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Abstract— This paper presents a new observer design for
Lipschitz nonlinear continuous-time systems with nonuniformly
sampled measurements. Based on recent results in sampled-
data control of linear continuous-time systems, linear matrix
inequality (LMI) conditions are established to guarantee global
stability of the estimation error dynamics and to design the
observer matrix. The applicability of the proposed observer
is demonstrated via two examples, that are the flexible joint
robotic arm and Chua’s circuit.

I. INTRODUCTION

Many observer design techniques for nonlinear continuous-

time systems have been developed in the last decades, e.g.

the extended Luenberger observer [9], the Lipschitz observer

[8], or the circle-criterion observer [2]. All these observer

design techniques are based on the assumption that the

output of the nonlinear system is measured continuously, i.e.

y(t) = Cx(t). However in some engineering applications,

e.g. in network control systems (NCSs) in which the output

is transmitted over a shared digital communication network,

the output is only available at discrete time instants, i.e.

yk = Cx(tk). For nonlinear continuous-time systems with

sampled measurements notable observer design techniques,

thereunder the Kalman filtering technique or the high-gain

observer design technique, are e.g. [3–5] and the references

therein.

In this paper a new observer for Lipschitz nonlinear

continuous-time systems with nonuniformly sampled mea-

surements is designed via LMI-based sampled-data control

techniques. Since the measurements are only available at

discrete time instants, the proposed observer is updated in

a sample-and-hold fashion. Due to this the dynamics of the

observer, accordingly also the dynamics of the estimation

error, is described in a hybrid way. To ensure that the

proposed observer globally reconstructs the system state, the

stability of the hybrid nonlinear estimation error dynamics is

analyzed with a discontinuous Lyapunov function proposed

in [7]. From this analysis, LMI conditions are established to

guarantee global stability of the hybrid nonlinear estimation

error dynamics and to design the observer matrix.

The remainder of the paper is organized as follows: In

Section II an observer with sample-and-hold updating for

Lipschitz nonlinear continuous-time systems with nonuni-

formly sampled measurements is presented. In Section III

the applicability of the proposed observer is demonstrated

via examples. Finally, Section IV concludes the paper.
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II. MAIN RESULT

Consider the Lipschitz nonlinear continuous-time system

ẋ(t) = Ax(t) + ρ(t, u(t)) + Gσ(Hx(t))

yk = Cx(tk)
(1)

with initial condition x(t0) = x0. In (1) x ∈ R
n is the system

state, u ∈ R
p the control input, y ∈ R

q the measured output,

that is available at time instants tk satisfying 0 ≤ t0 < t1 <

. . . < tk < tk+1 < . . . with limk→∞ tk = ∞ and time-

varying intervals δk+1 = tk+1−tk. Furthermore, A ∈ R
n×n,

G ∈ R
n×m, H ∈ R

m×n, C ∈ R
q×n are constant matrices

and ρ : R × R
p → R

n is a locally Lipschitz function which

depends on known arguments. Finally, it is assumed that

(A,C) is observable and that σ : R
m → R

m is a Lipschitz

nonlinearity with Lipschitz constant γ > 0, i.e.

||σ(v) − σ(w)|| ≤ γ||v − w|| ∀v, w ∈ R
m. (2)

The proposed observer for system (1) is

˙̂x(t) = Ax̂(t) + ρ(t, u(t)) + Gσ(Hx̂(t)) + K(tk) (3)

with x̂ ∈ R
n, initial condition x̂(t0) = x̂0, and K(tk) =

L(ŷ(tk) − y(tk)) for t ∈ [tk, tk+1), where ŷ(tk) = Cx̂(tk)
is the estimated output and L ∈ R

n×q the observer matrix.

Note that the dynamics of observer (3) is of hybrid nature.

The reason for this is that the state estimate x̂ is described in

continuous-time while the innovation process ŷ(tk) − y(tk)
is only changed at time instants tk, i.e. the current innovation

process is used until the new innovation process is available.

To show that observer (3) estimates the state of system (1),

the stability of the estimation error dynamics

ė(t) = Ae(t) + Gυ(t, e(t)) − K(tk) (4)

with e = x − x̂ and υ(t, e) = σ(Hx) − σ(H(x − e)) is

studied. The next theorem provides sufficient conditions,

expressed in terms of LMIs, to guarantee that estimation

error dynamics (4) is globally exponentially stable.

Theorem 1: Suppose that nonlinearity σ of system (1) satis-

fies condition (2) and that the time-varying sampling intervals

δk+1 are bounded by δ ≤ δk+1 ≤ δ for all k ∈ N0 with 0 ≤
δ ≤ δ. Then observer (3) globally exponentially estimates

the state of system (1) if there exist matrices P = PT > 0
with P ∈ R

n×n, L̃ ∈ R
n×q, N1 ∈ R

n×n, N2 ∈ R
n×n,

N3 ∈ R
m×n such that LMI conditions (9) are satisfied. The

actual observer matrix L is given by L = P−1L̃.
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Proof: The main ideas of the following proof are based on the

proof of Theorem 2 in [7] for linear sampled-data systems.

