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Abstract— Feed-forward/feedback control techniques that
utilize Lyapunov-based control laws are implemented on a high
recovery reverse osmosis desalination plant model. A detailed
mathematical model of a high recovery reverse osmosis plant is
developed. This model incorporates the large spatial variations
of concentration and flow-rate that occur in membrane units
during high recovery operation. Bounded nonlinear feedback
and feed-forward controllers are developed and applied to
this system. The application of these controllers is demon-
strated in the context of a high recovery reverse osmosis
process simulation. The scenarios demonstrate the ability to
compensate for the effects of large time varying disturbances
in the feed concentration on specific process outputs with feed-
forward/feedback control.

I. INTRODUCTION

System automation and reliability are crucial components

of any modern reverse osmosis (RO) plant. The operational

priorities are personnel safety and product water quality,

while also meeting environmental and economic demands.

It is highly desirable to operate RO processes at high

recovery, where most of the feed water volume is processed

to low salinity product water, due to decreased environmental

and economic costs associated with brine disposal [1], [2].

Automated RO plants that operate at high recovery, however,

can become more vulnerable to disturbances in feed water

quality, total dissolved solids (TDS) concentrations, and

temperature. Such disturbances often appear in usual feed

water sources, due to temporal and spatial variations [3], [4].

These disturbances can cause undesirable behavior in product

flow-rate, internal system pressure, and brine flow-rate.

Several contributions have been made in the literature

to process control of RO systems. The first paper which

proposed an effective closed-loop control strategy for RO

utilized multiple SISO control-loops [5]. Step tests were used

to perform system identification, resulting in a model that is a

linear approximation around the operating point. The control

algorithm of MPC was applied to the resulting linear model

in [6] and [7]. Experimental system identification and MPC

applications can also be found in [8] and [9]. The work of

[10] and [11] implements minimal feedback control on RO

desalination systems, powered by renewable energy sources,

in the form of digital on/off switching. Some hybrid systems

modeling and control work has been published, such as in

[12]. A steady-state model similar to the one developed in

this work can be found in [13]. Preliminary results on fault

tolerant control of RO systems can be found in [14]. Despite
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these efforts, at this stage there has been no work on model

based control for high recovery RO processes.

The goal of this work is to develop model based nonlinear

feed-forward/feedback control structures for high recovery

RO while accounting for such practical issues as sampled

measurements and large time-varying feed disturbances. In

order to accomplish this goal a detailed mathematical model

of a high-recovery RO plant must first be developed. This

model must adequately describe the evolution of process

states in time, and it must also account for the spatial

variation of TDS and flow-rate inside the membrane units.

Most RO models simple enough for control purposes, such

as those found in [15], consider a well mixed model with

a single value for concentration on the retentate side of

the membrane. However, under high recovery operation the

gradients along the length of the membrane unit can be

quite significant. As fluid flows axially along the module the

bulk concentration increases, the flow rate decreases, and the

local permeate flux decreases [13]. The model developed in

the present work includes appropriate differential equations

that account for these gradients. A Lyapunov-based nonlinear

controller is then applied to this high recovery RO model.

One of the main objectives of a controller in high recovery

RO is to reject disturbances caused by feed water variation.

Feed disturbances could cause undesired fluctuations in the

product flow rate or the internal pressure. To accomplish

disturbance rejection, the control law includes both feed-

back and feed-forward components. The feed water stream

concentration can easily be measured in practice, so the

examples presented in this work explore the ability of the

proposed control method to reject such disturbances.

II. PROCESS DESCRIPTION AND MODELING

Fig.1 shows a schematic of an elementary RO desalination

process. This is a single-unit RO system with no pre-

treatment or post-treatment units. Feed brackish or seawater

enter the system through the high pressure pump. This high

pressure water then flows across an RO membrane, and

low salinity product water permeates through the membrane.

Concentrated brine then exits the membrane module and

passes through a throttling valve to be discharged at atmo-

spheric pressure. The RO plant consists of a high pressure

pump, two automated valves, a spiral wound membrane unit,

required plumbing, and tanks. The valve settings can be

manipulated in real time based on measurement information

which includes the flow velocities and feed concentration.

