly (see for example Ref. [12]), and
experience has shown that the two-moment approximation is
quite accurate.

B. Robust Counterpart Using Sigma Point Sampling
The new robustness objective of Eq. (5) can now be

specified in terms of the finite number of Sigma Point
samples. Rather than solving the typically harder problem

J∗R = min
µ

max
A∈A

E Jµ(x0) (11)
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Algorithm 1 Sigma Point Sampling for Uncertain MDP
1: Select β = [0, βmax] using Proposition 2
2: Select uncertainty model for ith row of transition matrix

by choosing appropriate parameters α for the Dirichlet
distribution, Ai,· ∼ fD(p | α)

3: Calculate the mean and covariance

E[p] = E[Ai,·] = αi/
∑
i

αi

Σ = E[(Ai,· −E[p])(Ai,· −E[p])T ]

4: Generate the samples using the Sigma Point algorithm
according to Eq. (10)

5: Solve the robust problem using the Sigma Points and
Robust Dynamic Programming

J∗SP = min
µ

max
Yi

EJµ(x0)

over the entire parameters A ∈ A, the robust optimization is
solved over the restricted set of Sigma Points Y ⊆ A,

J∗SP = min
µ

max
A∈Y

E Jµ(x0) (12)

The full implementation of the Sigma Point sampling ap-
proach for an uncertain MDP is shown in Algorithm 1. The
choice of β and the selection of the Dirichlet distribution
fD(p | α) are made prior to running the algorithm. Using
the uncertainty description given by fD(p | α), the mean and
covariance are used to generate the Sigma Points Yi, which
are the realizations for each of the models of the uncertain
MDP. Robust Dynamic Programming [1] is used to find the
optimal robust policy.

IV. NUMERICAL RESULTS: MACHINE REPAIR PROBLEM

This section considers numerical examples using a ma-
chine repair problem adapted from Ref [17], and will inves-
tigate the case when there is uncertainty in the state transition
matrix of the system.

A machine can take on one of two states xk at time k:
i) the machine is either running (xk = 1), or ii) broken
(not running, xk = 0). If the machine is running, a profit
of $100 is made. The control options available to the user
are the following: if the machine is running, a user can
choose to either i) perform maintenance (abbreviated as
uk = m) on the machine (thereby presumable decreasing
the likelihood the machine failing in the future), or ii) leave
the maching running without maintenance (uk = n). The
choice of maintenance has cost, Cmaint, e.g., the cost of a
technician to maintain the machine.

If the machine is broken, two choices are available to
the user: i) repair the machine (uk = r), or ii) completely
replace the machine (uk = p). Both of these two options
come at a price, however; machine repair has a cost Crepair,
while machine replacement is Creplace, where for any sensi-
ble problem specification, the price of replacement is greater

than the repair cost Creplace > Crepair. If the machine is
replaced, it is guaranteed to work for at least the next stage.

For the case of the machine running at the current time
step, the state transitions are governed by the model

Pr (xk+1 = fails | xk=running, uk=m) = γ1

Pr (xk+1 = fails | xk=running, uk=n) = γ2

For the case of the machine not running at the current time
step, the state transition are governed by the following model

Pr (xk+1 = fails | xk=fails, uk=r) = γ3

Pr (xk+1 = fails | xk=fails, uk=p) = 0

Note that, consistent with our earlier statement that machine
replacement guarantees machine function at the next time
step, the transition model for the replacement is determinis-
tic. From these two models, we can completely describe the
transition model if the machine is running or not running at
the current time step:

Running (xk = 1) : A1 =
[

γ1 1− γ1

1− γ2 γ2

]
Not Running (xk = 0) : A0 =

[
γ3 1− γ3

1 0

]
The objective is to find an optimal control policy such that
uk(xk = 0) ∈ { r, p } if the machine is not running, and
uk(xk = 1) ∈ { m, n } if the machine is running, for
each time step. The state of the machine is assumed to be
perfectly observable, and this can be solved using Dynamic
Programming

Jk(i) = max
uk∈U

g(xk, uk) +
∑
j

AuijJk+1(j)


A. Uncertain Transition Models

In this numerical example, it is assumed that the transition
model A0 is uncertain; that is, there is uncertainty in the
likelihood of the machine failing after is repaired. This is a
credible assumption if the person repairing it is new to the
job, for example, or there is some uncertainty on the original
cause of the machine failure.

The robust control u∗R,k maximizes the objective function
over all matrices A0 in the uncertainty set A0 that minimize
the objective function

J∗k (i) = max
uk∈U

min
Ã∈A

g(xk, uk) +
∑
j

ÃuijJ
∗
k+1(j)


Note that since the transition model A1 is well-known, the
robust counterpart of the nominal problem only needs to be
formulated for the model A0.

The solution approach using Sigma Point Sampling gen-
erate realizations of the matrix A0 based on Algorithm 1,
and in particular, the Sigma Points were found by

Y0 = E[A0]

Yi = E[A0] + βmax

(
ΣA

1/2
)
i
∀i = 1, . . . , N (13)

Yi = E[A0]− βmax

(
ΣA

1/2
)
i
∀i = N + 1, . . . , 2N
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Fig. 1. The difference between the worst case objective through sampling
(blue) and Sigma Point sampling (red) decreases only slightly as the number
of simulations are increased significantly. The Sigma Point sampling strategy
only truly requires 5 samples to find the worst case objective of J∗ = 28,
but the line has been extended for comparison.

B. Numerical Results

The machine repair problem with uncertain A0 was
evaluated multiple times with random realizations for the
transition matrix A0, and compared with the Sigma Point
algorithm.

