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Abstract— It is well known that the nonblocking supervisory
control problem is NP-hard, subject in particular to state
space explosion that is exponential in the number of system
components. The problem of state explosion is more challenging
in Timed DES than in untimed DES. In this paper we propose to
manage complexity by organizing the system as a Timed State
Tree Structure (TSTS). Based on TSTS we present an efficient
recursive algorithm that can perform nonblocking supervisory
control design (in reasonable time and memory) for systems of
state size 10

12 and higher.

I. INTRODUCTION

In the last two decades, Discrete Event Systems (DES)

have been studied by researchers from different fields, with

respect to modeling, analysis and control. Several models

have been proposed and investigated. These models can be

classified as untimed DES models and timed DES models [1].

In an untimed model, when considering the state evolution,

only the sequence of states visited is of concern. In a timed

model, both logical behavior and timing information are

considered. The main problem of supervisory control theory

(SCT) is that of optimal nonblocking supervisory control [1].

This problem is well known to be NP-hard [2]. This means

that realistic industrial problems (say with state set sizes of

1020 and higher), if formulated naively, may well exceed

the computational capacity available. It is therefore attractive

to explore structured system architectures with the property

that, if the given system can be modelled in the selected

framework, the required computations can be carried out

with greater efficiency. In addition, structured modelling may

confer advantages of model transparency and modifiability.

One instance is Leduc’s [3] Hierarchical Interface-based

Supervisory Control theory (HISC).

Statecharts [4] offer a compact representation of hierarchy

and concurrency in finite state machines (FSM). Here the

system state set is structured top-down into successive layers

of cartesian products (AND superstates) alternating with

disjoint unions (OR superstates). On this basis, Wang [5]

introduced State Tree Structures (STS) consisting of a hi-

erarchical state space or State Tree, equipped with dynamic

modules called holons . Gohari [6] formalized Wang’s model

in linguistic terms. In [5], however, AND states had to be

converted by synchronous product of factors into OR states

at a higher level before computations could effectively be

carried out; and [6] was similarly restricted to a purely OR

state expansion. By contrast, in [7] both AND and OR states

are treated on an equal footing, and AND states allow shared

events among the factors. Timed Statecharts were introduced

by Kesten and Pnueli [8]. They extend the traditional state-

charts by specifying time bounds for execution of transitions.

The semantics is defined with reference to a dense (real) time

domain. In this work we use tick as in [9], to represent the

‘tick’ of a global clock.

Borrowing from symbolic model checking [10] we employ

binary decision diagrams [11] (BDDs). BDD is a well-known

computational representation of the state set, a directed graph

representation of propositional logic formulas. A BDD is

appealing because, for a fixed order of arguments (variables),

it is a canonical form, and makes such tasks as testing

for set membership or set equality highly efficient. After

representing sets by BDD, the computational complexity

of our synthesis is no longer polynomial in the model’s

state size, but in the number of nodes in the relevant BDD.

As with other approaches to solving NP-hard problems, in

the worst case the number of BDD nodes (|nodes|) grows

exponentially in the number of variables and, therefore, is

comparable to the number of states (|states|) of the set it

represents. However, with TSTS, we propose an efficient en-

coding scheme such that in many cases |nodes| ≪ |states|.
In [12], [7], a complete symbolic approach for the optimal

supervisor design of untimed STS was proposed. In [13],

BDDs were used for Timed DES but the scope was limited to

flat system models. The aim of this paper is to extend the STS

framework of [12] to timed models. We use definitions from

[12] , to which readers are referred for further details. The

paper is organized as follows. Section II introduces the state-

based framework of TSTS. Section III presents the symbolic

representation of TSTS. In Section IV controllability and

state feedback control are defined for TSTS. Section V

introduces the symbolic synthesis algorithms for TSTS. We

report on a complex example in Section VI, and provide

conclusions in Section VII.

