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Abstract— Many methods and algorithms have been pro-
posed for control performance monitoring and process mon-
itoring. However, there are few methods available for synthesis
of different monitoring algorithms to form a control loop
diagnostic system. Determination of the underlying reason of
poor control performance is challenging. In this paper, we
investigate a novel data-driven Bayesian approach for control
loop diagnosis. The new approach can synthesize information
from different monitoring techniques to give an appropriate
inference even if the performance of each individual monitor
may be low. Some other merits of the new approach include,
for example, probabilistic inferences which can be easily used
by optimal decision making system, robustness to missing data,
and ability to incorporate a priori knowledge. Simulation of
Bayesian diagnostic system for a binary distillation column
is presented. Data missing handling feature using causality
structure and marginalization is discussed. Performance of
the Bayesian diagnostic system is examined under different
operating modes to demonstrate the information synthesizing
ability of the proposed approach.

I. INTRODUCTION

The main objective of control performance monitoring

and diagnosis is to provide an online automated procedure

that delivers information to plant personnel for determining

whether specified performance targets are being met by the

controlled process variables and that evaluates the perfor-

mance of control loop [1], as well as suggesting possible

problem sources and troubleshooting sequences.

A number of methods for control performance monitoring

have been proposed, such as minimum variance control

(MVC) benchmark, historical performance benchmark, user-

specified benchmark, etc [1], [2], [3], [4]. Some algorithms

can be found from a MATLAB based control performance

assessment toolbox [5]. Significant progress has also been

achieved in the development of process monitors, including

sensor monitors, actuator monitors, model validation moni-

tors, etc. However, most of the monitoring algorithms target

specific problems in control loops. The common practice was

that one monitoring algorithm was developed for one specific

problem [6].

There are also literatures discussing control loop diagno-

sis, which can be classified into quantitative model based,

qualitative model based, and process history based [7], [8],

[9]. These existing methods mainly focus on specific problem

sources, such as actuator problem, sensor bias, and process

model mismatch. Few have been reported for a systematic

way for control loop diagnosis [1], [10], [11].
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According to [6], there are several challenging issues

in synthesizing problem of control loop diagnosis. First,

although problem sources may be different, the symptoms

can be similar. Second, all processes operate in uncertain

environment to some extent, and the symptoms have proba-

bilistic interconnections with different problem sources. Thus

a solution should be built on a probabilistic framework. Last

but not least, how to incorporate a priori knowledge in the

diagnostic system to improve diagnosis performance is also

worth considering. Most of the existing monitoring methods

are data based. However, incorporating a priori knowledge

is not only helpful, but sometimes also necessary for a

meaningful diagnosis [6].

This paper develops a data-driven algorithm for control

loop diagnosis based on the novel framework proposed in [6].

A general description of the control loop diagnosis problem

is given in section II, and some presumptions of the monitors

are also made in this section. By following the data-driven

Bayesian method for fault detection [12], a systematic way

for control loop performance diagnosis and related issues are

discussed in section III. Simulation results of the proposed

Bayesian diagnostic system for a binary distillation column

are presented in section IV. Section V concludes this paper

with discussion on the simulation results obtained and future

work.

II. PROBLEM DESCRIPTION

Generally, a control loop consists of the following compo-

nents: controllers, actuators, process, and sensors, all subject

to disturbances. These components may all suffer from

certain problems. For example, a valve acting as an actuator

may suffer from stiction problem; the output of a sensor may

have bias error. All these problems may cause degradation

of the overall control performance, such as large variation,

oscillation, etc. Our goal is to determine the underlying

reason of poor control performance based on the results of

the monitors.

