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Abstract

In this paper, the problem of mapping and planning

in an uncertain environment is studied. A hybrid

Bayesian/ frequentist formulation of the simultaneous

planning, localization and mapping (SPLAM) prob-

lem is presented wherein the environment is modeled

as a stationary, spatially uncorrelated random process

whose stationary probabilities are fixed but unknown,

and have to be estimated as the autonomous system

moves through the environment and makes observa-

tions using its sensors. The environmental random pro-

cess is estimated using stochastic approximation algo-

rithms. Under a certain “reliable sensor assumption”,

it is shown that the mapping algorithms converge with

probability one, and that the convergence of the map-

ping algorithms is independent of the planning pol-

icy, as long as it is non-anticipative, akin to the cele-

brated “Separation Principle” in Classical Linear Con-

trol theory. Further, the computational burden of the

mapping algorithms is significantly reduced when com-

pared to Bayesian SPLAM techniques.

1. Introduction

In this paper, the problem of mapping and plan-

ning in an uncertain environment is considered. The

uncertainty of the autonomous system is modeled as

a completely known Markov decision process while

the environment is modeled as a stationary, spatially

uncorrelated (independent) random process whose

parameters are unknown and have to be estimated

while the system navigates through the environment.

It is assumed that there is error in observing the

environment. The observation model is assumed to be

known, given the location of the autonomous system. A

frequentist (stochastic approximation based) approach

is presented for the estimation of the environment

process, i.e., the mapping problem. It is shown that
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under a certain “Reliable Sensor Assumption” the

estimation and planning algorithms are guaranteed to

converge with probability one. Moreover, it is shown

that the convergence of the estimation algorithms are

completely independent of the planning algorithms and

thus, satisfy a “Separation Principle” as in classical

linear control theory. It is further shown that the

computation burden of the algorithms are significantly

less when compared to Bayesian SPLAM techniques.

The problem of simultaneous localization and

mapping (SLAM) or additionally simultaneous plan-

ning, localization and mapping (SPLAM) has received

considerable attention in the Robotics community in

the past several years . The generic SLAM problem

consists of an autonomous system navigating in an

unknown environment, which it is trying to map while

simultaneously localizing itself with respect to the

map that it is building. This creates a philosophical

“chicken and egg” problem which leads to a very

high dimensional computational problem [1–4]. In

most SLAM techniques, the localization and mapping

problem is posed as a Bayesian filtering problem

wherein the environment is considered to be a fixed but

unknown parameter. There are two basic approaches

to solving the Bayes filtering problem. the first

alternative is to use the Kalman filtering technique

which is applicable to linear-Gaussian systems [4–7].

However, this method cannot accommodate cases

where the distributions are non-Gaussian and cannot

provide a solution to the so called “data association”

problem [2, 8]. The second method consists of solving

the Bayesian filtering problem using particle filtering

techniques [10]. These methods can accommodate the

multi-modal nature of the probability distributions and

the data association problem gracefully [2, 12]. The

basic drawback with the Bayesian formulation of the

SLAM problem is that the estimates of the various

environmental components (features) become corre-

lated even though their measurements are mutually

independent. This is a basic structural property of the

Bayesian formulation of the SLAM problem [1–4, 12].
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The correlation between the environmental compo-

nents can be eliminated by using Rao-Blackwellized

particle filters that keep track of the whole trajectory

of the robot instead of just the current pose [3, 12].

However, in this case the “curse of dimensionality” in

the environment is traded off for the “curse of history”

and can be a big limitation in large environments.