II. TIMED STATE TREE STRUCTURES

Let X be a finite collection of finite sets, called states.

Let x ∈ X and Y = {x1, x2, ..., xn} ⊂ X , x /∈ Y . If

x can be represented by the union (Cartesian product)

of states in Y , we call x an OR (AND) superstate and

each xi an OR (AND) component of x. Also call x a

parent of any xi and xi a child of x. All other states in

X are called simple states. Say X is a structured state

set. Formally, we define M : X → {and, or, simple}
as the mode function and E : X → 2X as the expansion

function, with E(x) :=

{

Y, if M(x) ∈ {and, or};

∅, if M(x) = simple.
, where ∅ denotes the empty set. Let R ⊂ X . Write

MR : R → {and, or, simple} as the restriction of M to R,

and ER : R → 2R as the restriction of E . The reflexive and

transitive closure of E is written E∗. That is, E∗(x) − {x}
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is the set of all descendants of x, while x is an ancestor of

states in E∗(x) − {x}. Now we can define the state tree by

recursion.

Definition 1 (State Tree) A state tree is a 4-tuple

(X,xo,M, E), where X is a finite structured state set with

X = E∗(xo) and xo ∈ X is the root state.

ST = (X,xo,M, E) is a state tree if

1. (terminal case) X = xo, or

2.(recursive case) (∀xi ∈ E(x0))ST
xi =

(E∗(xi), xi,ME∗(xi), EE∗(xi)) is also a state tree, where

(∀xi, xj ∈ E(x0), xi 6= xj)E
∗(xi) ∩ E∗(xj) = ∅ and

⋃

xi∈E(x0)
E∗(xi) = X − {x0}. Say ST

xi is a child state

tree of xo in ST, rooted by xi.

A well-defined state tree must also satisfy (∀x ∈ X)M(x) =
and & xi ∈ E(x) ⇒ M(xi) = or. That is, all AND

Fig. 1. Recursive definition of state tree

components must be OR superstates. We assume all state

trees are well-defined. In addition, we declare that ST is the

empty state tree if X = ∅, and write ST = ∅. An example

is shown in Fig 1.

Definition 2 (Sub State Tree) Let ST = (X,xo,M, E) be

a state tree, and let Y ⊆ X . subST = (Y, xo,MY , E ′) is

a sub state tree of ST if subST is an empty state tree ∅
or a well-defined state tree with E ′ : Y → 2Y defined by
{

E ′(y) := E(y), if MY (y) ∈ {and, simple};

∅ ⊂ E ′(y) ⊆ E(y), if MY (y) = or.
for all y ∈ Y . Trivially, ST itself is a sub state tree of

ST. Denote by ST (ST) the set of all sub state trees of

ST. Let ST1,ST2 ∈ ST (ST). Define ST1 ≤ ST2 iff

ST1 ∈ ST (ST2). To measure the size of ST (ST), we use

the function count, defined recursively along the sub state

tree ST1 ∈ ST (ST) such that: count(ST1) =






∏

∀xi∈E(x0)
count(ST

xi

1 ), if M(x0) = and
∑

∀xi∈E(x0)
count(ST

xi

1 ), if M(x0) = or

1, if M(x0) = simple
Trivially, count(∅) = 0. Say subST is a basic sub state tree

of ST if count(subST) = 1. Write B(ST) for the set of

all basic sub state trees of ST. A basic sub state tree is the

“smallest” nonempty element in ST (ST). It is equivalent

to a state of FSM in describing system behavior. A simple

way of defining the STS behavior is to assign transitions to

each element in B(ST). However, the size of B(ST) can

be so large for complex systems that the assignment may

be infeasible to carry out. Instead, we introduce the concept

of timed holon, the local behavior, and then build the global

behavior structurally.