The first principles model of this system is based on a

macroscopic kinetic energy balance, a local mass balance,
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Fig. 1. Single membrane unit high recovery reverse osmosis desalination
process. The two actuated valves act as manipulated inputs.
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Fig. 2. An expanded view of a spiral wound membrane module and typical
concentration and velocity profiles inside the module.

and a microscopic mass shell balance. This model assumes

an incompressible fluid and constant internal volume and

mass. It is assumed that the water in the module travels in a

plug flow with no back-mixing or axial diffusion. It is also

assumed that the retentate TDS in the membrane module can

be approximated by a linear relation to the osmotic pressure

[16]. Skin friction through the piping and the membrane

module are considered negligible relative to the hydraulic

losses in the throttling valves and across the membrane.

The energy balance consists of two nonlinear ordinary

differential equations (ODEs) in time where the velocities

of the bypass and retentate stream are the states. Each ODE

is derived from an energy balance around an actuated control

valve [17]. Two ODEs that can describe the process depicted

in Fig. 1 take the form:

dvb

dt
=

Ap

ρV
(P − 1

2
v2

bev1)

dvr

dt
=

Ap

ρV
(P − 1

2
v2

rev2)
(1)

where vb is the bypass velocity, vr is the retentate velocity,

Ap is the pipe cross sectional area, V is the total internal

volume, ρ is the fluid density, and P is the internal pressure.

ev1 and ev2 are friction loss factors for the actuated valves

and act as manipulated inputs. These two ODEs are not

explicitly coupled, however, coupling does occur through the

pressure term, P . In this work the skin friction is assumed

negligible, and this assumption is reasonable for systems

with high internal pressure, and a short pipe runs such that

the pressure drop due to skin friction is small compared to

the internal pressures. In this case, P takes the same value

from the pump to the valves. The external pressure is taken as

atmospheric pressure. P in this work is an algebraic variable

whose value depends on the system states and changes with

time. P is a function of feed concentration Cf , vb, and vr.

Specifically, P at each time is obtained via solving a local

mass balance and a microscopic mass shell balance in space.

The local mass balance around the bypass line and feed

line junction allows the calculation of the feed velocity to

the membrane module, vmf , given the bypass and retentate

velocities from (1):

vf = vb + vmf (2)

where vf is the constant velocity of the feed stream.

It is critical in a high recovery system, where the concen-

tration and velocity in the module change significantly along

the axis of flow, to accurately describe the concentration and

velocity profiles along the membrane module. In order to

model these profiles a shell balance is performed across the

membrane to generate a two state ODE system. An expanded

view of an unwound spiral-wound membrane module and a

drawing depicting typical concentration and velocity profiles

in a module can be seen in Fig. 2. The internal compartment

of the membrane module is simplified to a rectangular space.

A steady-state shell balance is performed on this space

assuming radially well mixed plug flow. A quasi-steady state

assumption is made on this system such that disturbances

on the system will have a time scale that is slow relative

to the time scale of the plug flow in the membrane unit.

It is possible to extend these results to include a transient

term in the shell balance, where P still remains an algebraic

variable. The shell balances are based on the conservation of

TDS mass and water mass inside the membrane module. The

differential volume for the shell balance has the dimensions

W by H by δz, where δz is an infinitesimal length in

the z direction. W is the membrane width (W = Am/L,

Am is the membrane area). The derivation assumes that

dissolved solids are completely rejected, and that only water
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permeates the membrane at a flux approximated by Jw =
Km(P − K∆πCz), where Jw is the permeate flux, Km is

the overall mass transfer coefficient, K∆π is a constant that

relates TDS to osmotic pressure, and Cz is the concentration

along the z-axis in the membrane. The result of the shell

balance is the following two coupled ODEs in space and

three boundary conditions (owing to the fact that P is an

algebraic variable):

dCz

dz
=

Cz

vz

Km(P − K∆πCz)

ρH

dvz

dz
= −

Km(P − K∆πCz)

ρH
Cz(z=0) = Cf

vz(z=0) = αvmf

vz(z=L) = αvr

(3)

where z is the direction of flow through the membrane,

vz is the velocity of flow in the membrane along the z-

axis, and H is the height of the membrane channel. The

boundary conditions arise when (3) is coupled with (1)

and (2). Equation (3) is solved at each time step as we

integrate (1) in time. The solution to the ODEs of (3) is

complicated by the fact they must satisfy three boundary

conditions, two at the inlet, and one at the outlet owing to

the fact that P is an unknown algebraic variable. The feed

concentration, Cf , represents a boundary condition at z = 0
(at the membrane inlet) provided as a time varying parameter.

