
  

  

Abstract—This paper introduces an approach to fault detection 
and diagnosis scheme which uses fuzzy reference models to 
describe the symptoms of both faulty and fault-free plant operation. 
Recently, some approaches have been combined with fuzzy logic 
to enhance its performance in particular applications such as fault 
detection and diagnosis. The reference models are generated from 
training data which are produced by computer simulation of typical 
plant. A fuzzy matching scheme compares the parameters of a 
fuzzy partial model, identified using on-line data collected from the 
real plant, with the parameters of the reference models. The 
reference models are also compared to each other to take account 
of the ambiguity which arises at some operating points when the 
symptoms of correct and faulty operations are similar. Independent 
Components Analysis (ICA) is used to extract the exact data from 
variables under severe noisy conditions. A Fuzzy Self Organizing 
Feature Map is applied to the data obtained from ICA for obtaining 
more accurate and precise features representing different 
conditions of the system. The results are then applied to the model-
based fuzzy procedure for diagnosis goals. Results are presented 
which demonstrate the applicability of the scheme. 

I. INTRODUCTION 
fter the birth of fuzzy logic, a rapid growth in  its 

popularity made a revolutionary transient era in science 
and especially in engineering which has lasted up to now. 
Recently, some approaches have been combined with Fuzzy 
to enhance its performance in particular applications such as 
fault detection and diagnosis. Fault detection and diagnosis 
usually requires a knowledge-based treatment [1] since, in 
practice, it is very difficult to obtain adequate 
representations of the complex and often highly nonlinear 
behavior of faulty plant using quantitative models. The use 
of fuzzy qualitative models can take account of the 
uncertainties associated with describing the behavior and 
more easily incorporate what expert knowledge is available 
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about the symptoms of faults [10]. Both implicit (shallow 
knowledge) fuzzy models and explicit (deep knowledge) 
fuzzy models are used for fault diagnosis [5]. Terpstra et al. 
[8] uses an implicit fuzzy model (a fuzzy rule base) to 
analyze qualitative statements of the differences between the 
actual values and those predicted by quantitative models of 
the behavior of the system with and without faults. 
Schneider and Frank [6] and Sauter et al. [10] describe 
similar observer based fault detection schemes in which 
fuzzy rules adapt the threshold for evaluating the residuals 
according to the current operating conditions. Ulieru [9] 
identifies faults using a fuzzy inter-relational diagnostic 
model which is constructed from fuzzy relations based on 
expert opinion that map symptoms to faults. The possibility 
of each fault given the detected symptoms is calculated and 
the diagnosis is based on fuzzy pattern recognition. Kang et 
al. [2] proposes an analytical intelligent approach which 
diagnoses faults via fuzzy inferencing based on expert rules. 
Some explicit approaches are proposed by Marcu and Voicu 
[4], who train a fuzzy classifier to detect and isolate faults 
using data generated by simulation, and by Sauter et al. [7] 
who use fuzzy clustering in residual space to locate faults in 
systems which have multiple sensors.  

This paper describes a parameter estimation rather than an 
innovative approach to fuzzy model-based fault diagnosis. 
The use of ICA as a powerful tool for denoising can also be 
considered as an innovation for improving the efficiency of 
the proposed method under severe noisy conditions. 
Although the data obtained from ICA, which are in-fact the 
real inputs and outputs of plant whose signal to noise ratio 
has been increased to a very good level, are at an acceptable 
range of noisiness, they still need treatment of some feature-
based methods for giving the best possible information to 
the fuzzy network. FSOM is employed here as a suitable 
clustering method which enhances the quality of data given 
to fuzzy system by extracting centers of the ICA output. 

The fuzzy matching is based on the same measure of 
similarity as that used by Wang et al. [11] to match fuzzy 
propositions. The fuzzy measures of similarity are used to 
calculate a set of basic assignments which indicate the 
strength of the evidence that the system is operating 
correctly or has a particular fault. The method of diagnosis 
has been developed to detect and diagnose faults in 
continuous stirred-tank reactor (CSTR). The detection of 
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four common faults associated with the operation of the 
whole unit is used to demonstrate the applicability of the 
scheme. 