Definition 3 (Timed Holon) A Timed Holon H is a 5-tuple

H := (X,Σ, δ,Xo,Xm), where X , the finite state set, is

the disjoint union of external state set XE and internal

state set XI ; and Σ, the event set, is the disjoint union of

boundary event set ΣB and internal event set ΣI . The

event tick which represents the ‘tick’ of the global clock

is included in Σ. The transition structure δ : X × Σ → X
is a partial function; it is the disjoint union of the internal

transition structure δI : XI × ΣI → XI and the boundary

transition structure δB ; δB is again the disjoint union of

two transition structures :

- δBI : XE × ΣB → XI (incoming boundary transitions)

- δBO : XI × ΣB → XE (outgoing boundary transitions)

Write δ(x, σ)! if δ(x, σ) is defined. We require the transition

structure to be deterministic. Xo ⊆ XI is the initial state

set, where Xo has only the target states of incoming

boundary transitions if δBI is defined. Otherwise Xo

is a selected nonempty subset of XI . From now on ,

write δBI : XE × ΣB → Xo (pfn). Xm ⊆ XI is the

marker state set, where Xm has only the source states

of the outgoing boundary transitions if δBO is defined.

Otherwise Xm is a selected nonempty subset of XI . Write

δBO : Xm × ΣB → XE (pfn).

Note that an event in Σ can be controllable or uncontrollable

or the tick event. (Σ = Σu ∪ Σc ∪ {tick}). We have also a

subset of events called forcible events Σfor ⊂ Σu ∪ Σc. A

forcible event is one that can preempt a tick of the clock

(Chapter 9 of [1]).

To complete the general definition of timed holon

we impose a final technical condition, to exclude the

physically unrealistic possibility that a tick transition

might be preempted indefinitely by repeated execution

of an activity loop within a fixed unit time interval.

A timed holon is said to have an activity loop if

(∃x ∈ X)(∃s ∈ (Σ − {tick})+)δ(x, s) = x. (Σ+

denotes the set of all finite symbol sequences, of the form

σ1σ2...σk where k ≥ 1 and σi ∈ Σ.)

We declare that all timed holons must be activity-loop-free,

namely (∀x ∈ X)(∀s ∈ (Σ − {tick})+)δ(x, s) 6= x.
Note that a timed holon never stops the clock, meaning that

at any state some transition σ ∈ Σ is eligible which can be

a tick or some other event.

An example of a timed holon is displayed in Fig. 2.

In this example XI = {0, 1, 2},XE = {3, 4, 5},ΣB =
{d, e, f},ΣI = {a, c, tick},X0 = {0, 2} and Xm = {1}.

For each OR superstate y in the state tree

ST = (X,xo,M, E), a timed holon Hy =
(Xy

E ∪ Xy
I ,Σy, δy,Xy

o ,Xy
m) is said to be matched to

y if

. internal structure matches, i.e., Xy
I = E(y).

. external structure matches. Let x be the nearest OR

ancestor of y on ST, i.e., x < y and M(x) = or. Then
{

Xy
E = ∅, if x does not exist

Xy
E ⊂ E(x), if x exists

.

Suppose a timed holon Hx is also matched to the OR

superstate x. We say Hx is the parent timed holon of Hy
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Fig. 2. An example of a Timed Holon

and Hy the child timed holon of Hx. Notice that if x
exists, Xy

E ⊂ E(x) implies that the superstate y cannot be

a boundary state in (Xx
o ∪ Xx

m), i.e., all boundary states of

matched timed holons must be simple states. Matched timed

holons limit vertical communication to be only between

parent/child timed holons.

Definition 4 (Boundary Consistency) Let Hx =
(Xx,Σx, δx,Xx

o ,Xx
m) and Hy = (Xy,Σy, δy,Xy

o ,Xy
m) be

the timed holons matched to x and y, respectively. Hx is

the parent timed holon of Hy . As illustrated in Fig. 3, there

are only two possible cases
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Fig. 3. x and y relation

1. y ∈ E(x) = Xx
I as in case (a) of Fig. 3, or

2. (∃z,M(z) = and)y ∈ E(z)&z ∈ E(x) = Xx
I as in (b).

