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Abstract—Stability of the Kalman filter for linear
time-invariant systems is studied from the perspective
of divergence of the estimation error under incorrect
noise measurement. We provide testable, necessary
and sufficient conditions for the filter to be stable,
stable with respect to perturbations in the initial error
covariance, or semi-stable, respectively meaning that
the estimate error covariance is bounded, bounded for
perturbations in the initial error covariance or that it
does not diverge exponentially. Previous conditions
present some degrees of conservativeness or address
only stability.

I. Introduction

Consider the linear, time-invariant system defined in a
fundamental probability space (Ω,F,P) by

Φ :

{
x(k + 1) = Ax(k)+ Bw(k), x(0) = x0,

y(k) = Cx(k)+ Dv(k),
(1)

where x ∈ R
n is the state, y ∈ R

r is the observed variable,
w ∈ R

p and v ∈ R
q form stationary zero-mean indepen-

dent white noise processes satisfying E{w(k)w(k)′} = I

and E{v(k)v(k)′}= I, and the (independent) random vari-
able x0 is such that E{x0}= x̄0 and E{x0x′0}= Ψ. Assume
that matrices A, C and D of appropriate dimensions
and with DD′ > 0, are known. Regarding B and Ψ, the
available data are E and Σ, respectively.

It is a well-known fact that, for the Kalman filter
(KF) in the above scenario, the calculated state estimates
(taking into account E and Σ) may diverge from the
actual ones (taking into account the actual data B and
Ψ) with a fast rate, a phenomena usually referred to
as divergence under incorrect noise measurement. It is
particularly problematic for applications that there can
be no indication of divergence when implementing the
filter, in the sense that the calculated error covariance Pk

is bounded, whereas the actual error covariance X̃k may
diverge exponentially as k → ∞.
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Divergence for KFs has been studied in the context of
time-invariant systems and other setups, see e.g. [2], [8],
[10], [13], [14], [15]. However, there are two important
gaps. Firstly, available conditions present some degrees
of conservativeness, as they rely on detectability assump-
tions or on the existence of a stationary solution to
the filtering problem; a more complete assessment of
available results is presented in Section II. However, there
may exist neither a stationary solution nor a limiting
gain, see e.g. [5, Example 3]. Secondly, available results
concern only stability, meaning from the point of view of
divergence analysis that the the actual error covariance
is bounded for perturbations on both E and Σ. In many
applications (particularly in finite-time contexts) it may
be acceptable that the actual error does not diverge
exponentially, or diverges with a “specified” rate; on the
other hand, imprecise Σ can be handled without requiring
stability.

In this paper, we consider semi-stability, requiring that
Xk does not diverge exponentially for both incorrect E

and Σ, stability with respect to (w.r.t.) Ψ requiring that
Xk is bounded for incorrect Σ, and stability, requiring
that Xk is bounded, for both incorrect E and Σ. We
are concerned with divergence of the actual error under
bounded calculated error, hence we assume that Pk is
bounded. Based on the recent results in [5], [6], we obtain
a testable necessary and sufficient condition for semi-
stability, relying only on A, E and Σ, the relevant data
for this purpose. This result is combined with existing
conditions to obtain necessary and sufficient conditions
for stability and stability w.r.t. Ψ.

The derived condition for semi-stability of the KF can
be interpreted as requiring that Σ completely excites
unstable modes of A that are not already excited by E,
formally,

ker{JHΣJ′H}∩JH = {0}.

where JH is the similarity matrix such that JHAHJ−1
H is

in Jordan form, H stands for the orthogonal projection
into the non-controllable subspace of (A,E) and JH is the
unstable subspace of JHAHJ−1

H . This condition appears
in the literature of ARE, as a necessary and sufficient
condition for Σ to belong to the basin of attraction of
the strong solution of the ARE for detectable systems, see
Proposition 3. From this standpoint, the present paper is
relevant as it clarifies the meaning of the above condition
in the scenario of non-detectable systems.

The paper is organised as follows. In Section II we
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formalise the stability notions and present preliminary
results concerning KFs and AREs. In Section III we
derive the testable condition for semi-stability of the
KF, and in Section IV we extend the result to stability.
Finally, Section V provides concluding remarks.