II. FUZZY FAULT DETECTION AND DIAGNOSIS  
The fuzzy reference models are made up from IF-THEN 

rules which describe the symptoms of faulty and fault-free 
operation in terms of predefined fuzzy reference sets. A 
particular model is defined by specifying the values of the 
elements of its associated fuzzy relational array. Each 
element of the array is a measure of the credibility or 
confidence that the associated rule correctly describes the 
behavior of the system around a particular operating point. 
The models can be based on expert knowledge or learned 
offline from training data produced by computer simulation 
of typical plant, with and without the faults. The degree to 
which a fault, or correct operation, is present is determined 
by comparing the rules of the reference models with the 
rules of a partial fuzzy model identified using normal 
operating data collected on-line from the real plant (see Fig. 
1). A fuzzy measure of similarity is used to calculate the 
belief that the fault condition associated with each of the 
reference models has occurred in the real plant. 

 

 
Fig. 1 Schematic of fault detection and diagnosis using fuzzy models 
 

A. Fuzzy equality 
The equality of two fuzzy sets A and B can be assessed by 

calculating the degree to which A ⊂ B and B ⊂ A. One 
measure of the grade of equality or similarity SimA,B of A 
and B [3] is given by 
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Where Aμ  is the membership function for fuzzy set A, 

Bμ  is the membership function for fuzzy set B, α  is the 
fuzzy inclusion operator: 
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and N is the number of elements defined on the discrete 
universe of discourse. The similarity measure can be 
simplified [3, 11] when the fuzzy sets are generated from 

measured data, since exact equality ( ) ( )ii BA μμ =  is 
unlikely to occur in practice. In this case, 
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B. Fuzzy matching 
The same similarity measure can be used to compare the 

partial fuzzy model with the reference models, if all of the 
fuzzy models have the same structure and they are 
considered as level two fuzzy sets whose membership values 
are given by the credibilities of their rules. In this case the 
measure of the similarity SimSP, Si between the partial fuzzy 
model representing the current state of the system SP, and 
the fuzzy reference model representing the behavior of the 
system if it were in state Si, is given by: 
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Where Csp(n) is the credibility of the nth rule in the 

partial fuzzy model, Csi(n) the credibility of the equivalent 
rule in the ith fuzzy reference model describing the behavior 
of the system when it is in state Si, and Nr is the number of 
rules that are compared. Since a partial model can only 
describe the symptoms of operation around the current 
operating point, the rules of the partial fuzzy model are only 
compared with rules in the fuzzy reference models that have 
the same antecedents as rules with nonzero credibility in the 
partial model, and the sum of the credibilities in the partial 
fuzzy model is used to normalize the result. 

III. CASE STUDY 
System has got four inputs which we use in addition to 

four outputs as the primary input data for fuzzy logic to 
determine system status. Outputs of the system are exactly 
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its four state variables which are known as follows in the 
literature and in software programs used for simulation: 
Input1: u1, Mass flow rate of substance A ( symbolic Fi ) 
Input2: u2, Concentration of substance A (symbolic CAi ) 
Input3: u3, Temperature of the substance A (symbolic Ti ) 
Input4: u4, Temperature of the coolant ( symbolic Tc ) 
State1: x1, Volume of liquid in CSTR ( symbolic V ) State2: 
x2, Concentration of substance B ( symbolic CA ) State3: x3, 
The temperature of substance B ( symbolic T ) State4: x4, 
The temperature of  Jacket ( symbolic Tj )  

 

A. Specifications of Faults 
Among the various possible faults to be defined in this 

system, some were realistic and practically more common. 
Below, there is a list of different types of fault considered to 
train the fuzzy models for the case under study: 

Fault1: Leakage in the flow rate of input material A  ( Fi ) 
Fault2: deposition in the jacket which results in reduction of 
heat transfer coefficient  ( U ) Fault3: Low efficiency of 
compressor which causes the input temperature of the 
coolant to  increase   ( Tc ) Fault4: Sensor Fault which 
results in an offset when measuring output temperature of 
the material B   ( T ) 

 
Fault4 in-fact is a false-alarm which represents that there 

is some problem in measuring devices not in the process or 
the plant itself. Therefore, when Fault4 is activated by the 
FDD system, there is no need for shut-down, but the only 
action necessary is to replace the output sensor of variable 
x3 by a new calibrated one. 

IV. SIMULATION & RESULTS 
Simulations have been performed using Matlab package 

and Simulink. The steady-state value of inputs and outputs 
will be subtracted from the measured values of the system 
variables to make the problem easier. The centers of fuzzy 
sets will be chosen around zero according to the deviations 
that system variables will have due to the condition which 
includes the presence of each fault or the fault-free 
condition.  This way the faults can be detected and 
diagnosed at the same time and, on the other hand, the false 
alarms considered in this case study will also be detected 
properly which avoids the system from being shut down and 
helps the quality of the products and the amount of energy 
consumption to be kept at desired level.  