In both cases, there is exactly one representative superstate

of y in Xx
I . Denote the representative superstate ŷ by

ŷ =

{

y, if y ∈ Xx
I

z, if y ∈ E(z) and z ∈ Xx
I

.

Then the pair (Hx,Hy) is boundary consistent if

- (State consistency) The external states of Hy are those

connected with the superstate ŷ at Hx.

- (Event consistency) The boundary events of Hy are

internal events of Hx, i.e., Σy
B ⊆ Σx

I . More precisely, the

boundary events are those events which point to or leave

the superstate ŷ at Hx.

- (Boundary transition consistency) The incoming/outgoing

boundary transitions of Hy are consistent with those of the

superstate ŷ at Hx.

Definition 5 (Timed State Tree Structure (TSTS))

A timed state tree structure (TSTS) is a 6-tuple

(ST,H,Σ,∆,STo,ST m), where

- ST := (X,xo,M, E) is a state tree;

- H := {Ha|a ∈ X&M(a) = or} is the set of timed holons

assigned to the OR superstates in ST;

- Σ is the set of events occurring in H;

- ∆ : ST (ST) × Σ → ST (ST) is the transition function;

- STo ∈ ST (ST) is the initial state tree;

- ST m ⊆ ST (ST) is the marker state tree set.

G = (ST,H,Σ,∆,STo,ST m) is a timed state tree

structure if

1. (Boundary consistency) all parent-child pairs in H are

boundary consistent, and

2. (No-Activity coupling) No events of an inner transition

structure except tick can be shared among those timed

holons matched to the children of an AND superstate.

Formally, for all superstates a 6= b with matching timed

holons Ha,Hb ∈ H, we require Σa
I ∩ Σb

I = {tick}.

It has been shown by an example in [1] that if two

timed holons have shared events other than tick, then their

synchronous product may stop the clock, i.e. there may exist

some states in their synchronous product where no events are

defined. It has also been shown [1] that if two timed holons

have no shared events other than tick, then their synchronous

product will not stop the clock. So the no-activity coupling

condition guarantees the following proposition.

Proposition 1 A TSTS never stops the clock. �

A simple example is shown in Fig. 4. We use the graphical

notation of statecharts (see [4]) to draw our TSTS model.

b


0


2


3


5


a


0
 1


d
1
 d
3


c


d
2


B
A


R


d
b
1
 b
2


x


y
 z


tick
 w


s
 s


v


4
1


tick
 tick


tick
 tick


v


R


A
 B


a
 b
U


b
1
 b
2


0
1
 3
U
 2
 U


c
 U
 d


d
1
 d
2
 d
3
U
 U


4
 5
 U


X


X


U
 U
 0
 1


Fig. 4. TSTS model and its State Tree

The dynamics of TSTS, given by a function ∆, is defined

as follows.

Definition 6 (∆) Let ST1 ∈ ST (ST) and σ ∈ Σ. Define

the total function

∆(ST1, σ) := ReplaceSourceG,σ(ST1 ∧ EligG(σ))

EligG(σ) ∈ ST (ST) is the largest sub state tree of ST

that allows σ to happen. ST1 ∧EligG(σ) is also a sub state

tree because (ST (ST),≤) is a lattice. If p is any source

state on the tree ST1 ∧ EligG(σ) such that δx(p, σ)! for

some timed holon Hx, the function ReplaceSourceG,σ(.)
just replaces p by its target state δx(p, σ) to yield another

sub state tree. In other words, ∆(ST1, σ) is the largest sub

state tree (wrt ≤) in which the system could reside if event

σ occurred at ST1. Because in general count(ST1) ≥ 1,

one can look on ST1 as the symbol of B(ST1), its set of

basic sub state trees. So δx(p, σ) embodies all transitions

labelled by σ in the set B(ST1), i.e., our ∆ function is

computationally more efficient than the δ function of FSM,
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which computes only one transition at a time. An example

of the ∆ function for the TSTS in Fig 4 is given in Fig

5. In this example, ∆(ST1, tick) embodies all transitions

labelled by tick event in the set B(ST1), i.e. δb1
I (0, tick) = 1,

δb2
I (3, tick) = 4 and δd

BI(c, tick) = d1.