II. Definitions and Preliminary Results

Let D (respectively, D̄) be the open (closed) unit disk
in the complex plane. Let Rr,s (respectively, Rr) represent
the normed linear space formed by all r× s real matrices
(respectively, r × r) and Rr∗ (Rr0) the cone {U ∈ Rr :

U = U ′} (the closed convex cone {U ∈ Rr : U = U ′ ≥ 0})
where U ′ denotes the transpose of U ; U ≥V signifies that
U −V ∈ Rr0. For U ∈ Rn, λi(U), i = 1, . . . ,n, stands for
an eigenvalue of U . λi(U) lying in D̄ (respectively, D)
is referred to as a semi-stable1 (stable) eigenvalue of U ;
an associated eigenvector v ∈ R

n is semi-stable (stable),
otherwise it is unstable. The space spanned by stable
eigenvectors of U is referred to as the stable subspace of
U , and similarly for the semi-stable and unstable spaces.

The Kalman filter estimates is given by x̂(0) = x̄0 and

x̂(k + 1) = Ax̂(k)+ Lk[y(k)−Cx̂(k)], k ≥ 0, (2)

where Lk = APkC
′[CPkC

′ + DD′]−1 is referred to as the
Kalman gain, calculated for the available noise covari-
ances E and Σ via the following Riccati difference equa-
tions (RDEs),

Pk+1 = A[Pk −PkC
′(CPkC

′ + DD′)−1CPk]A
′ + EE ′, k ≥ 0,

(3)
with initial condition P0 = Σ. Pk describes the covariance
of the estimation error at time k when E = B and Σ = Ψ,
and it is referred to as the calculated error covariance.
Since we are concerned with divergence of actual error
under bounded calculated error, it is natural to consider
the next assumption.

Assumption 1. For each Σ ∈ Rn0 there is X̄ ∈ Rn0 such
that Pk ≤ X̄ , k ≥ 0.

The actual error covariance X̃k(B,Ψ) = E{x̃(k)x̃(k)′},
where x̃(k) = x̂(k)− x(k), is calculated from (1) and (2),
see e.g. [14], X̃0(B,Ψ) = Ψ and, for k ≥ 0,

X̃k+1(B,Ψ) = (A−LkC)X̃k(B,Ψ)(A−LkC)′+LkDD′L′
k+BB′.

(4)
We omit variables B and Ψ when B = E and Ψ = Σ,
respectively, e.g. we write X̃k(E,Ψ) = X̃k(Ψ).

This paper is devoted to study the behaviour of X̃k,
which can be a difficult task in view of the following
facts: Lk is a time-varying gain; it is calculated via the
RDE; it is not the “optimal” gain in the sense that it
is calculated for the available data E and Σ whereas the
initial condition and forcing terms of (4) are related to
the actual data B and Ψ. The task is much simpler when
Lk = L is a fixed gain (stationary filter), e.g. it is a well-
known fact that if A−LC is not stable and the forcing

1Terminology borrowed from [1].

terms excites all modes of A− LC, then X̃ diverges at
least linearly; we present the next related result, for later
reference.

Proposition 1. Assume Lk = L is such that A−LkC is
not a stable matrix, and BB′ > 0. Then there exists M ≥ 0

such that ‖X̃M‖ ≥ ‖X̃0‖+ 1.

The stability notions for the KF are as follows.

Definition 1. We say that the KF is:

(i) stable if, for each B ∈ Hn,p and Ψ ∈ Rn0, there exists
X̄ such that X̃k(B,Ψ) ≤ X̄ , k ≥ 0.

(ii) stable w.r.t. Ψ if, for each Ψ∈Rn0 there exists X̄ such
that X̃k(Ψ) ≤ X̄ , k ≥ 0.

(iii) semi-stable if, for each B ∈ Hn,p, Ψ ∈ Rn0 and 0 ≤
ξ < 1, there exists X̄ such that X̃k(B,Ψ) ≤ ξ−2kX̄ , k ≥ 0.