The feed velocity to the module, vmf , provides the velocity

boundary condition at z = 0. Retentate velocity, vr, provided

from (1) is a boundary condition at the membrane outlet,

x = L, where L is the membrane length in the z direction.

The parameter α is the ratio of the pipe cross sectional area

to the membrane channel cross sectional area. Pressure is the

unknown variable in time that must be altered in order to find

the solution to (3). The solution to (3) is found at each time

by using a type of shooting method [18] where the system

pressure is adjusted until all three boundary conditions are

satisfied. This system pressure is then plugged into (1) for

the next step forward in time.

A step-by-step discussion of the algorithm used to com-

pute the solution of the open-loop model of (1), (2), and

(3) is presented to clarify the method employed in this

work. An assumption is made that the profiles of Cz and

vz change only with respect to z within each integration

step in time. It is also assumed that Cf changes slowly

relative to the residence time in the module. This allows

the independent solution of (3) at each time. In order to

satisfy this requirement practically, measurements must be

taken on a faster time scale than rate of change of the feed

disturbance. Also, residence time in the module must be short

compared to the feed disturbance time scale. A large well-

mixed holding tank placed before the feed can act as a filter

to eliminate fast time-scale disturbances.

In order to solve the system of equations presented in (1),

(2), and (3) numerically, the following algorithm is applied.
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Fig. 3. Bypass velocity, vb, profiles versus time; Open-loop (solid line),
closed-loop feedback control (dotted), feed-forward/feedback control with
vb and vr as controlled outputs (dashed), feed-forward/feedback control
with P and vr as controlled outputs (dash-dotted).

1) Initial conditions for vb and vr are chosen.

2) vmf is computed from (2).

3) Given vmf , Cf , and a guess value for P , a solution to

(3) is computed numerically.

4) The resulting vz(z=L) is compared to αvr, and P is

adjusted via shooting method until vz(z=L) is equal

to αvr.

5) The value of P resulting from step 4 is used in (1) to

integrate numerically one step forward in time.

6) The results of step 5 provide updated values of the

states, vb and vr, and the algorithm returns to step

1 using these values as new initial conditions. This

process is repeated until the desired integration time is

reached.

The open-loop simulation results can be seen as the solid

line in Figs. 3 through 6. The simulation is run at high re-

covery for a time of 10 min with a time varying disturbance

on Cf as defined in Table I. While this disturbance is at a

higher frequency than would usually occur in practice, the

ability to reject this disturbance will in general signify a

control method that is also able to handle lower frequency

disturbances. It can been seen that vb and vp oscillate due

to the disturbance, but the oscillations are not large relative

to the steady-state values for these states. However, Fig. 5

shows wide swings in the internal pressure for the open-

loop case. This type of behavior could lead to safety issues

if the pressure exceeds the safety rating of hoses, fittings, or

pressure vessels. This motivates the use of feedback control

to reduce the effects of feed disturbances on the process.

The potential manipulated inputs to the system are the

friction loss factors for the valves (ev1 and ev2). Valves

can be manipulated in practice by an automated electric

motor that partially opens or closes the valves. The measured
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Fig. 4. Retentate velocity, vr , profiles versus time; Open-loop (solid line),
closed-loop feedback control (dotted), feed-forward/feedback control with
vb and vr as controlled outputs (dashed), feed-forward/feedback control
with P and vr as controlled outputs (dash-dotted). The dash-dotted and
dashed line overlap in this figure.

outputs are the bypass velocity (vb), retentate velocity (vr),

and internal pressure (P ). The super script ss corresponds to

the high recovery steady-state values for this system when

Css
f = 10000 mg/L, a brackish feed water source. Operation

at this point provides a recovery of 91%.