Following a dual route, we can define the function Γ, which
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Fig. 5. ∆(ST1, tick)

is more important for the synthesis of TSTS.

Definition 7 (Γ) Backward Transition Function Let ST1 ∈
ST (ST) and σ ∈ Σ. Define

Γ(ST1, σ) := ReplaceTargetG,σ(ST1 ∧ NextG(σ))

NextG(σ) = ∆(ST, σ) is the largest sub state tree

of ST that the event σ is targeting. The function

ReplaceTargetG,σ(.) just replaces target states with source

states to obtain a new sub state tree. Thus, Γ(ST1, σ) is the

largest sub state tree of ST that could reach a sub state tree of

ST1 if event σ occurs. Normally Γ(∆(ST1, σ), σ) 6= ST1.

III. SYMBOLIC REPRESENTATION OF TSTS

A. State Space

Let G = (ST,H,Σ,∆,STo,ST m) be a timed state tree

structure with ST = (X,xo,M, E). A predicate P defined

on B(ST) is a function P : B(ST) → {0, 1}. Also a

predicate can be identified by a set of basic state trees, say

BP , such that BP := {b ∈ B(ST)|P (b) = 1}.

Let b ∈ B(ST). We say predicate P holds, or is satisfied

for b, i.e. b |= P if and only if b ∈ BP . Let ST1 ≤ ST .

We say predicate P holds, or is satisfied for ST1, i.e.

ST1 |= P if and only if B(ST1) ⊆ BP . Write Pred(ST ) as

the set of all predicates defined on ST . Consistently, write

(∀P ∈ Pred(ST ))∅ |= P , where ∅ is the empty state tree.

We define a partial order on Pred(ST ) by use of subset

containment: P1 � P2 iff P1 ∧ P2 = P1. That is, P1

precedes P2, or is stronger than P2, if and only if (∀b)b |=
P1 ⇒ b |= P2. Say P1 is a subpredicate of P2.

The following function θ encodes a sub state tree of ST to

the predicate it satisfies. A state variable for a timed holon

H(or an OR superstate x) is a variable whose range is the

internal state set of H(or the set of all children of x).

Definition 8 (θ) Denote by vx the state variable for the OR

superstate x. Let ST1 = (X1, xo,M1, E1) be a sub state

tree of ST. Define θ : ST (ST) → Pred(ST) recursively

by θ(ST1) :=






∧

y∈E1(x0)
θ(ST

y
1), if M(x0) = and;

∨

y∈E1(x0)
((vx0

= y) ∧ θ(ST
y
1)), if M(x0) = or;

1, if M(x0) = simple.

where ST
y
1 denotes the child state tree of ST1 that is rooted

by y. Notice that if xo is an OR superstate, we can exploit

the tautology (
∨

y∈E(x0)
(vx0

= y) ≡ 1) to simplify θ(ST1).
For any set BP of basic state trees, its predicate representa-

tion is given by P :=
∨

b∈BP
θ(b). If BP = B(ST1), then

P := θ(ST1).
In the TSTS G, the initial predicate Po := θ(STo), and

the marker predicate Pm :=
∨

∀STi∈ST m
θ(STi). Now we

can rewrite the plant TSTS by G = (ST,H,Σ,∆, Po, Pm),
where STo and STm are replaced by their predicate coun-

terparts.

B. Encode Γ

Let x be an OR superstate. Call vx the normal state

variable of x. Also denote by v′
x the prime state variable

of x. In a transition relation, vx will be used to record target

state information, while v′
x is for the source states.