Classical sufficient conditions for stability of the KF
rely on detectability and stabilizability and can be traced
back to the sixties, see [13]. More recent results appear
in [14]. Consider the algebraic Riccati equation (ARE)
in the variable P ∈ Rn0, associated with the RDE (3),

P = A[P−PC′(CPC′ + DD′)−1CP]A′ + BB′. (5)

P and L are said to be stabilising when the stationary
gain L = APC′[CPC′+DD′]−1 is such that A−LC is stable,
and similarly for semi-stabilizing P and L. P and L are
said to be strictly semi-stabilizing when they are semi-
stabilizing but not stabilizing. Consider the following
hypothesis:

H1. (A,C) is detectable.
H2. Unreachable modes of (A,E) do not lie on the unit

circle.

Remark 1. H1 implies Assumption 1, see e.g. [1].

Proposition 2 ([14]). Assume H1–H2 hold. If Pk con-
verges to a stabilising P or, in particular, if either (A,E)
is stabilizable or Σ > 0, then the KF is stable.

A useful condition for P0 = Σ to converge to a semi-
stabilizing solution of the ARE, related to the con-
dition of Proposition 2, is presented in [3, Theorem
1]. We now convert this condition into a form con-
venient for comparisons purposes, and which involves
the use of the orthogonal projection H into the non-
controllable subspace. Consider the controllability matrix
C =

[
E AE · · · An−1E

]
, let H = I − (CC′)∗CC′ where

(CC′)∗ stands for the pseudo-inverse of CC′, JH be the
similarity transformation such that JHAHJ−1

H is in Jordan
form and JH be the unstable space of JHAHJ−1

H .

H3. ker{JHΣJ′H}∩JH = {0}.

Proposition 3 ([3]). Assume H1 holds. H3 is a necessary
and sufficient condition for limk→∞ Pk = PS, given P0 = Σ,
where PS is the semi-stabilizing solution of the ARE (5).

We shall also need the following result characterizing PS.
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Proposition 4 ([7], [9], [12]). Assume H1 holds. The
semi-stabilizing solution of the ARE (5) is stabilising if
and only if H2 holds.

It is quite standard and natural to consider H1 in the
quest for stability of the KF, but it is constrictive when
dealing with semi-stability. Actually, even the weaker
assumption of convergence of Pk is conservative, see e.g.
a semi-stable filter with periodic Pk in [5, Example 3].
The main consequence for the study of semi-stability
is that it can not benefit from tools like orderings and
comparisons involving P, Pk and X̃ , which are common
in the literature of KF and RDE. In fact, rather than
employing those tools, our approach for semi-stability
explores links between a condition for semi-stability of
the KF and a condition for partial stability of a certain
non-linear system, which have been recently developed in
[5], [6]. The results that are essential for our approach are
presented hereafter. For U,V ∈Rn and W ∈Rn0, consider
the non-linear system

Θ(U,V,W) :






Zk+1 = HkUZkU
′H ′

k,

Xk+1 = UXkU
′ +VV ′, k ≥ 0,

(Z0,X0) = (H0H ′
0,W )

(6)

where (Zk,Xk) is the state, Zk,Xk ∈ Rn0; Hk, k ≥ 0, stands
for the orthogonal projection onto ker{Xk}. We employ
the notation Xk(U,V,W ) and Zk(U,V,W ) to emphasise the
dependence on the variables U,V and W . Note that

Xk(U,V,W) = UkWUk′ +
k−1

∑
ℓ=0

U ℓVV ′U ℓ′

Zk(U,V,W ) =
(

Πk
ℓ=1(HℓU)

)
(H0H ′

0)
(

Πk
ℓ=1(HℓU)

)′
(7)

where Hk = Hk(U,V,W) stands for the projection onto the
null space of Xk(U,V,W ).

Proposition 5 ([5]). Consider Assumption 1. Consider
system Θ(A,E,Σ) and the corresponding state component
Zk(A,E,Σ). The KF is semi-stable if and only if, for each
0 ≤ ξZ < 1 there exists Z̄ ∈Rn0 such that ξ 2k

Z Zk ≤ Z̄, k ≥ 0.