 
An example of membership functions chosen for 

variables of the system is shown in fig.2. We've considered 
3 MFs for each of the input variables due to their range of 
deviation. The terms "nlarge" (Negative Large Values) and 
"plarge" (Positive Large Values) in fig. 5-a  represent high 
amounts of deviation or change in the input variable which 
can be caused by both a fault (in this case: sensor fault, 
compressor fault, etc.) or a change in the set-point of the 

system. MF named "small" represents small changes or 
deviations in the temperature of the coolant which can be 
caused by some noise or because of some non-fault reasons. 
Therefore, whenever the values of the input u4 are under the 
membership "small" the condition of this input should be 
identified as "normal". We refer to the MF "small" as the 
MF "Z" from this moment on. The MFs "nlarge" & "plarge" 
will also be referred to as "N" & "P". 

 

 
(a) 

 
(b) 

Fig. 2.   Membership Functions. 
(a) Input temperature of coolant or u4 (symbolic Tc) 

(b) Output temperature of substance B or x3 (symbolic T) 
 

We refer to the values of the u1, u2, u3, u4, x1, x2, x3, x4 
as the difference values of the variables. Therefore, u1=0 or 
u1 is "Z" means that the main value of the variable u1 is 
constant and doesn't have any change or deviation. 
Regarding the definition mentioned here we can introduce 
the basic fuzzy rules as follows: 

 
1. If u1, u2, u3, u4 are "Z" and x1, x2, x3, x4 are "Z" 

then the status is "Normal" 
2. If u1, u2, u3, u4 are "Z" and x1, x2, x3, x4 are "N" 

then the status is "Fault1" 
3. If u1, u2, u3, u4 are "Z" and x1 is "Z" and x2 is "N" 

and x3 is "P" and x4 are "N" then the status is 
"Fault2" 

4. If u1, u2, u3 are "Z" and u4 is "P" and x1 is "Z" 
and x2 is "N" and x3, x4 are "P" then the status is 
"Fault3" 

5. If u1, u2, u3 are "Z" and u4 is "P" and x1, x2 are 
"Z" and x3 is "N" and  x4 is "Z" then the status is 
"Fault4" 

 
Fig. 3 shows one example of test data which represent the 

presence of Normal steady-state at the beginning after which 
Fault 1 has been occurred. The last part of the diagrams 
(after sample 1750) shows the presence of Fault3 and 
removal of Fault1. 
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(b) 

Fig. 3.  Test status of the system is Normal-Fault1-Fault3   (a) noiseless     
(b) very noisy      (Sampling time = 10 s, total of 3600 samples for 10 hours) 
 

The data have been sampled from a computer simulation 
under noiseless condition (a), and severe noisy condition 
(b).  As one can easily see here, the noisy measurements can 
reveal approximately nothing for the user. It seems that there 
only exist some high amplitude noise which is recorded 
because of some critical fault in sensors or the data 
transmission line, etc. The inherent ability of ICA in 
denoising helps us in this case. Although there are some 
approaches used for reproducing the two source signals 
from one mixed signal [12] using wavelet decompositions, 
we just had the simple assumption of having a hardware 
redundancy for the system. There should be two sensors for 
measuring each of the variables, the effect of noise on each 
of the sensors is different from the other. This way there'll 
be two mixed signals which are given to the ICA method for 

the two sources to be separated. The method used for 
implementing Independent Components Analysis is the 
FastICA algorithm [13]. 
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(b) 

Fig. 4.  Separation results:               (a) Main data extracted by ICA 
(b) Main data obtained using LPF 

(Sampling time = 10 s, total of 3600 samples for 10 hours) 
 

Fig. 4a shows the main independent source separated 
using the ICA method. As one can see here, the noise and 
the main data have been successfully separated. Diagram of 
Noise is not shown in this figure because it contains no 
information of the plant behavior. Results of using a very 
powerful Low-Pass Filter (LPF) are also shown in fig. 4b for 
comparison with those of ICA. The main data will be used 
for the rest of the procedure.  