TABLE I

PROCESS PARAMETERS AND STEADY–STATE VALUES

ρ = 1000 kg/m3

V = 0.01 m3

vf = 4.0 m/s
Ap = 1.27 cm2

Am = 13 m2

Km = 9.218× 10−9 s/m
K∆π = 78.7 Pa/(mg/L)
Cf = 10000 + 1500 sin(0.05t) mg/L
H = 1.0 mm
L = 5.0 m
α = 0.049
Css

f
= 10000 mg/L

ess
v1

= 3.57× 107

ess
v2

= 1.92× 108

vss
b

= 0.7 m/s

vss
r = 0.3 m/s

vss
p = 3.0 m/s

P ss = 8.61× 106 Pa

One control objective is to stabilize the process at the

desired retentate velocity, vr, and operating pressure, P , in

the presence of large time varying disturbances in the feed

concentration Cf . This configuration would be used on a

system that operates close to the maximum allowable internal

pressure. The internal pressure often needs to be below a

specified value for safety reasons (safety ratings for fittings
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Fig. 5. Internal pressure, P , profiles versus time; Open-loop (solid line),
closed-loop feedback control (dotted), feed-forward/feedback control with
vb and vr as controlled outputs (dashed), feed-forward/feedback control
with P and vr as controlled outputs (dash-dotted).

and pressure vessels), and at high recovery an RO plant

may operate close to this safety threshold. Another control

objective could be to stabilize the process at the desired

retentate velocity, vr, and desired product flow rate, vp. This

type of disturbance rejection may be used on RO systems

that are designed for extremely high pressures, and allows

for a consistent delivery of product water. The controller will

use both ev1 and ev2 as manipulated inputs.

III. FEEDBACK CONTROLLER SYNTHESIS

To present results in a convenient form, the model of (1) is

written in a deviation variable form around the desired steady

state. This is defined as x = [x1 x2]
T where x1 = vb − vss

b

and x2 = vr − vss
r . The plant can then be described by the

following non linear continuous-time system:

ẋ(t) = f(x(t)) + g(x(t))u(t) + w(x(t))d(t)

|ui| ≤ umax
i

(4)

where x(t) ∈ ℜ2 denotes the vector of process state

variables, u(t) is a vector of inputs where u(t) ∈
[−umax

i , umax] ⊂ ℜ2 denotes the ith constrained manip-

ulated input, u1(t) = ev1 − ess
v1 and u2(t) = ev2 − ess

v2,

and d(t) denotes the disturbance on the system, d(t) =
P − P ss. The disturbance in this system originates from

the feed concentration, Cf , but d(t) is expressed in terms

of P because Cf acts on P through (3). The value of

umax
i is taken as 5 × 109. The numerical values of u can

become quite large because the manipulated input represents

a resistance to flow. A valve would be considered completely

closed at an infinitely large value, and the value must be

greater than zero which represents a completely open valve.

The control objective is to maintain specific outputs at
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Fig. 6. Product velocity, vp, profiles versus time; Open-loop (solid line),
closed-loop feedback control (dotted), feed-forward/feedback control with
vb and vr as controlled outputs (dashed), feed-forward/feedback control
with P and vr as controlled outputs (dash-dotted).

their desired values in the presence of large time varying

disturbances on the feed concentration. The state feedback

control problem where measurements of all process states are

available for all times is considered because these velocities

can be readily measured in practice. d(t) is available as a

measurement of Cf , and Cf can be used to calculate P ,

and hence, d(t). Since d(t) is readily available f̂(x(t)) =
f(x(t)) + w(x(t))(d(t)) is defined.

Next, a Lyapunov-based controller that enforces asymp-

totic stability in the presence of actuator constraints is

synthesized. First a quadratic Lyapunov function of the

form VL = xT PLx is defined where PL is a positive-

definite symmetric matrix. This Lyapunov function is used

to synthesize a bounded nonlinear feedback control law (see

[19], [20], and [21]) of the form:

uk = −r(x, umax)LgVL (5)

where

r =
L∗

f̂
VL +

√

(L∗

f̂
VL)2 + (umax|LgVL|)4

(|LgVL|)2(1 +
√

1 + (umax|LgVL|)2)
(6)

and L∗

f̂
VL = L

f̂
VL + αVL, α > 0. Lf and Lg are the

standard Lie derivatives for the vector functions f and g.

The scalar function r(·) in (5) and (6) can be considered as

a nonlinear controller gain.