Proposition 6 ([6]). Consider system Θ(A,0,Σ) and the
corresponding state component Zk(A,0,Σ). Let J represent
the similarity matrix for which JAJ−1 is in Jordan form
and let J stand for the unstable space of JAJ−1. For each
0 ≤ ξZ < 1 there exists Z̄ ∈Rn0 such that ξ 2k

Z Zk ≤ Z̄, k ≥ 0,
if and only if

ker{JΣJ′}∩J = {0}. (8)

Moreover, if V ∈ Rn0 satisfies ker{V} ∩ J = {0} then
ker{AkVA′k}∩J = {0}, k ≥ 0.

III. A necessary and sufficient condition for

semi-stability

In this section we start adapting the condition in
Proposition 6 to a general system Θ(A,E,Σ). The adapted
condition is directly extended to semi-stability of the
KF via Proposition 5. The basic idea is to employ an

intermediate form Θ(HA,0,Σ) matching the setup of
Proposition 6 and simultaneously related to the setup
of Proposition 5. Let Xnf,k and Xf,k stand for the free and
forced solutions of system Θ(A,C,Σ), given by

Xnf,k = AkΣAk′
;

Xf,k =
k−1

∑
ℓ=0

AℓCC′Aℓ′,k ≥ 1; Xf,0 = 0,
(9)

in such a manner that Xk(A,C,Σ) = Xnf,k +Xf,k. We intro-
duce the orthogonal projections H,Hf,k ∈ Rn as

H = I− (CC′)∗(CC′),

Hf,k = I− (Xf,k)
∗(Xf,k).

(10)

The next result follows from basic matrix properties [11].

Lemma 1. Hk = (I − (Hf,kXnf,kH ′
f,k)

∗(Hf,kXnf,kH ′
f,k))Hf,k.

Lemma 2. The following statements hold.
(i) ker{Xf,k} = ker{CC′}, k ≥ 0.
(ii) Hf,k = H, k ≥ 1, and Hf,0 = I.

Proof. (i). From (9) it follows that Xf,1 = ∑0
ℓ=0 AℓCC′Aℓ′ =

CC′, so it is enough to show that ker{Xf,k}= ker{Xf,1}, k ≥
0. For each v ∈ R

n such that v′X f ,1v = 0, we have that

0 = v′Xf,1v = v′CC′v

= v′(EE ′ + AEE ′A′ + · · ·+ An−1EE ′A′n−1)v,

leading to v′AℓEE ′A′ℓv = 0, 0 ≤ ℓ ≤ n − 1. Employ-
ing the Cayley-Hamilton theorem one can check that
v′AℓEE ′A′ℓv = 0, ℓ ≥ 0, yielding

v′Xf,kv = v′
[ k−1

∑
ℓ=0

AℓCC′Aℓ′
]
v

= v′
[ k−1

∑
ℓ=0

Aℓ(EE ′ + AEE ′A′ + · · ·+ An−1EE ′A′n−1)Aℓ′
]
v = 0

and we conclude that ker{Xf,1} ⊂ ker{Xf,k}. For the con-
verse relation, note that

Xf,k =
k−1

∑
ℓ=0

AℓCC′Aℓ′ = A

( k−2

∑
ℓ=0

AℓCC′Aℓ′
)

A′ +CC′,

hence for each v ∈ R
n for which v′Xf,kv = 0 we can write

v′Xf,1v = v′CC′v = 0, and thus ker{Xf,1}⊃ ker{Xf,k}. (ii) the
result is trivial for k = 0, as Hf,0 is the projection onto
the null space of Xf,0 = 0; for k ≥ 1 it follows immediately
from assertion (i).

Lemma 3. (HA)kσ = HAkσ , k ≥ 1.

Proof. For k = 1 the result is trivial. From (10), H is
the orthogonal projection onto ker{CC′}= ker{C′}. Then,
for each v ∈ R

n, (I − H)v ⊥ ker{C′}. Since the space
orthogonal to ker{C} is A-invariant [4], we have that
A(I−H)v⊥ ker{C′} and HA(I−H)v = 0. Therefore setting
v = Aσ , yields

(HA)kσ = (HA)k−1[Aσ ]+ (HA)k−1[(H − I)Aσ ]

= (HA)k−1Aσ , k ≥ 2,
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and the result follows in a straightforward manner.

