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Abstract— In this paper the connection between the indiffer-
ence price and risk sensitive control is explored for stochastic
volatility models. It is proved that the indifference price of a
European option can be written as the difference of the value
functions of two different stochastic optimal control problems.
The quasilinear PDEs involved in the solution of this problem
are written and under suitable conditions a verification theorem
is given.

I. THE MODEL

Consider a probability space (Ω,F ,P) where a standard
two dimensional Brownian motion (W 1,W 2) is defined.
Throughout the standard augmented filtration {Ft; ; t ≥ 0}
generated by this Brownian motion is fixed. The securities
market we will consider consists of a riskless bond, which
can be used to lending or borrowing, paying a zero interest
rate, as well as a risky asset, with dynamics

dSt = St[µ(Yt)dt+ σ(Yt)dW 1
t ].

The stochastic process Yt appearing in the coefficients of
the above equation represents the stochastic volatility in the
market, and it is assumed that it satisfies the following SDE:

dYt = g(Yt)dt+ β(Yt)[ρdW 1
t +

√
1− ρ2dW 2

t ],

with initial condition Y0 = y. The number ρ ∈ (−1, 1)
represents the correlation between the noises driving the
risky asset and the volatility. Specific assumptions about
the functions µ, σ, β and g will be given below. The
assumption that the interest rate paid by the bond in zero
can be dispensed by discounting in the appropriate way.

The previous market model is incomplete and hence, given
a European option h(ST ) with expiration date T > 0, an
arbitrage pricing method analogous to the Black-Scholes is
not available any more. In order to determine an arbitrage
free price for derivatives in incomplete markets different
approaches have been proposed in recent years. As it was
explained in the Introduction, in this paper we are interested
in the indifference price, which takes into account the risk
preferences of the investor, who is willing to buy the option
h.

Following the original idea of Hodges and Neuberger in
[15] based in utility theory, the indifference price of option
h(·) at time t < T is introduced next. Consider an investor
with initial capital x > 0 at time t and risk preferences
defined by the utility function U : R → R, a concave
nondecreasing function. Let αt be an Ft-adapted process
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representing the amount of money invested in the risky asset
at time t such that ∫ T

0

πtdt <∞ a.s.;

the class of such processes satisfying the following additional
integrability condition is denoted by A′:

sup
t∈[0,T ]

E exp{ε|αt|} <∞, (1)

for some ε that may depend on the strategy αt. Then, the
dynamics for the wealth process are given by

dXt = αt(µ(Yt)dt+ σ(Yt)dW 1
t ), X0 = x.

Throughout the following assumptions on the coefficients
of the model will be assumed.

Assumption A

• The functions µ(·), σ(·) are bounded and of class
C1
b (R), where C1

b (R) is the space of functions C1(R)
which are bounded together with their first derivative.

• The functions g(·) and β(·) belong to C1(R), and are
Lipschitz continuous.

• There exists a constant c such that σ(·), β(·) ≥ c > 0
• The function h(·) is nonnegative, continuous and

bounded.
Now consider the following two optimal investment prob-

lems, with value functions

W (t, x, y) = max
α∈A

E[U(XT ) | Xt = x, Yt = y] (2)

V (t, x, y, s) = max
α∈A

E[U(XT + h(ST )) |

Xt = x, Yt = y, St = s]. (3)

In the first case, it corresponds to the classical maximum
expected utility problem studied originally by Merton, while
in the second case the investor will receive at time T the
value of his portfolio and the value of the option h(ST ).
So, at time t ∈ (0, T ] the investor has two alternatives, one
consists in investing his money in the market and the second
is to buy the option for price p, and to invest in the market
the rest of his money; at time T he receives his capital and
the value of the option at the exercise time T .

Definition 1.1: We say that p is the buyer’s indifference
price at time t if

W (t, x, y) = V (t, x− p, y, s). (4)
When the utility function is of exponential type the expres-
sion for p shall be given in terms of the value functions
of two different risk sensitive optimal control problems.
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These kind of problems have been studied in an independent
way for many authors; the interested reader is referred in
particular to [5], [21], [9], [8] and references therein.

In order to derive the expression for p let us calculate the
expectation E[e−γ(XT +h(ST )) | Xt = x, Yt = y, St = s] for
a given admissible strategy α, which is given by

e−γxE exp{−γ
∫ T

t

αuµ(Yu)du−

γ

∫ T

t

αuσ(Yu)dW 1
u − γh(ST )}

= e−γxEQ exp{
∫ T

t

[
1
2
γ2α2

uσ
2(Yu)−

γαuµ(Yu)]du− γh(ST )}. (5)

The second equality was obtained changing in FT the
original probability measure P by the absolutely continuous
measure Q with Radon-Nikodym derivative

dQ

dP
|FT

= exp

{∫ T

0

[−γαuσ(Yu)dW 1
u −

1
2
γ2α2

uσ
2(Yu)du]

}
.