In this work, measurements of manipulated variables

(MVs) and controlled variables (CVs), nominal process

model, nominal disturbance model, and the nominal op-

erating point are assumed to be available. We further as-

sume that monitors are available for all components in the

control loop. They are control performance monitors, valve

stiction monitors, process model validation monitors, and

sensor bias monitors. These monitors, however, are subject

to disturbances and thus false alarms, and each monitor can

be sensitive to other abnormalities that it is not intended to

monitor.
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III. DATA-DRIVEN BAYESIAN APPROACH FOR CONTROL

LOOP PERFORMANCE DIAGNOSIS

Applications of Bayesian methods have been reported

in medical science, image processing, target recognition,

pattern matching, information retrieval, reliability analysis,

and engineering diagnosis [12], [13]. In the presence of noise

and disturbances, Bayesian inference provides a well suited

way to solve the process monitoring and diagnosis problem,

providing quantifiable measures of the uncertainty. Following

fault diagnosis approach of [12], this section introduces a

data-driven algorithm for control loop performance diagno-

sis.

A. Preliminaries

Before the Bayesian method is introduced, some concepts

need to be defined.

1) Mode m: Assume that the control loop under diagnosis

consists of components c1, c2, · · · , cn. All the components

are subject to malfunctions or errors. Each component is

said to have a set of possible operating status. For instance,

the sensor might be “biased” or “unbiased”. The control

loop diagnosis problem is to determine the true underlying

problem source of poor control performance. An assignment

of operating status to all components in the control loop is

called a mode, and denoted as m, for example, m:=(c1=well

tuned controller, c2=valve with stiction, · · · ). Mode in nor-

mal operation is denoted as NF (normal functioning), which

means that all the components in the control loop function

normally.

2) Evidence e: The monitor readings, called evidence or

observation, are inputs to the control loop diagnostic system,

and are denoted as e = (e1, e2, · · · , eL), where ei is the

output of the ith monitor, and L is the total number of

monitors. The vector e is also called the evidence vector.

Often the monitor readings, which are generally contin-

uous, are discretized owing to thresholding of residuals to

reduce false alarms. Also, the distribution of continuous

evidence may be difficult to describe with standard ones. For

example, the controller performance monitor may indicate

“optimal”, “normal”, or “poor”, depending on the thresh-

olds adopted. The evidence vector e may be e=(e1=optimal

control performance, e2=no sensor bias,· · · ). In this work,

monitor readings are all discretized.

3) Historical data D: Each sample Di in the historical

data set D consists of the evidence e and the underlying

mode m. This can be denoted as Di = (e, m), and the

set of all historical data samples available is denoted as

D = {Di}, i = 1, 2, · · · , N , where N is the number of

historical data samples. Historical data are retrieved from

the past data when both the mode of control loop and

the monitor readings are known, whether it is abnormal

or normal. However, even for medium sized systems there

are many possible combinations of abnormalities; thus it is

infeasible to collect data from all the possible modes of

a large-scale system. Further, there may be problems, or

combination of problems, which have not occurred before,

and hence no historical data are available for them. These

modes are all categorized as unconsidered (UC) mode.

Given current evidence e, historical data D, Bayes’ rule

can be stated as following:

p(m|e, D) =
p(e|m, D)p(m|D)

p(e|D)
, (1)

where p(m|e, D) is conditional probability of existence of

mode m in the control loop given current evidence e,

historical data D, which is also known as posterior proba-

bility; p(e|m, D) is conditional probability of having current

evidence e, conditioning on mode m with historical data

D, also known as likelihood probability; p(m|D) is the

prior probability of mode m; and p(e|D) is a scaling factor,

p(e|D) =
∑

m p(e|m, D)p(m|D). Note that historical data

are selectively collected when control loop operates under

different modes, i.e. selective data collection; therefore they

provide no information of prior probabilities of the abnor-

malities, and the priors of different modes are independent

of D [12], p(m|D) = p(m).

B. Estimation of likelihood probability

Since prior probabilities are determined by a priori in-

formation, and the scaling factor p(e|D) can be calculated

readily if the likelihood probabilities are known, the main

task of building a Bayesian diagnostic system is the estima-

tion of the likelihood probabilities with historical data D,

whose objective is to make the likelihood probabilities be

consistent with historical data D. Pernestal [12] presented

a Bayesian algorithm for fault detection and isolation. The

method can be extended to control loop performance diagno-

sis. According to the derivations of [12], the following result

can be obtained as the likelihood:

p(e = j|m = M, D) =
nj,M + αj,M

NM + AM

, (2)

where nj,M is the number of samples with the evidence

e = j, and mode m = M ; αj,M is the number of prior

samples that fall into the discretized evidence bin j under

mode M , and generally the prior samples are assumed to

be uniformly distributed with αj,M = 1 ; NM =
∑

j nj,M ,

AM =
∑

j αj,M . See Fig. 1 for illustration.