Lemma 4. The following statements hold:
(i) H0 = I −Σ∗Σ;

(ii) Hk = (I − ((HA)kΣ(HA)k′)∗(HA)kΣ(HA)k′)H, k ≥ 1.

Proof. (i) is immediate from the definition of H0. (ii)
We employ Lemma 3 and assertion (ii) of Lemma 2,
respectively, to write

(HA)kΣ(HA)k′ = HAkΣAk′H = Hf,kAkΣAk′H ′
f,k = Hf,kXnf,kH ′

f,k

and Lemma 1 completes the proof.

Lemma 5. Consider the systems Θ(A,C,Σ) and
Θ(HA,0,Σ) and the associated state trajectories. Z(A,C,Σ)
is bounded if and only if Z(HA,0,Σ) is bounded.

Proof. For ease of notation, let Zk(A,C,Σ), Xk(A,C,Σ),
Zk(HA,0,Σ) and Xk(HA,0,Σ) be denoted respectively by
Zk, Xk, Z̃k and X̃k. Let Hk and H̃k stand respectively for
the projection onto ker{Xk} and ker{X̃k}. It is simple to
check by inspection that X̃k = (HA)kΣ(HA)k′ and

H̃k = I− X̃∗
k X̃k = I − ((HA)kΣ(HA)k′)∗(HA)kΣ(HA)k′)

in such a manner that from Lemma 4 we have that Hk =
H̃kH and that

Zk+1 = HkAZkA′H ′
k = H̃k(HA)Zk(HA)′H̃ ′

k, k ≥ 0. (11)

Since Z0 = H0H ′
0 = (I −Σ∗Σ)(I −Σ∗Σ)′ = H̃0H̃ ′

0 = Z̃0, em-
ploying (11) in a recursive fashion for k = 0,1, . . ., yields

Z̃k = Zk, k ≥ 0.

Corollary 1. Consider the system Θ(A,C,Σ) and the
associated state component Zk(A,C,Σ). There exists Z̄ ∈
Rn0 such that ξ 2k

Z Zk ≤ Z̄, k ≥ 0, 0 ≤ ξZ < 1, if and only if
H3 holds.

Proof. Proposition 6 with A replaced by HA provides that
H3 holds if and only if Zk(HA,0,Σ) is bounded, and this
is equivalent to require that Zk(A,C,Σ) is bounded, as
stated in Lemma 5.

Lemma 6. Consider the systems Θ(A,E ′,Σ), Θ(A,C,Σ)
and Θ(A,C,AnΣA′n) and the associated state trajectories.
The following statements are equivalent:
(i) Z(A,E,Σ) is bounded;

(ii) Z(A,C,Σ) is bounded;

(iii) Z(A,C,AnΣA′n) is bounded.

Proof. (i) ⇒ (ii). Since CC′ = EE ′ + · · ·+ An−1EE ′A′n−1,
one has that EE ′ ≤CC′, which yields AkEE ′Ak′ ≤AkCC′Ak′,
k ≥ 0, and

Xk(A,E,Σ) = AkΣAk′ +
k−1

∑
ℓ=0

AℓEE ′Aℓ′

≤ AkΣAk′ +
k−1

∑
ℓ=0

AℓCC′Aℓ′ = Xk(A,C,Σ).

(12)

Then, for each v such that Xk(A,C,Σ)v = 0 we have that
v′Xk(A,E,Σ)v ≤ v′Xk(A,C,Σ)v = 0, allowing to conclude
that Xk(A,E,Σ)v = 0. This means that

ker{Xk(A,E,Σ)} ⊃ ker{Xk(A,C,Σ)}

and recalling that H(·) is the projection onto the null
space of the associated X(·), it is simple to check that
for each v ∈ R

n, Hk(A,E,Σ)v = Hk(A,C,Σ)v + r for some
r ⊥Hk(A,C,Σ)v. This allows to evaluate, for each V ∈Rn0,

Hk(A,E,Σ)VHk(A,E,Σ) ≥ Hk(A,C,Σ)V Hk(A,C,Σ)

and to obtain the ordering condition

Zk(A,E,Σ) ≥ Zk(A,C,Σ).