If the value of d(t) is available at each time this Lyapunov-

based feedback controller includes a feed-forward compen-

sation component. In this case the controller is updated with

the latest disturbance information to reject the effects of the

disturbance on the states, vb and vr. However, if the value of

d(t) is not available for measurement at each time, P = P ss

for the control law and the controller acts in a standard

Lyapunov-based feedback manner. In this case control action

is not taken until the states have moved away from the

steady-state values due to the disturbance, and the control

action does not completely compensate for the disturbance.

IV. SIMULATION RESULTS

A. Feedback Control

The first simulation scenario involves using the Lyapunov-

based control law presented in (5). This scenario considers

the same disturbance as in the open-loop case. The states

are sampled at a rate of one measurement per second. The

control action for the manipulated inputs is computed once

per second based on these measurements. This control action

is implemented for the duration of the sample time, which is

one second, in a sample-and-hold fashion. The disturbance

is not measured in this case. The value of P used in f̂(x(t))
is P ss for all t, and the controller does not completely

compensate for the disturbance on Cf .

The closed-loop simulation results can be seen as the

dotted lines in Figs. 3 through 6. The manipulated inputs

can be seen in Fig. 7. The states, vb and vr, and the product

flow, vp, oscillate at a marginally lower magnitude than

those of the open-loop case, so the feed back control is

able to slightly damp out the effects of the disturbance. If

the gain on the controller is increased by changing PL, it

is possible to decrease the disturbance effect further at the

expense of higher control actions and possible instability at

this sampling rate. However, under closed-loop operation the

pressure oscillates at a somewhat higher magnitude than the

open-loop case, and this may not be acceptable for safety

reasons. This type of feedback control may be useful for

the case where regulating the states and product flow rate is

more important than the internal pressure, for example, when

the system is being operated at a pressure far below its rated

maximum. However, the poor performance of feedback alone

motivates the addition of feed-forward compensation to the

controller that takes advantage of Cf measurements.

B. Feed-Forward/Feedback Control: vb and vr as Controlled

Outputs

The second simulation scenario involves using the

Lyapunov-based control law presented in (5), with feed-

forward compensation. The advantage of controlling the

states, vb and vr, at their steady state values is that the

product flow rate, vp also remains at the desired steady-

state value due to conservation laws. For this scenario the

time varying nature of Cf is the same as in the open-loop

case. Measurements of the states and the disturbance, Cf , are

sampled at a rate of one per second. At each sample time

a control action is computed and implemented in a sample-

and-hold fashion. At each sampling time (1), (2), and (3) are

solved for the parameters contained in f̂(x(t)) corresponding

to the current Cf value and the desired vp and vr values. This

can be done with the follow steps:

1) Choose set points for vb and vr, in this case 0.7 and

0.3 m/s respectively.
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2) Solve (2) for vmf .

3) Find the appropriate P , with shooting method, to

satisfy all the boundary conditions for (3).

4) Set (1) equal to zero, and solve for enom
v1 and enom

v2 .

These are the nominal values for the manipulated

inputs that will compensate for the current disturbance,

Cf (t), and are components of f̂(x(t)).

The control law in (5) is used to compute a feedback

control action based on the current f̂(x(t)) obtained from

the above algorithm. This control action is added to the

nominal enom
v1 and enom

v2 values, and implemented on the

valves. This process is repeated at each sample time to obtain

a feedback control action with feed-forward compensation.

The manipulated inputs can be seen in Fig. 7 and compared

to Fig. 7 the control actions are larger; yet they are within

reasonable actuator limits.

The simulation results can be seen as the dashed lines

in Figs. 3 through 6. The values of vb, vr, and vp all stay

very close to the steady-state points given in Table I, and the

effects of the disturbance are effectively damped. A shorter

sampling interval would reduce the disturbance effects even

further. In this case, the value of P swings sharply in order

to compensate for the changing feed conditions, Cf (t). To

achieve the desired recovery of over 90% even when the

Cf (t) is much higher than Css
f requires very high pressures.

This application would be desirable only when product flow

rate is a critical parameter that cannot be disturbed, and the

RO system is designed to handle such high internal pressures.