This is an concise yet intuitive result. The likelihood

probability is determined by both prior samples and histor-

ical data. As the number of historical data increases, the

likelihood probability will converge to the relative frequency

determined by historical data samples, and the influence

of prior samples will decrease. The number of prior sam-

ples is another interesting issue. Actually the prior samples

come from the likelihood derivation procedures. It can be

interpreted as prior belief of the likelihood distribution,

where uniform distribution indicates that prior likelihoods

are equal for all evidences of a given underlying mode. It

is important to set nonzero prior sample numbers; otherwise

the diagnostic system may yield unexpected results [12]. The

larger the prior sample number is, the stronger belief for the

prior likelihood distribution.
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p(e=2 |bias)=2/5
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p(e=2 |bias)=4/15

Fig. 1. Updated likelihood with historical data

Consider a SISO control loop under diagnosis with two

possible problematic components: a valve subject to possible

stiction problem, and a sensor subject to possible bias

problem. Each possible problematic component is assigned

with a monitor. Readings of both monitors are discretized

into two bins with predefined thresholds; therefore the overall

evidence space is discretized into four bins, as shown in

Fig. 1. The underlying system mode is set with m=(no

vale stiction, sensor bias). Each discretized evidence bin is

assigned with one prior sample, under the assumption of

uniformly distributed prior samples. Hence, αj,bias = 1,

Abias = 4. With the historical data collected under the same

mode, the likelihood probabilities can be updated using eqn.

(2), illustrated in Fig. 1.

C. Causality structure

In a control system, there might be some problems that

have never occurred before or did not occur when the

historical data were sampled, and therefore no historical

data are available for them. Diagnosis performance for these

problems may be poor, since all the likelihood probabilities

for the corresponding modes are the same. However, if a

priori knowledge of the control system structure is applied

to the diagnosis, the results can be improved dramatically.

A concept called causality structure [12] is introduced

here. Let e = (e1, · · · , eL) be an evidence vector, Q the num-

ber of modes, L the number of monitors, and C ∈ (Q × L)
a matrix. C is called a causality structure for the probability

distribution p(e1, · · · , eL|m), if for each Cj,i = 0, p(ei|m =
mj) = p(ei|m = NF ), which means that distribution of a

monitor reading ei is the same between mode NF and mode

mj , i.e., monitor ei is insensitive to mode mj . For instance,

the variance-based control performance monitor is insensitive

to the sensor bias. This provides us an opportunity to reuse

historical data from NF , which is quite easy to obtain.

We study a simple example to illustrate how to use the

causality structure. Consider the causality structure for a

SISO control loop. Assume that the sensor bias monitor is

insensitive to the controller tuning problem, and the variance-

based controller performance monitor is insensitive to a

biased sensor. Thus we can derive the causality structure

shown in Table I.

TABLE I

A TYPICAL CAUSALITY STRUCTURE

Sensor bias Controller performance
monitor e1 monitor e2

sensor bias m1 × 0
poorly tuned controller m2 0 ×

Each monitor reading is discretized into two bins, and

thus there are totally four possible evidence bins. Suppose

historical data from mode m1 and m2 are not available, and

readings of the sensor monitor and controller performance

monitor are independent, so

p(e|M, D) = p((e1, e2)|m1, D) = p(e1|m1, D)p(e2|m1, D).

Since the causality structure for m1 only implies that

p(e2|m1, D) = p(e2|NF, D), historical data from NF can

be reused for e2, but not for e1, and the likelihood probability

can be computed as (assuming uniformly distributed prior

samples with one sample in each of the four discretized

evidence bins):

p(e|m1, D) = p(e1|m1, D)p(e2|NF, D)

=
ne1,m1

+ αe1,m1

Nm1
+ Am1

ne2,NF + αe2,NF

NNF + ANF

=
0 + 2

0 + 4

ne2,NF + 2

NNF + 4
. (3)

Note in this equation, the prior sample number of a single

monitor is two, but not one. This can be seen from Fig. 1.