(ii) ⇒ (iii). The basic tool for this proof is provided by
Proposition 6, with A replaced by HA and the associated
similarity matrix JH for which Ā = JH(AH)J−1

H is in
Jordan form. Since Z(A,C,Σ) is bounded, from Corollary
1 we have that ker{JHΣJ−1

H }∩JH = {0} and Proposition
6 yields

ker{Ān(JΣJ−1)Ā′n}∩JH = {0}. (13)

Note that

Ān(JΣJ−1)Ā′n = JH (HA)n J−1
H (JHΣJ′H)(JH (HA)n J−1

H )′

= JH (HA)nΣ(HA)n′J′H

and from (13) we get that ker{JH (HA)nΣ(HA)n′ J′H} ∩
JH = {0}. Employing the fact that (HA)n = HAn, see
Lemma 3, we have that

ker{JH Σ̃J′H}∩JH = {0}

where Σ̃ = HAnΣAn′H ′. Proposition 6 implies that
Z(HA,0, Σ̃) is bounded, and from Lemma 5 we get that
Z(A,C, Σ̃) is bounded. Now, recalling H is an orthogonal
projection, one can check that

Σ̃ = (W−1
0

Wn)HAnΣA′nH ′(W−1
0

Wn)
′ ≤ AnΣA′n,

hence

Xk(A,C, Σ̃) = Ak(Σ̃)Ak′ +
k−1

∑
ℓ=0

AℓCC′Aℓ′

≤ Ak(AnΣA′n)Ak′ +
k−1

∑
ℓ=0

AℓCC′Aℓ′ ≤ Xk(A,C,AnΣA′n).

Note that this is in analogy with (12), and arguments
similar to the ones of part (i) lead to

ker{Xk(A,C, Σ̃)} ⊃ ker{κ̄Xk(A,C,AnΣA′n)}

= ker{Xk(A,C,AnΣA′n)}

and to the ordering condition

Zk(A,C, Σ̃) ≥ Zk(A,C,AnΣAn). (14)

(iii) ⇒ (i). In this part of the proof we shall need as
an auxiliary system the version of system Θ(U,V,W) in
(6) with the initial condition on the Z-component, H0H ′

0
,

replaced by H0∆H ′
0 with ∆ ∈ R

n0; we refer to this system
by Γ(U,V,W,∆). Consider the system Γ(A,C,AnΣA′n +
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CC′,∆), and let the associated state components be
denoted simply by Xk and Zk(∆) and the associated
projection onto the null space of the X-component be
denoted by Hk. Consider the system Θ(A,E,Σ) and let the
associated state components and projection be denoted
by X̃k, Z̃k and H̃k. We set

∆ = A(H̃n−1A) · · · (H̃1A)H̃0H̃ ′
0(H̃1A)′ · · ·(H̃n−1A)′A′.

With this notation,

Z0(∆) = H0

(
A(H̃n−1A) · · · (H̃1A)H̃0·

· H̃ ′
0(H̃1A)′ · · · (H̃n−1A)′A′

)
H ′

0,

Moreover, from (7) we have that

X̃n = AnΣAn′ +
n−1

∑
ℓ=0

AℓEE ′Aℓ′ = AnΣAn′ +CC′ = X0, (15)

which yields H̃n = H0 and allows to write

Z̃n = (H̃nA) · · · (H̃1A)(H̃0H̃ ′
0)(H̃1A)′ · · ·(H̃nA)′

= H0

(
A(H̃n−1A) · · · (H̃1A)(H̃0·

· H̃ ′
0)(H̃1A)′ · · · (H̃n−1A)′A

)
H ′

0 = Z0(∆).