(6)
By Girsanov’s theorem, under measure Q the process defined
as

W̃ 1
t := W 1

t +
∫ t

0

γαuσ(Yu)du, W̃ 2
t = W 2

t

is a Brownian motion in R2 and, hence, the dynamics of St
and Yt can be written, respectively, as

dSt = St[(µ(Yt)− γαtσ
2(Yt))dt+ σ(Yt)dW̃ 1

t ]
dYt = [g(Yt)− γραtσ(Yt)β(Yt)]dt+ β(Yt)[ρdW̃ 1

t +√
1− ρ2dW̃ 2

t ].

Multiplying by -1 in both sides of (5) and maximizing with
respect to the set of admissible strategies A, we write the
value function V (t, x, y, s) in (3) as

V (t, x, y, s) = −e−γx min
α∈A

EQ exp{
∫ T

t

(
1
2
γ2α2

uσ
2(Yu)

−γµ(Yu)αu)du− γh(ST )}
= −e−γx−γψ̃(t,y,s), (7)

where

ψ̃(t, y, s) = max
α∈A

{− 1
γ

log EQ exp{−γ
∫ T

t

l(Yu, αu)du−

γh(ST )}}, (8)

with l(y, α) := αµ(y) − 1
2γα

2σ2(y). Observe that defining
Q(y) = µ(y)

2γσ2 and l̃(y, α) := l(y, α)−‖Q‖ the value function
ψ̃ can be written as

ψ̃(t, y, s) = ‖Q‖(T − t) + ψ(t, y, s),

with

ψ(t, y, s) = max
α∈A

{− 1
γ

log EQ exp{−γ
∫ T

t

l̃(Yu, αu)du−

γh(ST )}} (9)

Analogously, for the value function W (t, x, y) we have
the expression

W (t, x, y) = −e−γx min
α∈A

EQ exp{
∫ T

t

(
1
2
γ2α2

uσ
2(Yu)−

γµ(Yu)αu)du}
= −e−γx−γφ̃(t,y), (10)

where

φ̃(t, y) = max
α∈A

{− 1
γ

log EQ exp{−γ
∫ T

t

l(Yu, αu)du}}(11)

= ‖Q‖(T − t) + max
α∈A

{− 1
γ

log EQ

exp{−γ
∫ T

t

l̃(Yu, αu)du}}

=: ‖Q‖(T − t) + φ(t, y).

Remark 1.2: These representations of the value functions
ψ̃ and φ̃ are important because both ψ(·, y, s) and φ(·, y) are
increasing in t since l̃ ≤ 0.

Therefore, going back to the definition of the indifference
price of the option h(ST ) in (4), (7) and (10) yield

p = ψ(t, y, s)− φ(t, y). (12)

In the next section we will write the Hamilton Jacobi
Bellman equation associated with both risk sensitive control
problems. Under suitable condition on the smoothness of the
value functions ψ(t, y, s) and φ(t, y) it is possible to derive
a verification theorem. The results will be presented only
for the value function ψ, since φ is a particular case of the
former when h(·) ≡ 0.

II. HAMILTON-JACOBI-BELLMAN EQUATION

We begin this section with the description of the HJB
equations associated to the value functions (8) and (11). In
the first case, the function ψ satisfies at least formally the
parabolic semilinear PDE

0 = ψt + sµ(y)ψs + g(y)ψy +
1
2
s2σ2(y)ψss +

1
2
β2(y)ψyy + ρsσ(y)β(y)ψys

+γ(1− ρ)sσ(y)β(y)ψsψy −
γ

2
(sσ(y)ψs + β(y)ψy)2

+max
α∈R

{−γασ2(y)sψs − γρασ(y)β(y)ψy + l̃(y, α)},(13)

with boundary condition ψ(T, y, s) = h(s). The equation for
the function φ is analogous to the previous one, removing
all the terms involving s, i.e.

0 = φt + g(y)φy +
1
2
β2(y)φyy −

γ

2
β2(y)φ2

y

+max
α∈R

{−γρασ(y)β(y)φy + l̃(y, α)}, (14)

with φ(T, y) = 0.
The maximum in the r.h.s. of (13) and (14) is achieved,

respectively, at

αψ = −sψs −
ρβ(y)
σ(y)

ψy +
µ(y)
γσ2(y)

(15)
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and

αφ = −ρβ(y)
σ(y)

φy +
µ(y)
γσ2(y)

.

Note that these values are the candidates for being the
optimal strategies for each risk sensitive control problem.