Following the method of [12], we encode the entire set

of transitions labelled by a given event σ as a triple

(Nσ,vσ,S ,vσ,t). Nσ(v′
σ,S ,v) is the transition relation with

v
′
σ,S the set of prime variables for the source states where

δ(., σ)! and v the set of all variables in G. vσ,t is the set of

normal variables for those target states which δ(., σ) hits.

Definition 9 (Γ̂) Let σ ∈ Σ and (Nσ,vσ,S ,vσ,t) represent

the transitions labelled with σ. Γ̂ : Pred(ST) × Σ →
Pred(ST) is defined by1

Γ̂(P, σ) := (∃vσ,T (P ∧ Nσ))[v′
σ,S → vσ,S ]

Notice that P [v′
σ,S → vσ,S ] means replacing all prime

variables in v
′
σ,S by their respective normal variables in vσ,S .

IV. CONTROLLABILITY AND STATE FEEDBACK CONTROL

Let G = (ST,H,Σ,∆, Po, Pm) be a timed state tree

structure. The reachability predicate R(G, P ) is defined to

designate all the basic state trees that can be reached from

initial basic state trees via state trees satisfying P [12].

The weakest liberal precondition is the predicate transformer

Mσ : Pred(ST) → Pred(ST) defined for basic state trees

as follows: b |= Mσ(P ) iff ∆(b, σ) |= P . Notice that if

∆(b, σ) = ∅, then for any P , ∆(b, σ) |= P .

Before defining controllability, we need to define a new pred-

icate called forcing-free predicate(F). We adopt the concept

of forcing from [9] and adjoin it to the STS framework of

[12].

Definition 10 (F) Forcing-free predicate. For all b ∈ B(ST)

F(b) =

{

1, if (∄σ ∈ Σfor) ∆(b, σ)! ;

0, otherwise.

Any state b is forcing-free if there is no forcible event

defined there. We also let f : B(ST) → Σ denote the

state feedback control (SFBC) for G, where for b ∈ B(ST ):

f(b) ⊇

{

Σu, if F(b) = 0 ;

Σu ∪ {tick}, if F(b) = 1
. The event σ is

enabled at b if σ ∈ f(b), and is disabled otherwise. For

1If vx is a state variable appearing in predicate P and the range of vx

is E(x) = {y1, y2, ..., yn}, ∃vxP =
W

1≤i≤n
P [yi/vx] where P [yi/vx]

is the resulting predicate after assigning yi to vx.
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event σ introduce the predicate fσ : B(ST ) → {0, 1} defined

by fσ(b) = 1 iff σ ∈ f(b). Thus the SFBC f can be

implemented by the set of predicates {fσ|σ ∈ Σ}. The

closed-loop transition function induced by the SFBC f is

given by ∆f (b, σ) =

{

∆(b, σ), if fσ(b) = 1;

∅, otherwise
. Unlike

∆,∆f need be defined only on basic state trees. We write

the controlled TSTS as G
f = (ST,H,Σ,∆f , P f

0 , Pm) with

P f
o � Po for the closed system supervised by the SFBC

f . Notice that in general some initial basic state trees are

excluded from Gf . To choose P f
o (� Po), the allowable

initial basic state trees, is also the responsibility of the

synthesizer.

Definition 11 A predicate P ∈ Pred(ST) is weakly

controllable wrt. G if (1)(∀σ ∈ Σu)P � Mσ(P ), and

(2)(P ∧ F) � Mtick(P ).
Thus a predicate P is weakly controllable if at a basic

state tree b that satisfies P an uncontrollable event occurs,

that uncontrollable event changes the state of the system

to another basic state tree that also satisfies P . Also the

occurrence of tick if there is no forcible event defined at b
should lead to a basic state tree that also satisfies P .