(16)

Equations (15) and (16) yield, for k ≥ 0,

Xk = X̃k+n, Zk(∆) = Z̃k+n. (17)

Now we are ready to present the main arguments: since
Zk(A,C,AnΣA′n) is bounded by hypothesis, (omitting de-
tails) we have that there exists Z̄ such that Zk ≤ Z̄,
k ≥ 0, and (17) immediately leads to Z̃k+n ≤ Z̄. This
allows to write that Z̃k ≤ z̄I, k ≥ 0, where we set z̄ =
max(‖Z̃‖,‖Z̃0‖, . . . ,‖Z̃n−1‖).

Lemma 6 allows for a direct extension of the necessary
and sufficient condition for semi-stability of Corollary 1.

Theorem 1. Consider Assumption 1. The KF is semi-
stable if and only if H3 holds.

Remark 2. H3 is not equivalent to ker{Σ}∩N = {0},
where N stands for the unstable subspace of HA. This
means that the condition cannot be expressed in terms
of the original bases. For example, setting

A =

[
2 1

0 1

]
, Σ =

[
0 0

0 1

]
, E = 0,

we have H = I, JHAHJ−1
H =

[
1 0

0 2

]
, JHΣJ′H =

[
1 1

1 1

]
,

yielding ker{Σ}∩N 6= {0} but ker{JHΣJ′H}∩JH = {0}.

Remark 3. Assume H1. In this context, combining
Proposition 3 and Theorem 1 we conclude that the KF is
semi-stable if and only if Pk converges. This implies that
a periodic behaviour for Pk is not allowed.

IV. Stability of the Kalman filter and

comparisons with previous conditions

There is no available proof of necessity for the con-
ditions in Proposition 2 for stability of the KF. The
necessity of H1 (detectability of (A,C)) is a simple matter.
However, if we disregard the results for semi-stability of
the KF obtained in Section III, necessity of convergence
of the RDE solution is far from obvious because, in
principle, the solution could present a complex behaviour
(e.g. periodicity) that is difficult to analyse. In a sense,
this analysis is carried out in Section III where we
indirectly show that such complex solutions are related
to KFs that are not even semi-stable, see Remark 3.

Theorem 2. The KF is stable if and only if H1, H2 and
H3 hold.

Proof. (Sufficiency). Propositions 4 and 3 yield that Pk

converges to the stabilising solution of the ARE, thus
satisfying the conditions of Proposition 2, which leads to
the result.
(Necessity). Theorem 1 trivially makes clear that H3 is
necessary for a KF to be stable, otherwise it is not even
semi-stable. Regarding H1, if we assume that (A,C) is not
detectable then there is at least one unobservable mode
of A that is not stable, hence A−LkC preserves the same
mode no matter how Lk is chosen and thus the KF is not
stable. It only remains to show that H2 is required for
stability of the KF, under H1 and H3. Let us deny this
assertion and assume that H2 is not satisfyied and the
KF is stable, hence from Definition 1 we have that for X̃k

defined by

X̃k+1 = (A−LkC)X̃k(A−LkC)′ + LkDD′L′
k + I, (18)

there is X̄ ∈ Rn0 such that

X̃k ≤ X̄ , k ≥ 0. (19)

Proposition 3 states that Pk converges to the semi-
stabilizing solution PS, in such a manner that, for each
ε > 0 exists kε ≥ 0 such that

‖Lk −L‖ ≤ ε, k ≥ kε , (20)

where, according to Proposition 4, L is the (strictly) semi-
stabilising gain L = APSC′[CPSC′ + DD′]−1. Let us define
X̄k ∈ Rn0, k ≥ kε , by X̄kε = X̃kε and

X̄k+1 = (A−LC)X̄k(A−LC)′ + LDD′L′ + I, k ≥ kε . (21)

One can check from (18), (20) and (21) that the deviation
between X̄ and X̃ is proportional to time and ε or, more
precisely, that

‖X̃k − X̄k‖ ≤ o(k− kε ,ε)‖X̃(kε)‖ ≤ o(k,ε)‖X̄‖, k ≥ kε ,
(22)

where o(k,ε) is increasing with respect to k and ε, with
o(·,0) = o(0, ·) = 0. For the semi-stable matrix A−LC and
X̄ as in (19), set M as in Proposition 1 and ε in such
a manner that o(M,ε) < 1/2‖X̄‖−1. Then, we employ
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respectively the triangular inequality, Proposition 1 and
(22) to evaluate

‖X̃kε+M‖ ≥ −‖X̃kε+M − X̄kε+M‖+‖X̄kε+M‖

≥ −o(M,ε)‖X̄‖+‖X̃kε‖+ 1 > ‖X̃kε‖+ 1/2.