Thus, the filter has to estimate a very high dimensional

probability distribution on the environment which

becomes increasingly computationally intractable as

the size of the environment increases [2, 3, 12, 13]. The

addition of planning to the SLAM problem, resulting

in the SPLAM problem, adds further to the complexity

of the problem [14–17]. In fact, the planning problem

on its own is computationally quite intractable under

uncertainty. In this paper, an alternative to the Bayesian

formulation of the SPLAM problem is proposed. In

this formulation, the environment is modeled as a

stationary but unknown random process that has to be

estimated as the autonomous system moves through

it and makes observations of the environment. It is

assumed that the robot localizes in the environment

based on a few landmarks located throughout the

environment (which is the Bayesian SLAM problem

but with very few parameters compared to case when

the whole environment is considered to be an unknown

parameter), and then maps the rest of the environment

based on this estimate using frequentist methods

(stochastic approximation methods). This problem

formulation ensures that the estimates of the landmarks

and the environmental components never get correlated

and hence, each individual environmental component

can be estimated completely independently of the

other components. This results in the computational

complexity of the formulation being linear in the

environmental components as opposed to exponential

for the Bayesian formulation. Further, it is shown that

the mapping algorithms converge regardless of the

planning policy, as long as the planning is not antici-

pative, i.e., does not depend on the future. the closest

in philosophy to our methodology is the DenseSLAM

method which too localizes the robot with respect to

a sparse set of landmarks and then, maps the rest of

the environemnt based on this estimate [18]. However,

the mapping in this methodology is done in a Bayesian

fashion (as opposed to frequentist in our method) and

hence, the convergence of the map estimatescannot be

guaranteed.

The rest of the paper is organized as follows. In

section II, the hybrid methodology for the simultane-

ous mapping, localization and planning problem is pro-

posed and the strong consistency of the mapping al-

gorithms, and their separation from the planning algo-

rithms, established. In section III, a computer simula-

tion of the implementation of the methodology to a sim-

ple SLAM problem is presented in order to verify the

theoretical results of the paper.

2. Mapping and Planning: Imperfect State

Sensing

Let the environment consist of a set of land-

marks Θ = {θ1, · · · ,θK} and the stationary environ-

mental process composed of independent components,

Q = {q1,q2, · · · ,qM}. Note that the set of landmarks

in the environment in general would be much smaller

when compared to the full environment, i.e., K << M.

Let the state/ pose of the autonomous system be denoted

by s. In the following, the hybrid SPLAM methodology

is outlined and the convergence of these algorithms an-

alyzed. In the following we shall use state and pose of

the autonomous system in an interchangeable fashion,

and the reader is advised that they are synonymous in

the context of this paper. We would like to stress here

that we shall not consider any specific planning al-

gorithm in this paper, only show that the mapping

and planning problems can be solved independent

of each other without affecting convergence.

2.1. Mapping and Localization

The environment as mentioned above is partitioned

into a set of discrete-valued deterministic landmarks,

and a stationary environmental process which is char-

acterized by the probabilities:

P(Q/Q′) = P∗(Q) =
M

∏
i=1

p∗(qi). (1)

The probabilities p∗(qi) are fixed but unknown and

have to be estimated during the course of the algorithm.

The environment observation model is as follows. Let

p(Q̂/Q,s) denote the sensor observation model, i.e., the

model represents the probability that an observation, Q̂,

is made when the environment is actually at the state Q

given that the observation is made from state s. Further,

it is assumed that the environmental observation model

can be factored as follows:

p(Q̂/Q,s) =
M

∏
k=1

p(q̂k/qk,s), (2)

where q̂k is the noise corrupted observation of the kth

environmental component, i.e., the observation of the

individual environmental components are independent

of each other. Thus, the observation model for the kth
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environmental component is represented by the stochas-

tic matrix (since the rows of the matrix add to one),

A(k)(s) = [pk
i j(s)] = p(q̂k = i/qk = j,s).

At any instant of time, an estimate of the location of the

robotic pose and the environment needs to be formed.