There are, for example, two prior samples for either e1 =
unbiased or biased.

Similarly, the likelihood under mode m2 is

p(e|m2, D) =
2

4

ne1,NF + 2

NNF + 4
. (4)

If the causality structure is not considered, the likelihoods

would be αk,M/(NM + AM ) = 1/4. We can see that by

using causality structure, it is possible to distinguish the two

modes. Otherwise, both the likelihood probabilities of m1

and m2 would have been the same, providing no difference

between the two modes in diagnosis.

In view of the above procedure, it can be seen that the idea

of causality structure is to reconstruct part of the evidence

distribution of a problematic mode by independency assump-

tion of certain monitors, a priori knowledge of insensitive

monitors to this mode, and then reuse of historical data

from NF mode. Although the overall joint distribution of

monitor readings is unknown, partly available distributions of

some monitor readings will distinguish one mode from other

modes even without sufficient historical data. Therefore, the

reconstructed mode can have different likelihood from the

other modes, and hence the diagnosis performance can be

improved.

The concept of causality structure can also be extended to

two problematic modes, not merely between NF mode and
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a problematic mode. For instance, it is readily to know that

the same sensor monitor should have the same distributions

under sensor bias mode and sensor bias plus valve stiction

mode, if the sensor shows the same bias under these two

modes. Thus the historical data from these two problematic

modes can also be reused for each other.

D. Partially missing data handling

It is not unusual that a variable may have missing data

in the historical data record. In the method derived in [12],

only complete historical data samples are considered. If any

variable has missing data, then the corresponding samples

in all other variables have to be omitted, which can affect

the diagnosis performance negatively. We solve this problem

by marginalization over all possible missing values. Due to

limitation of space, the detail of the derivation procedure is

not presented here. Instead, an example is used to illustrate

the result. Suppose that there are two monitors e1 and e2,

both with possible output 0 and 1, and part of the historical

data are missing in e2. By using the portion of the complete

data only, the likelihood of evidence (0,0), for example, is

p((0, 0)|m, D) =
n(0,0) + α(0,0)

Nm + Am

, (5)

where n(0,0) is the number of complete data samples with

evidence (0,0), and α(0,0) is the prior sample number. When

the portion of the incomplete data samples is also used, the

likelihood can be shown to be

p((0, 0)|m, D)

=
n(0,0) + α(0,0)

Nm + Am

·

(

1 +
n(0,×)

∑

e2
n(0,e2) + α(0,e2)

)

,(6)

where n(0,×) is the number of incomplete evidence corre-

sponding to (0,×), where × stands for monitor readings of

e2 that are missing. It can be seen that information from the

incomplete evidences (0,×) is useful when estimating the

likelihood probabilities.

The above procedure establishes an approach for control

loop diagnosis. Results from different monitors and a priori

knowledge of the control system structure can be synthe-

sized to give a more effective probabilistic diagnosis. Thus,

the Bayesian approach provides an appropriate solution for

control loop diagnosis, even in the presence of problematic

monitors, which will be demonstrated in next section through

a simulation example.

IV. SIMULATION EXAMPLE

A. Process description

To investigate performance of the Bayesian diagnostic

system for MIMO processes, we apply the algorithm to a

simulated binary distillation column [14]. The column has

five inputs, four of which are manipulated variables (MVs)

operated by a MPC controller. Of the ten outputs, three are

controlled quality variables (CVs). They are: top product

(distillate) quality measured as final boiling point (FBP top),

bottom product (pressure compensated) temperature (PCT

bottom), and column pressure. The system is subject to

FT

TC

Steam

Feed

PC

0-50% 50-100%

FC

LC

QT

Off Gas

Top Prod
TT

TT

PD
LC

UC

Fig. 2. Distillation column simulation system

several different problems. All the possible modes, and the

corresponding problematic components, are listed in Table

II.