The reason we drop the reachability condition P �
R(G, P )in [13] is that the computation of reachable predi-

cate is expensive and, as will be seen later, unnecessary for

the synthesis of SFBC f .

Proposition 2 Let P be a weakly controllable predicate of

G. Then R(G, P ) is controllable. �

Given a predicate, it is easier to verify its weak control-

lability than to verify its controllability. What one needs is

just some local information, as to obtain Mσ(P ) only the

one step transition function ∆ is called. By avoiding the

expensive computation of the reachable predicate R(G, P ),
we gain computational efficiency. By Theorem 1 we will

show that it is adequate just to get a weakly controllable

predicate . This result guarantees that given a weakly con-

trollable predicate P , there exists a SFBC f to implement

its reachable subpredicate R(G, P ). Therefore, this theorem

underlies the synthesis procedure. A similar result was given

in [13]. However, that result requires a controllable predicate

P , which is computationally more expensive to verify.

Theorem 1 Let P ∈ Pred(ST) and P ∧ P0 6= false.

Then P is weakly controllable if and only if there exists

a SFBC f for G such that R(Gf , true) = R(G, P ), where

G
f = (ST,H,Σ,∆f , P f

0 , Pm) and P f
0 = P ∧ P0. �

Note that even though P may not be reachable, the weak

controllability of P guarantees that its reachable subpredicate

R(G, P ) can be implemented by a SFBC f . Thus the ex-

pensive computation of R(G, P ) can be completely avoided.

Now suppose P is not weakly controllable. Denote the family

of weakly controllable subpredicates that are stronger than

P by

CP(P ) = {K ∈ Pred(ST )|K � P & Kweakly controllable}

Proposition 3 CP(P ) is noneempty and is closed under ar-

bitrary disjunctions. In particular CP(P ) contains a (unique)

supremal element supCP(P ). �

To compute supCP(P ), we define a predicate transformer

[.] in G by R → [R], inductively as follows:

1. b |= R ⇒ b |= [R]
2. b |= [R] & b 6= ∅ & σ ∈ Σu &∆(b′, σ) = b ⇒ b′ |= [R]
3. b |= [R] & b 6= ∅ & b′ |= F & ∆(b′, tick) = b ⇒ b′ |= [R]
4. No other basic state trees b satisfy [R].

In other words, [R] holds all the basic state trees that can

reach R only by uncontrollable paths, i.e. uncontrollable

event or tick when there is no forcible event.

Theorem 2 supCP(P ) = ¬[¬P ] �

The coreachability predicate is defined to hold for all basic

state trees from which some bm |= Pm can be reached

via trees satisfying P [12]. A predicate P is nonblocking

for G if R(G, P ) � CR(G, P ), i.e., each basic state tree,

reachable from an initial basic state tree by a path on which

all basic state trees satisfy P , can reach a marker basic state

tree by a path on which all trees satisfy P .

A predicate P is coreachable for G if P � CR(G, P ).
Notice that the coreachability of P implies the nonblocking

of P , as in general R(G, P ) � P , but verifying the

coreachability of P requires less computation. A SFBC f
for G is nonblocking if R(Gf , true) � CR(Gf , true).
Theorem 3 Let P ∈ Pred(ST) and P ∧ P0 6= false.

Then there exists a nonblocking SFBC f for G such that

R(Gf , true) = R(G, P ) if P is weakly controllable and

coreachable. �

Again suppose P is not weakly controllable or not core-

achable. Denote the family of weakly controllable and core-

achable subpredicates that are stronger than P by C2P(P ).
To compute supC2P(P ), define a predicate transformer ΩP :
Pred(ST) → Pred(ST) in G by

ΩP (K) = P ∧ CR(G, supCP(K)) = P ∧ CR(G,¬[¬K])

Proposition 4 Let K0 = P and Ki+1 = ΩP (Ki). Then

K = limi→∞Ki exists and supC2P(P ) = K. �

Here the limit is achieved in a finite number of steps.