C. Feed-Forward/Feedback Control: P and vr as Controlled

Outputs

The third simulation scenario does not fall directly un-

der the Lyapunov-based feedback/feed-forward framework

utilized in the previous two simulations, however, it is an

important one from a practical point of view. For safety

reasons, the large internal pressures exemplified in the previ-

ous examples motivate the use of feed-forward compensation

that maintains P (t) at a constant value, P ss. In order to

accomplish this, another variable (either vb or vr) must

be used to compensate for the effects of Cf . vr is often

constrained due to the membrane module capacity, so vb is

an excellent candidate for this role. The bypass velocity can

vary widely with little to no ill effect on the system: vb is

readily recycled, there are usually no downstream lines that

depend on vb, and there are no safety issues associated with

wide vb variations.

The third simulation scenario involves using a Lyapunov-

based control law similar to the one presented in (5). Again,

Cf is the same as the previous scenarios, and measurements

of the states and disturbance are obtained at a rate of one

sample per second. Given current data acquisition and control

hardware this is a reasonable sampling rate, and in practice

sampling could be much more frequent. The control action

is implemented in a sample-and-hold fashion.

The framework for the feedback control with feed-forward

compensation for P and vr is slightly different than the one

used in the previous two examples. At each sampling time
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Fig. 7. Manipulated inputs for the Lyapunov-based feedback controller with
no feed-forward compensation with vb and vr as the controlled outputs
(a). Manipulated inputs for the feed-forward/feedback controller with vb

and vr as the controlled outputs (b). Manipulated inputs for the feed-
forward/feedback controller with P and vr as the controlled outputs (c).
ev1 is the solid line, and ev2 is the dashed line.
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(1), (2) and (3) are solved for the steady-state corresponding

to the current Cf value and the desired P and vr values.

This can be done with the following steps:

1) Choose set points for P and vr, in this case 8.6 ×
106 Pa and 0.3 m/s respectively.

2) Solve (3) with the following two boundary conditions

using shooting method where an initial guess is made

on vz(z = 0):

a) Cz(z = 0) = Cf

b) vz(z = L) = αvr

3) The resulting value of vz(z = 0) from the previous

step is used to calculate vmf

4) vmf is used with (2) to calculate a desired value for

vb. This vb and the set point for vr designate a new

desired operating point where P (t) = P ss

5) Set (1) equal to zero, substitute in the values for P ,

vr, and vb, and solve for enom
v1 and enom

v2 .

The control law in (5) is then used to compute a control

action based on this new operating point provided from the

above algorithm. This control action is added to the enom
v1 and

enom
v2 values from the above algorithm, and implemented on

the valves. This process is repeated at each sample time to

obtain a new operating point and compute a control action

that has feed-forward and feedback components. In other

words, at each sampling time the steady state problem of

(1), (2), and (3) is solved to find the desired operating point

where P (t) = P ss and vr(t) = vss
r , and a control action

from a Lyapunov-based control law is implemented based

on this new operating point. Manipulated inputs resulting

from this framework, ev1 and ev2, are shown in Fig. 7.

The closed-loop feed-forward/feedback control with P and

vr as controlled outputs can be seen as the dash-dotted line

in Figs. 3 through 6. In this case the P stays very close

to the desired set point, and the effects of the disturbance

on pressure and retentate velocity are largely damped out.

To maintain this pressure, however, the bypass velocity,

vb, now varies to a large degree to act as a buffer and

absorb the effects of the disturbance. The manipulated input

ev1 varies widely to accomplish this. This type of feed-

forward/feedback control is the best to use in a situation

where the plant is operating close to the high pressure

constraints, which is usually the case at very high recoveries.

This type of control is desirable because the bypass velocity

can vary widely with little to no ill-effects on the system:

vb is readily recycled, there are usually no downstream lines

that depend on vb, and there are no safety issues associated

with wide vb variations.

V. CONCLUSIONS

The goal of this work was to develop model based

nonlinear feed-forward/feedback control structures for high

recovery RO desalination while accounting for such practical

issues as sampled measurements and large time-varying feed

disturbances. In order to accomplish this goal a detailed

mathematical model of a high-recovery RO plant was first

developed. The proposed model adequately describes the

evolution of high recovery process states in time, and also

accounts for the spatial variation of TDS and flow-rate

inside the membrane unit. Nonlinear Lyapunov-based feed-

back and feed-forward controllers were implemented on the

high recovery RO system in three simulation examples. The

additional feed-forward component in the controller was able

to compensate for large time varying disturbances in the feed

concentration.
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