The main result comparing the Sigma Point approach to
random sampling is shown in Figure 1 where the worst case
objective (y-axis) is plotted as a function of the number of
samples required. The blue line is the worst case found by
using conventional sampling, and the red line is the Sigma
Point worst-case using β = 3. This choice of β was in fact
sufficient for this example to find the worst case of Jwc =
28. Note the slow convergence of the brute force sampling,
with a significant gap even with 1200 samples. The Sigma
Point only required 5 samples, since the uncertainty was only
in one transition model of dimension R2×2. Hence, Ns =
2 × 2 + 1 = 5. Note that the number of scenarios required
to find the worst case varied significantly with the choice
of hyperparameters αi of the Dirichlet distribution. When
αi ≈ 100, for example, the Dirichlet distribution has a much
smaller variance than when αi ≈ 10 and the total number
of samples required to find the worst case for αi ≈ 10 is
smaller than αi ≈ 100.

Figure 2 shows the performance of the worst case as a
function of the parameter β ∈ [0, 1]. The objective of this
figure is to show the tradeoff between protecting against
the worst-case and choice of the parameter β. Since the
Sigma Points only require a small number of samples to
find the worst case in this smaller machine repair example,
this tradeoff can be performed very quick.y

The worst case objective was found for each value of β
and is shown in the top figure. The bottom two subfigures
show the policy as a function of β. For β < 0.65, the optimal
(robust) policy is to perform maintenance, while if β ≥ 0.65,
the outcome of the maintenance is too uncertain, and it will

Fig. 2. Sigma Point sample tradeoff of robust performance (top subfigure)
vs. normalized β shows that increasing the robustness also decreases the
objective. The robust policy (bottom two figures) switches at β = 0.65.

be more cost effective (in a worst-case sense) to not perform
maintenance at all. Hence, there is a very discrete policy
switch at β = 0.65 that says that a different, decision should
be made in response to the high uncertainty in the transition
model.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a computationally tractable
technique for efficiently simulating an uncertain Markov
Decision Process. We have shown computational savings
over otherwise brute force numerical simulation, while at
the same time maintaining consistent performance with more
numerically intensive approaches. Further investigations on
the optimal choice for βmax for a Dirichlet distribution are
warranted.

Current work is addressing the case of uncertain rewards.
When the rewards are not well known, they can be approx-
imated by a Gaussian distribution with known mean and
variance [13]. Since the original Sigma Point algorithm was
designed for a Gaussian framework, it is rather natural to
extend this to sampling from both the Dirichlet distribution
(for the state transition matrix), and the Gaussian distribution
(for the rewards) using the Sigma Point algorithm. Another
immediate area of future work is extensions to the case of
time-varying uncertainty models and incorporating adapta-
tion of the uncertainty models. As additional observations
become available to update the uncertainty of the transition
models, the goal is to use this new information to generate
new policies, that should help reduce the potential conser-
vatism of otherwise worst-case policies.
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VI. APPENDIX: SIGMA POINT SELECTION PROOFS

This appendix shows that the Sigma Point selection algo-
rithm generates samples that are probability mass functions.
The first proposition shows that the row sum of the variance
of an uncertain probability mass function is identically zero.
This is then used to show that .

Proposition 3: (Row/column sum constraint of a proba-
bility mass function’s covariance matrix Σ) The row and
column sums of the entries of the covariance matrix of a
probability distribution Σ are equal to 0.
Proof: Given a probability mass function p =
[p0, p1, . . . , pN ]T , then the covariance matrix of this
pmf is given by Σ = E[(p−E[p])(p−E[p])T ]. However,
since p is a pmf, then pN = 1 −

∑
i pi, and thus the

covariance matrix Σ will not be full rank, implying that ∃v
(a left eigenvector) such that

vTΣ = λvT = 0 (14)

where λ is the eigenvalue, equal to 0 since the matrix Σ is
not full rank. One such eigenvector is the vector of ones,
1 = [1, 1, 1, . . . , 1]T

1TΣi = E

[
(p0 −E[p0])

N∑
i=0

(pi −E[pi])

]

= E

(p0 −E[p0])


∑
i

pi︸ ︷︷ ︸
=1

−
∑
i

E[pi]︸ ︷︷ ︸
=1




= 0

We can also show that the square root of this variance (found
for example by using Singular Value Decomposition) also
satisfies the property that 1T (Σ1/2)i = 0. Hence, these two
results show that

1T(p̄ + βΣ1/2) = 1Tp̄ = 1 (15)

and Proposition 1 holds.
An important point, nonetheless, is that an appropriate

selection for β is still required; while the pmf constraint
is implicitly satisfied by the above results, each entry is
not enforced to satisfy a valid probability: i.e., there is no
constraint on each probability to be non-negative or greater
(in magnitude) to 1, only the sum constraint is satisfied with
this approach.

Proposition 4: (Selection of β) If E[p] and Σ are the
mean and covariance of a Dirichlet distribution, the maxi-
mum positive value for the parameter β, βmax, that guar-
antees that each Sigma Point satisfies 0 ≤ Yi ≤ 1 is given
by

βmax =
1

|Σ1/2
ij |

min (E[p]i, 1−E[p]i) (16)

where Σ1/2
ij is the (i, j)th entry of the square root of the

covariance matrix Σ, and E[p]i is the ith row of the mean
probability vector
Proof: To ensure that

0 ≤ E[p]i ± βΣ1/2
ij ≤ 1 ∀i (17)

we can address each side of the inequality, and it follows
that the maximal β that guarantees that each entry of the
pmf is a valid probability is given by the minimum of these
two quantities,

βmax =
1

|Σ1/2
ij |

min (E[p]i, 1−E[p]i) (18)

Note that since E[p]i < 1 and typically Σ1/2
ij < E[p]i, the

value of βmax will generally be greater than 1.
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