V. SYMBOLIC SYNTHESIS

Let G = (ST,H,Σ,∆, Po, Pm) be a timed state tree

structure. A specification S ⊆ ST (ST) is given as a set

of illegal sub state trees of ST, which the supervisor must

forbid the system from visiting.

Of course, S can be encoded by S =
∨

∀T∈S
θ(T) . Then,

our synthesis objective is to find the largest subpredicate of

¬S that is both nonblocking and controllable.

Based on Proposition 4, we have a synthesis algorithm for

computing supC2P(P ):
Algorithm 1

1) K0 = P
2) Ki+1 = ΩP (Ki) = P ∧ CR(G,¬[¬Ki])
3) If Ki+1 = Ki, then supC2P(P ) = Ki. Otherwise, go

back to step 2.

The algorithm terminates because Pred(ST) is a finite set.

In Algorithm 1, each computation of ΩP (Ki) needs to call

[.] and CR(G, .) once. So the faster these two functions
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execute, the better. The following algorithms are immediate

from the definition of [P ] and CR(G, P ).
Algorithm 2: [P ]
1)K0 = P
2)Ki+1 = Ki ∨ (

∨

σu∈Σu
Γ̂(Ki, σu))

3)Ki+1 = Ki+1 ∨ (F ∧ Γ̂(Ki+1, tick))
4) If Kn+1 = Kn, then [P ] = Kn. Otherwise, go back to

step 2.

In Algorithm 2, line 2 deals with uncontrollable events while

line 3 considers the tick transitions whose source states are

forcing-free.

Algorithm 3: CR(G, P )
1) K0 = P ∧ P0

2) Ki+1 = Ki ∨ (P ∧
∨

σ∈Σ Γ̂(Ki, σ))
3)If Kn+1 = Kn, then CR(G, P ) = Kn. Otherwise, go

back to step 2.

By employing BDD as the representation of predicates, we

can compute supC2P(P ) by combining Algorithms 1,2 and

3.

VI. EXAMPLE

Consider the workcell shown in Fig. 6, consisting of six

machines and a buffer of size n. A workpiece produced by

M1,M2 or M3 is placed in the buffer and is consequently

available for further work by M4, M5 or M6. The required

specification for the buffer is not to overflow or underflow.

We first model each machine as a timed holon with about

Infinite Source

M4


M1
 Buffer


M2


M3
 M6


M5


Fig. 6. 6-machine workcell

90 states. These timed holons are not the same because each

machine has its own temporal behavior. The only shared

event between these holons is tick. So we can model the

whole system by TSTS. We modelled the cell as a TSTS of

size 1012.The state tree of this TSTS is shown in Fig 7. Each

machine Mi and the buffer are OR superstates. Our BDD-

based program computed the controller in about 5 minutes

on a personal computer with centrino CPU and 1 GB of

RAM while the TDES existing software TTCT (Chapter 9

of [1]) cannot possibly find the controller for a system of

this size. Our program also provides the control function for

each controllable event. This function can determine if that

event is disabled or forced at each state of the system.

VII. CONCLUSIONS

In this paper, we introduced a timed version of STS [12],

TSTS. The model includes a global clock and we proved that

TSTS will not stop the clock. In order to perform control

design efficiently,we employed a symbolic representation

of TSTS and developed a recursive algorithm. The state
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Fig. 7. State Tree of 6-machine workcell

space explosion problem is effectively managed. TSTS can

model complex real time systems with both hierarchical and

concurrent structures but without shared events among the

modules except tick. It is hoped to relax this restriction

in future work. Our symbolic synthesis can compute the

optimal nonblocking supervisor for some large TDES, with

reasonable usage of memory and time. The controller can be

implemented in a straightforward way by control functions.

The symbolic approach should clear the way for the indus-

trial application of the TSTS framework.Work continues on

new recursive algorithms to make the synthesis faster and

less demanding of memory.
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