TABLE II

OPERATING MODES

Mode Problematic components

NF None
m1 Poorly tuned MPC controller
m2 Feed temperature valve stiction
m3 Duty valve stiction
m4 FBP top & PCT bottom model mismatch
m5 PCT bottom model mismatch
m6 PCT bottom disturbance dynamic change
m7 Pressure disturbance dynamic change
m8 FBP top sensor bias
m9 Pressure sensor bias
UC Other unknown errors or combinations of errors

B. Monitor selection

To evaluate the synthesizing ability of the Bayesian di-

agnosis approach, monitors are chosen, some of which may

have high false-alarm/misdetection rate.

1) Controller performance monitor: The minimum vari-

ance control benchmark is adopted to evaluate control perfor-

mances for both univariate and multivariate cases. The FCOR

algorithm [2] is employed to compute control performance

indices based on both univariate CVs and multivariate CVs.

Note that the process delay d should be known to evaluate

control performance of univariate CV, but it is not well

defined under an MIMO system. Therefore, for univariate

performance monitoring of MIMO system, we select the pro-

cess delay d as the longest time delay between all the MVs

and that CV, and use this value to evaluate the univariate

control performance. Note that in this way, the univariate

performance index does not precisely reflect the performance

of the target CV. However, since the univariate performance

index reflects the predictability of a univariate time series

[15], we use it as a part of the predictability monitoring

scheme. Although imprecise, it is demonstrated that this
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information will be useful under the proposed synthesizing

approach.

2) Valve stiction monitor: For illustration purposes, we

consider the following simplified scenario: if a control loop

has oscillation, then the oscillation is caused either by valve

stiction or by external oscillatory disturbance. The latter has

the sinusoid form while the former does not.

If the CV and the MV oscillate sinusoidally, by plotting

CV versus MV, an ellipse will be obtained. It has been

observed that an ellipse will be distorted if the oscillation is

caused by valve stiction. The method adopted here is based

on the evaluation of how well the shape of the CV versus

MV plot can be fitted by an ellipse. An empirical threshold

of distance between each data point and the ellipse is used to

determine goodness-of-fit, and thereafter the valve stiction.

3) Process model validation monitor: The local approach

based on the output error (OE) method [16] is employed

to validate nominal process model. This method applies

to MISO systems. A MIMO system can be separated into

several MISO subsystems. Models of each MISO part can

be validated with the local approach.

4) Disturbance dynamics monitor: According to the as-

sumption made in section II, the nominal model for the

output disturbance, namely Gl, is available. Multiplying

residual of the process model with inverse of the disturbance

model yields input to the disturbance model ẽ(t),

ẽ(t) = G−1
l [y(t) − ŷ(t)], (7)

where y(t) is the process output, and ŷ(t) is the simulated

output. If there is no disturbance model mismatch, the

generated sequence should be white noise. So the distur-

bance model validation problem can be transformed into a

whiteness test problem. The index ẽT (t)R−1
ẽ ẽ(t) , which

should follow χ2 distribution, is used as the output of the

disturbance dynamics monitor, where Rẽ is variance of ẽ(t).
5) Sensor bias monitor: A state space model based an-

alytical redundancy method which eliminates the unknown

states is applied to detect sensor bias [17].

C. Diagnosis settings and results

Since the three quality CVs are of main interest, the

selected monitors mainly target these CVs, as shown in Table

III.

TABLE III

MONITORS SUMMARY

Evidence Monitor description

e1 Overall control performance monitor

e2, e3, e4 Univariate control performance monitors
for three quality variables

e5, e6 Valve stiction monitors for
the two possible problematic valves

e7, e8, e9 Process model validation monitors
for three quality variables

e10, e11, e12 Disturbance change detection monitors
for three quality variables

e13, e14, e15 Sensor bias detection monitors
for three quality variables

1 2 3 4 5 6 7 8 9 1011
0

0.5

1
NF

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4
Poorly tuned MPC

1 2 3 4 5 6 7 8 9 1011
0

0.1

0.2
Feed temp valve stiction

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4
Duty valve stiction

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4
FBP top & PCT bottom model