For each integer m ≥ 1 we can proceed similarly as above
(replacing X̄kε and X̃kε with X̄kε+mM and X̃kε+mM, respec-
tively) to conclude that ‖X̃kε+mM‖ ≥ ‖X̃kε+(m−1)M‖+ 1/2,
m ≥ 1, yielding

‖X̃kε+mM‖ ≥ ‖X̃kε‖+ m/2 ≥ m/2, m ≥ 1,

which is an absurd in view of (19).

Remark 4. H3 requires that Σ completely excites un-
stable spaces of A that are not already excited by E.
H2 further requires that the strictly semi-stable (i.e.,
semi-stable but not stable) spaces of A are excited by E.
Indeed, for granting stability it is not enough to excite
semi-stable modes via Σ, since this noise may vanish as
time evolves and the KF may “deteriorate” to a semi-
stable one.

The situation when all unstable modes of A are excited
by Σ or E, but some of the semi-stable modes of A are
excited only by Σ, yields stability w.r.t. Ψ. The proof for
this fact involves several adaptations of results in [5], [6]
and therefore is not presented.

Proposition 7. Let H be as in (10), JH be the similarity
transformation such that JHAHJ−1

H is in Jordan form and
JS be the subspace spanned by the eigenvectors associ-
ated with the eigenvalues of JHAHJ−1

H lying inside D. If
ker{JHΣJ′H}∩J⊥S = {0} then the KF is stable w.r.t. Ψ.

We finish the section with some links with classical
conditions for stability of KF.

Proposition 8. (A,E) semi-stabilizable or Σ > 0 implies
H3.

Proof. Provided (A,E) is semi-stabilizable, it is a straight-
forward matter to check that HA is a semi-stable matrix,
recalling that the projection H “cancels” controllable
dynamics of A, and semi-stabilizability of (A,B) yields
that the remaining dynamics are semi-stable. A semi-
stable HA leads to JH = {0} and H3 holds. In particular,
for controllable (A,B) one can easily check that H = 0.
For Σ > 0, it is immediate that ker{JHΣJ′H} = {0}.

Example 1. Consider system Φ with

A =

[
2 1

0 2

]
, C = D = I, Σ = σ ′σ , E = v′v,

where σ ,v ∈ R
1,n. Consider the following setups. (i) σ =[

0 1
]
and v = 0. It is simple to check that: Assumption 1

holds (since H1 holds), C = 0, H = I, AH is in Jordan form
and JH = I. Although (A,Σ) is stabilizable, we have that
ker{Σ}∩R

n = [µ ] where µ = [1 0]′, thus H3 does not hold
and the KF is not semi-stable. (ii) σ = 0 and v =

[
0 1

]
.

A stabilizable (A,E) is enough to provide stability; indeed,

now C = I, H = 0 and AH = 0, providing JH = {0} and H3
holds trivially. Note that Σ in (i) equals E in (ii); this
illustrates in what sense Σ has to “completely” excite the
unstable spaces of A (whereas E has only to excite them).

V. Concluding remarks

We have shown that KFs presenting bounded error
covariance Pk are semi-stable if and only if H3 holds, i.e.,
the non-persistent noise model employed in calculations
(characterised by Σ) has to completely excite unstable
modes of A that are not already excited by E. The
result is valid independently of convergence of Pk or any
conditions on C, hence clarifying the meaning of the con-
dition H3 for non-detectable systems (or non-stabilizable
systems in the dual control scenario), complementing
available results for detectable systems [3]. We combine
the condition H3 with conditions H1 and H2 to obtain a
necessary and sufficient condition for stability of the KF.
A condition for stability w.r.t. Ψ is also derived, which
holds trivially when Σ > 0, see Proposition 7.
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