Let F t = {(Θ̂0, Q̂0), · · · ,(Θ̂t , Q̂t)} denote the history of

the algorithm till time t, where Θ̂t denotes the obser-

vation of the landmarks at instant t. The belief on the

state/ pose-landmark-environment triple is then made in

the following fashion:

First, a belief bt(s,Θ) is formed on the state-landmark

pair using only the observations of the landmark accord-

ing to the standard Bayes filter,

bt(s,Θ) = ηP(Θ̂t/Θ,s)∑
s′

p(s/s′,ut−1)bt−1(s
′,Θ),

(3)

where η is a suitable normalization constant. Then, a

belief of the environment given the state s is formed us-

ing the stationary environment process for Q as follows:

bt(Q/s) = η p(Q̂t/Q,s)P∗(Q), (4)

which can be shown to be factored as

bt(Q/s) =
M

∏
k=1

bt(qk/s), (5)

bt(qk/s) = ηk p(q̂k,t/qk,s)p∗(qk), (6)

where ηk is a suitable normalizer for the belief on the

kth environmental component. Then the joint belief on

the (s,Θ,Q) triple is formed as:

bt(s,Θ,Q) = bt(s,Θ)bt(Q/s). (7)

Due to the problem formulation, the burden of estimat-

ing the belief on the environment is on the stationary

environmental process and by definition, can be main-

tained independent of each other. The above comprises

the Bayesian part of the hybrid methodology pre-

sented here. Note that the current state of the environ-

ment is inferred using a Bayesian scheme given the sta-

tionary environmental probabilities p∗(qk). However,

these probabilities need to be estimated since they are

unknown a priori. These are estimated using frequen-

tist methods and comprise the frequentist part of the

methodology, and are outlined below.

Let Xk,t = (bt(s,Θ), q̂k,t) and let

A(k)(Xk,t) = [∑
s,Θ

pk
i j(s)bt(s,Θ)], (8)

b(k)(Xk,t) = [βi(Xk,t)], βi(Xk,t) = 1(q̂k,t = i). (9)

There are two estimation algorithms for estimating the

stationary probabilities P∗
k of the kth environmental

component:

Estimator E1:

Pk(t) = arg min
p∈P

||Ak(t)P−bk(t)||, (10)

Ak(t) = (1− γt)Ak(t −1)+ γtA
(k)(Xk,t), (11)

bk(t) = (1− γt)bk(t −1)+ γtb
(k)(Xk,t). (12)

Estimator E2:

Pk(t) = ΠP{(1− γt)Pk(t −1)+

γt(b
(k)(Xk,t)−A(k)(Xk,t)Pk(t −1))}, (13)

where ΠP represents the projection into the subspace

of probability vectors.

The learning rate parameters satisfy ∑t γt = ∞ and

∑t γ2
t < ∞, and P represnts the space of probability

vectors in ℜD. The algorithms can be heuristically

understood as follows. Note that A(k)(Xk,t) is the aver-

aged observation model for environmental component

qk at time t, averaged upon the belief on the pose of

the autonomous system, bt(s), at time t. Then, the

matrix Ak(t) in estimator E1 may be understood as the

averaged observation model for the kth environmental

component till time t, i.e., formed by a time average of

the instantaneous observation models A(k)(Xk,t). The

quantity bk(t) contains the relative frequencies of the

observed values of the kth environmental component

in its various discrete states. Then, if the vector

bk(t) is interpreted as a probability vector, it can be

expected that in the limit as t → ∞, Ak(t)P
∗
k = bk(t),

since P∗
k is the true environmental probability vector

for the kth component. This can be seen through

a simple application of the law of total probability

p̄(q̂k) = ∑qk
p̄(q̂k/qk))p∗(qk) where p̄(q̂k = i) is given

asymptotically by the ith component of the vector

bk(t) and p̄(q̂k = i/qk = j) is given asymptotically

by the (i, j)th element of the matrix Ak(t) . Since in

general Pk(t) = Ak(t)
−1bk(t) need not be a probability

vector for finite time t, the closest approximation of the

solution, in the mean square sense, in the space of prob-

ability vectors P is used instead, in estimator E1. The

estimator E2 may be understood as a purely incremental

version of the algorithm in which we only keep track of

the current estimate of the environmental components

Pt instead of inferring it indirectly from Ak(t) and bk(t).
The asymptotic behaviour of the algorithms is identical.

2.2. Convergence Analysis

In this section, the convergence of the mapping al-

gorithms presented in the previous subsection is estab-

lished. The proofs are left out of this document because
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of the paucity of space. However, the interseted reader

may see the whole paper at the first Author’s website

Suman Papers. The main results needed to prove the

convergence are stated while the proofs are left out for

lack of space.