Substituting these values in their respective equations, and
after some calculations, we obtain the equations

0 = ψt + g̃(y)ψy −
1
2
β̃2(y)ψ2

y +
1
2
s2σ2(y)ψss +(16)

1
2
β2(y)ψyy + ρsσ(y)β(y)ψsy + Q̃(y)

and

φt + g̃(y)φy +
1
2
β2(y)φyy −

1
2
β̃2(y)φ2

y + Q̃(y) = 0, (17)

where g̃(y) := g(y)− ρµ(y)β(y)
σ(y) , β̃(y) :=

√
γ(1− ρ2)β(y)

and Q̃(y) = Q(y) − ‖Q‖. The terminal condition for these
equations is, respectively, ψ(T, y, s) = h(s) and φ(T, y) =
0.

III. VERIFICATION THEOREM

In this section we present a verification theorem for the
optimal control problem (9), which states that if there exists
a classical solution to the Hamilton Jacobi Bellman equation
(13) between a suitable class of functions then it corresponds
to the value function ψ(t, x, s); a straightforward corollary
of this result is the uniqueness of classical solutions to the
PDE (16). Similar results can be stated for the value function
φ(t, y), but we will present only the proof for the first one
to avoid unnecessary repetitions.

Theorem 3.1: Let ϕ ∈ C1,2((0, T )×R×R)∩C((0, T ]×
R×R) be a smooth solution of equation (13). Then, for all
(t, x, s) ∈ [0, T ]× R+ × R+:

1) ϕ(t, x, s) ≥ ψ(t, x, s).
2) If the Markov control αψ defined in (15) is admissible

(i.e. it belongs to A)) then is is optimal, i.e.

ϕ(t, y, s) = − 1
γ

log EQ exp{−γ
∫ T

t

l̃(Yu, αψu )du−

γh(ST )}.
Proof. Let αt be an arbitrary strategy in A. Then, in view of
(1) and [19] p.220, the change of measure in (6) associated
with αt is well defined. Let ϕ be as in the statement of the
theorem, and define τn := inf{u ≥ t | |Yu| > n}. Then, by

Ito’s formula and (16),

ϕ(T ∧ τn, YT∧τn , ST∧τn)− ϕ(t, y, s) =∫ T∧τn

t

[ϕt + Suϕy(µ(Yu)− γαuσ
2(Yu)) +

ϕy(g(Yu)− γραuσ(Yu)β(Yu)) +
1
2
S2
uσ

2(Yu)ϕss +

1
2
β2(Yu)ϕyy + ρσ(Yu)β(Yu)ϕys]du+∫ T∧τn

t

Suσ(Yu)ϕsdW̃ 1
u + β(Yu)ϕy(ρdW̃ 1

u + ρ̄dW̃ 2
u)

≤ −
∫ T∧τn

t

l̃(Yu, Su)du+
∫ T∧τn

t

[
γ

2
(Suσ(Yu)ϕs +

β(Yu)ϕy)2 − γρ̄Suσ(Yu)β(Yu)ϕsϕy]du+∫ T∧τn

t

Suσ(Yu)ϕsdW̃ 1
u + β(Yu)ϕy(ρdW̃ 1

u + ρ̄dW̃ 2
u).

Then,

EQ exp{−γ
∫ T∧τn

t

l̃(Yu, Su)du−

γϕ(T ∧ τn, YT∧τn
, ST∧τn

)} ≥ e−γϕ(t,y,s) ·

EQ exp
∫ T∧τn

t

−{γ
2

2
(Suσ(Yu)ϕs + β(Yu)ϕy)2 −

γ2ρ̄Suσ(Yu)β(Yu)ϕsϕy}du ·

exp{−γ
∫ T∧τn

t

Suσ(Yu)ϕsdW̃ 1
u +

β(Yu)ϕy(ρdW̃ 1
u + ρ̄dW̃ 2

u)}

= e−γϕ(t,y,s)EQ exp{−γ
∫ T∧τn

t

Suσ(Yu)ϕsdW̃ 1
u +

β(Yu)ϕy(ρdW̃ 1
u + ρ̄dW̃ 2

u)} ·

exp{−γ
2

2

∫ T∧τn

t

(S2
uσ

2ϕ2
s + βϕ2

y +

2ρSuσβϕsϕy)du}.

The process inside the expectation in the r.h.s. is a Q-local
martingale and a super-martingale. Then, using the terminal
condition ϕ(T, YT , ST ) = h(ST ), and taking the limit when
n goes to infinity, we get that

− 1
γ

log EQ exp{−γ
∫ T

t

l̃(Yu, Su)du−γh(ST )} ≤ ϕ(t, y, s).

Since αt was chosen arbitrarily, it follows that

ϕ(t, y, s) ≥ ψ(t, y, s).

To prove the reverse inequality, we observe that when we use
the admissible strategy defined through the Markov strategy
(15) we obtain equalities instead of inequalities in the above
displays.
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