The best possible separation results for an LPF obtained 
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by order of two and the cut frequency of 100 (Hz). 
Diagrams have shown in Fig. 4 for comparison. If one is to 
compare the results of Fig. 4 with the data shown in fig. 3a it 
will be easily seen that the ICA has proven itself much more 
powerful than LPF in this case. Output of ICA is at a good 
level of noisiness, but for more accurate decision-making, 
we need to use another approach to extract features of the 
data in different working conditions of the plant, including 
transition and steady-state. For obtaining this result, we 
chose an FSOM method which is based on c-Means 
algorithm [13, 15].  
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(b) 

Fig. 5.  Results of clustering using FSOM: 
(a) 3D view of clusters   (b) Samples vs. clusters 

(Sampling time = 10 s, total of 3600 samples for 10 hours) 
 
The results of the clustering procedure are shown in fig 5. 

The mentioned data are used to investigate the fuzzy method 
proposed in this paper which is based on fuzzy modeling 
and a fuzzy matching of the test data with models in addition 
to fuzzy of the fuzzy models to each other to extract a 
strength factor for credibility of each rule. 

Fig. 5a represents the weight vectors which are in-fact the 
three denoised inputs to the FSOM. Different values of 
inputs have some effects on the place of centers used for 
clustering. Here the simulation is done using three centers to 
result in three different clusters. Different clusters are 
represented by different colors in the 3D map of Fig. 5a. In 
Fig. 5b a 2D map of samples vs. clusters is drawn. It can be 
easily seen here that to which cluster each sample belongs. 
Cluster 3 represents the first steady-state condition under 
which the plant behaves normally. Cluster 1 is the symbol of 
second steady-state condition during which fault1 is present 
in the plant. Cluster 2 shows the last steady-state condition 
of the system during which plant is under the effect of fault3 
solely. There can a confusion be detected in the diagram of 
Fig. 5b which refers to the transient condition of plant 
outputs during the change from fault1 to fault3. The FSOM 
just detects the status of plant as normal for the samples 
1800 to 2000 because of their exact value whereas the actual 
status of the plant should be detected fault1 and fault3 with 
some percentage for each of them during this transitory 
condition. Another confusion is also detected in the 2D map 
for samples 450 to 550 during which the FSOM can not 
detect the plant status properly due to the similarity of 
values of inputs to the clustering method. 

After obtaining the centers of the data using FSOM the 
normal steady-state value of each variable will be subtracted 
from its measured value. Using fuzzy rules and credibilities 
introduced before we'll be able to calculate the degrees of 
similarity for ambiguous data according to the fuzzy 
memberships for all of the universes of discourse. The result 
of the plant status detection and diagnosis under severe 
noisy condition is shown in fig. 6 which represents 
condition of the system for each sample of data. Data have 
been sampled by the sampling time of 10 (sec) for 10 hours. 
So there are totally 3600 samples studied in this simulation. 

As one can easily see here, the results are clearly 
distinguishable. The specifications of Normal and faulty 
conditions have been introduced in section 3.1 of this paper. 

For the steady-state condition, this approach gives a 
reliable and accurate response even under severe noisy 
conditions which is impossible for ordinary and common 
fuzzy approaches. For the test status data the diagram of 
which is given in fig. 6a we’ve got a precise and accurate 
response for detecting and diagnosing the plant status by 
using the proposed method in fig. 6b during steady-state 
conditions. 
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(a) 

 
(b) 

Fig. 6.  Diagrams of plant status: 
(a) Real Plant Status 

(b) Results of the proposed method under severe noisy condition 
(Sampling time = 10 s, total of 3600 samples for 10 hours) 

 

V. CONCLUSION 
An innovative method of fault detection and diagnosis has 

been developed which is based on fuzzy matching of fuzzy 
reference models generated from simulation data. The 
method of diagnosis calculates a measure of the underlying 
ambiguity associated with the diagnosis and generates a 
confidence interval for each of the possible diagnoses. The 
scheme is computationally efficient since the identification 
of a partial fuzzy model and the fuzzy matching of the 
models require relatively little processing power. To 
enhance the ability of fuzzy fault detection and diagnosis 
under severe noisy conditions, the method of ICA was 
employed. The method of FSOM was also used to extract 
the features of the data obtained by ICA for more accurate 
and precise fuzzy decision making. The results have shown 
that the scheme can successfully diagnose correct operation 
in an industrial example of continuous stirred-tank reactor. 
Work is now being undertaken to examine the sensitivity of 

the diagnosis to the structure of the models and to 
investigate ways of producing generic reference models 
which can be used to represent the operating characteristics 
of a range of plants of similar design.  
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