A 1. It is assumed that the estimate of the kth envi-

ronemntal component is updated according to estima-

tors E1/ E2 at time t, if and only if all the diagonal

elements of the current averaged observation model,

Ak(Xk,t) are greater than 0.5+ ε .

The above assumption implies that the observation

(based on the current belief over the pose bt(s)) is reali-

able in the sense that it is correct more than 50% of the

time. Recall that Xk,t = (bt(s,Θ), q̂k,t), i.e., the ordered

pair of the state-landmark belief and the noise corrupted

observation of the kth environmental component. The

key here is that the sequence Xk,t is a Markov process

and it can be shown that its transition probabilities are

given by

P(Xk,t+1/Xk,t) = p(bt+1/bt ,ut)p(q̂k,t+1/bt+1), (14)

where

p(q̂k/b) = ∑
(s,Θ,qk)

p(q̂k/qk,s)p∗(qk)b(s,Θ), (15)

and the transition probabilities for the belief state

bt(s,Θ), p(b/b′,u), can be obtained similar to the be-

lief state Markov Decision Process (MDP) for any Par-

tially Observed Markov Decision Process (POMDP)

[19]. The transition probabilities for the belief b(s,Θ)
however are not required by the algorithms. The struc-

ture of the transition probabilities of the Markov Pro-

cess above is a direct consequence of the problem for-

mulation.

Let F t = {(Θ̂0, Q̂0), · · · ,(Θ̂t , Q̂t)} denote the history of

the process till the time instant t. The following result

is a structural property of the algorithm:

Lemma 1. Let A(k)(Xk,t) and b(k)(Xk,t) be as defined by

equations (8) and (9). Then, for every environmental

component, qk, the following result holds:

E[A(k)(Xk,t+1)P
∗
k −b(Xk,t+1)/F

t ] = 0. (16)

Also, recall the “reliable sensor” assumption 1.

This assumption is key in proving the strong consis-

tency of the mapping/ estimation algorithms.

Proposition 1. The estimates of the environmental

probabilities Pk(t) → P∗
k for all environmental compo-

nents k, with probability 1, under either of the estima-

tion (E1/ E2) schemes, as long as the control policy is

non-anticipative and the environmental components are

observed infinitely often.

The result above is valid for any non-anticipative

control policy, i.e., a policy such that the control at the

current instant is not dependent on the future of the al-

gorithm. Thus, the above result also establishes an im-

portant “Separation Principle” that the mapping algo-

rithms can be designed totally independent of the plan-

ning algorithms without affecting convergence.

3. A Simple SLAM Example

In the simulation, we have a land vehicle fitted

with a radar and we want to map the unknown environ-

ment based on the observations from the radar. The ter-

rain consists of point landmarks which reflect the radar

waves and we want to map these landmarks. The po-

sition of the vehicle is unknown so we also need to

localize the position of the vehicle relative to the ob-

served landmarks. A cartesian coordinate system is se-

lected coincident with the initial pose of the vehicle. All

further calculations are done on this coordinate system.

The vehicle starts at (1,5) and keeps moving in circles

of radius 4 units centered at (5,5). We are interested

in the rectangular domain (0,0) to (10,10). Thirteen

landmarks are located in this domain (see Fig. 1(a)) out

of which we use the central one to localize the vehicle

and the other twelve are mapped using the stochastic

approximation scheme E1.

The vehicle state is defined as xp = [x,y,φ ]T , where x

and y are the coordinates of the center of the rear axle

with respect to some global coordinate frame and φ is

the orientation of the vehicle in the same global frame.

The global frame is fixed relative to the starting pose of

the vehicle.

The dynamics of the vehicle is governed by the follow-

ing equations

ẋ = V cosφ

ẏ = V sinφ

φ̇ =
V

r
, (17)

where r is the radius of the path we want the vehicle

to traverse. V = u + ωv,u is the velocity input and

ωv is gaussian noise with zero mean. The landmarks

are assumed to be stationary point objects. Only one

landmark was used for localization of the vehicle while

the other landmarks are mapped separately using the

stochastic approximation schemes outlined in the pre-

vious section.