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4
PCT bottom model

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4
PCT bottom disturbance

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4
Pressure disturbance

1 2 3 4 5 6 7 8 9 1011
0

0.5

1
FBP top sensor bias

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4

Pressure sensor bias

1 2 3 4 5 6 7 8 9 1011
0

0.1

0.2
UC

Fig. 3. Average posterior probability assigned to each mode

The parameter settings of the Bayesian diagnostic system

are summarized in Table IV. Note that UC represents

both unknown problems and combination of two or more

problems occurring simultaneously, so data from PCT bottom

sensor bias, which represents unknown problems, and data

from simultaneous poorly tuned controller and pressure

sensor bias, which represents combination of two or more

problems, are represented by the UC mode.

TABLE IV

SUMMARY OF BAYESIAN DIAGNOSIS PARAMETERS

Discretizaion ki = 3, K = 315 = 14348907
Training data 300 samples for each mode, except UC

Prior sample Uniformly distributed with prior sample,
αk,B = 1, Ak,B = 14348907

Prior probabilities p(NF ) = 0.1, p(mother) = 0.09
Evaluation data 300 samples for each mode,

from training modes and UC

With the Bayesian diagnostic system, diagnosis results in

Fig. 3 are obtained for the evaluation data. In Fig. 3, the

title of each plot denotes the true underlying mode, and the

numbers on the horizontal axis stand for the diagnosed eleven

possible modes numbered according to the sequence shown

in Table II. In each plot, the probability corresponding to

true underlying mode is shown with gray bars, while others

are in dark bars. The final diagnosis result is determined

by identifying the mode with the largest probability. If the

largest probability happens to be the grayed one, then the

problem source is correctly identified. From Fig. 3, we can

see that all the true underlying modes are assigned with the

largest probabilities, except UC. Even in the presence of low
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Fig. 4. Diagnosis result of pressure sensor bias mode without considering
causality structure

performance monitors, the Bayesian approach can synthesize

information from these monitors to provide a good diagnosis

result. Performance of the diagnostic system for the UC
mode, however, is poor, which is due to lack of historical

data under that mode.

Furthermore, assume that historical data from pressure

sensor bias mode are not available. If causality structure is

not considered, the diagnosis result for pressure sensor bias

mode is shown in the upper panel of Fig. 4. Since there is

no historical data available for this mode, all the likelihood

probabilities are the same, and the diagnostic system can not

distinguish the true underlying mode from the other modes.

Then the performance of Bayesian diagnostic system with

the consideration of the causality structure is evaluated.

The causality structure in Table V can be obtained for the

pressure sensor bias mode. From the causality structure, we

TABLE V

CAUSALITY STRUCTURE FOR pressure sensor bias MODE

e1 e2 · · · e11 · · · e15

m9 0 0 · · · × · · · 0

have

p(e|m9, D)

= p(e1 · · · e10e12e13e15|m9, D)p(e11|m9, D)

= p(e1 · · · e10e12e13e15|NF, D)p(e11|m9, D) (8)

Applying eqn. (8) to compute likelihood probabilities yields

the diagnosis result for pressure sensor bias, shown in the

lower panel of Fig. 4. Clearly, the performance is much better

than the case without considering the causality structure.

V. CONCLUSIONS

In this paper, a novel Bayesian approach for control loop

diagnosis is presented. Bayesian inference is employed to

synthesize results of control and process monitors, together

with a priori knowledge of the control loop, to generate

an appropriate probabilistic diagnostic system. The method

is applied to a simulated binary distillation column, where

the feature of the Bayesian approach to incorporate a priori

knowledge, as well as to synthesize results from a variety

of low-performance monitors, is demonstrated. Diagnosis

results considering causality structure are shown to be bet-

ter than that without considering causality structure when

the historical data is incomplete. It is concluded that the

Bayesian approach is an appropriate solution for control

loop diagnosis. Our future work will include some related

theocratical problems, such as cross correlation between

monitor outputs, and temporal dependency of historical data

samples. Also, some practical implementation issues will be

investigated.
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