Each observation consists of the range ri(k) and bear-

ing θ i(k) to the landmark being observed. It follows the

model

ri(k) =
√

(xi − x(k))2 +(yi − y(k))2 +ωr(k)
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Figure 1. Performance without the Reliable Sensor Correction

θ i(k) = arctan
yi − y(k)

xi − x(k)
−φ(k)+ωθ (k) (18)

where ωr and ωθ are the noise sequences associ-

ated with the range and bearing measurements, and

[x(k),y(k)] is the location of the radar.

The vehicle dynamics and observation model described

here are both nonlinear. Hence, an EKF is employed

to generate the estimates. The process model f (.) and

observation model h(.) are obtained as given in the pre-

vious subsections.

The belief over the pose of the vehicle, bt(s), is needed

for use in the mapping algorithms E1 and E2 (for cal-

culation of A(k)(Xk,t)). In this case, this amounts to cal-

culating the belief over the (x,y) co-ordinates of the au-

tonomous vehicle. We know that x has Gaussian dis-

tribution with mean x(t) and covariance matrix P(t).
Any linear transformation of a gaussian vector is also

Gaussian. Thus x(1 : 2) has a guassian distribution with

mean [x(t),y(t)] and the covariance matrix being the top

left 2x2 sub-matrix of P. Let us call this P0. Now we

can find the probability that the vehicle is in some grid,

in the x,y domain, simply by integrating the multivari-

ate normal distribution over the required domain. This

gives us the belief states. The landmarks are mapped us-

ing estimator E1 from the previous section. In order to

apply the inherently dicrete mapping methodology, the

location of the vehicle is discretized into a 20 x 20 grid

on the X-Y plane while the location of any landmark is

assumed to lie in a subset of these grids which is identi-

fied based on the observation of the landmark assuming

perfect data association. The reliable sensor criterion is

implemented by imposing the condition that only those

readings are counted for which the diagonal terms of

the averaged observation model at time t, A(k)(Xk,t), are

greater that 50%. This helps us to obtain better con-

vergence properties for the landmark estimates. The

simulation was run for two cases. In both cases there

were thirteen total landmarks and only one (fixed apri-

ori) landmark was use to localize the vehicle and then

the stochastic approximation algorithms were used to

map the remaining twelve landmarks. In the first case,

the mapping algorithms were implemented without im-

posing the reliable sensor condition (Fig.1). In the sec-

ond case, the reliable sensor assumption was imposed

(Fig. 2). It can be seen from Figs. 1(b), (c) and 2(b), (c)

that the estimates of the landmarks indeed converge as

predicted by the theoretical results. Also note that the

estimates converge even without imposing the reliable

sensor assumption (Figs. 1(b), (c)) though the conver-

gence is slower in this case than when the assumption is

enforced.

In summary, the fundamental difference between

the methodology presented in this paper and existing

SPLAM methods is in the hybrid problem formulation

which has the following advantages over its Bayesian

counterpart:

• Computationally much more tractable than the

Bayesian formulation since the computational

complexity is linear in the environmental compo-

nents as compared to exponential complexity for

the Bayesian problem.

• Provable strong convergence of mapping algo-

rithms.

• Separation of Mapping and Planning Problems, in

the sense that the convergence of the mapping al-

gorithms is completely unaffected by the planning

policy as long as it is non-anticipative.
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Figure 2. Performance after imposing the Reliable Sensor Correction

It has to be noted here that the implementation of the

methodology as presented in this paper is far from

being efficient and implementable in a real robotic

SPLAM system. However, the purpose of this pa-

per to show the basic soundness of the methodology

and should be understood in this light. Our current

research is focused on the efficient implementation of

the hybrid methodology presented here. Also, the cur-

rent methodology cannot handle the issue of data as-

sociation which is also another of our current research

directions.
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