First of all, estimation error dynamics (4) is rewritten as

ė(t) = Ae(t) + Gυ(t, e(t)) + LCǫ(t)

ǫ̇(t) = 0 tk ≤ t < tk+1

e(t+k ) = e(tk) t = tk

ǫ(t+k ) = ǫ(tk) k = 0, 1, . . .

(5)

in order to consider more easily its hybrid effects in the

stability analysis. The stability of (5) is studied via the

function

V (t) = eT (t)Pe(t) +

∫ t

t−τ(t)

(δ − t + s)ėT (s)P ė(s) ds

+ (δ − τ(t))(e(t) − ǫ(t))T P (e(t) − ǫ(t)) (6)

with τ(t) = t− tk, tk ≤ t < tk+1, for k = 0, 1, . . . ,∞. The

time derivative of (6) along the trajectories of estimation

error dynamics (5) is

V̇ (t) = ξT (t)





PA + AT P PLC PG

CT LT P 0 0
GT P 0 0





︸ ︷︷ ︸

Q1

ξ(t)

+ δξT (t)Q2ξ(t) −

∫ t

t−τ(t)

ėT (s)P ė(s)ds

+ ξT (t)





−P P 0
P −P 0
0 0 0





︸ ︷︷ ︸

Q3

ξ(t)

+ (δ − τ(t))ξT (t)Q4ξ(t)

(7)

with ξ = [eT ǫT υT ]T and Q2, Q4 defined in (8).

Q2 =





AT

CT LT

GT



 P
[
A LC G

]
, Q4 =





PA + AT P PLC − AT P PG

CT LT P − PA −PLC − LT CT P −PG

GT P −GT P 0



 (8)







(1 + δ̄)(PA + AT P ) + γ2HT H − P − N1 − NT
1

(1 + δ̄)CT L̃ + P − δ̄PA + NT
1 − N2

(1 + δ̄)GT P − N3

δ̄PA

(1 + δ̄)L̃C + P − δ̄AT P + N1 − NT
2 (1 + δ̄)PG − NT

3 δ̄AT P

−δ̄(L̃C + CT L̃T ) − P + N2 + NT
2 −δ̄PG + NT

3 δ̄CT L̃T

−δ̄GT P + N3 −I δ̄GT P

δ̄L̃C δ̄PG −δ̄P







< 0 (9a)









PA + AT P + γ2HT H − P − N1 − NT
1 L̃C + P + N1 − NT

2 PG − NT
3 δ̄AT P δ̄N1

CT L̃T + P + NT
1 − N2 −P + N2 + NT

2 NT
3 δ̄CT L̃T δ̄N2

GT P − N3 N3 −I δ̄GT P δ̄N3

δ̄PA δ̄L̃C δ̄PG −δ̄P 0
δ̄NT

1 δ̄NT
2 δ̄NT

3 0 −δ̄P









< 0 (9b)

Using the fact that

0 ≤

∫ t

t−τ(t)

[
ė(s)
ξ(t)

]T [
P NT

N NP−1NT

] [
ė(s)
ξ(t)

]

ds (10)

holds for any matrix N = [NT
1 NT

2 NT
3 ]T and that

0 ≤ ξT (t)





γ2HT H 0 0
0 0 0
0 0 −I





︸ ︷︷ ︸

Q5

ξ(t)

is satisfied due to (2), one obtains

V̇ (t) ≤ ξT (t)(R1 + τ(t)R2 + (δ − τ(t))R3)ξ(t) (11)

with R1 = Q1 + δQ2 + Q3 + Q5 + Q6, where Q6 is

Q6 =





−N1 − NT
1 N1 − NT

2 −NT
3

NT
1 − N2 N2 + NT

2 NT
3

−N3 N3 0



 , (12)

R2 = NT P−1N , and R3 = Q4. To ensure that V̇ (t) is

negative definite, R1+τ(t)R2+(δ−τ(t))R3 < 0 has to hold

for 0 ≤ τ(t) ≤ δ. To avoid the time dependency it is shown

in [7] that (11) is negative definite iff the following LMI

conditions, which are equivalent to (9) by setting L̃ = PL

and applying the Schur complement to Q2, R2, are feasible:

R1 + δR3 < 0, R1 + δR2 < 0. (13)

Hence, global exponential stability of estimation error dy-

namics (4) follows from the feasibility of LMI conditions

(9) since in that case V is a Lyapunov function for (5), i.e.

V satisfies all conditions, including the important conditions

V̇ (t) < 0 and V (tk) ≤ limt→h V (tk − h), to guarantee

stability of hybrid systems [7]. �
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Remark 1: If an Lipschitz observer is designed under the

assumption that the system output is continuously mea-

surable, i.e. y(t) = Cx(t) instead of yk = Cx(tk) in

(1), its convergence behavior with nonuniformly sampled

measurements can be analyzed via the less conservative

function [7]

V (t) = eT (t)Xe(t) +

∫ t

t−τ(t)

(δ − t + s)ėT (s)Y ė(s) ds

+ (δ − τ(t))(e(t) − ǫ(t))T Z(e(t) − ǫ(t)), (14)

where X,Y,Z are symmetric positive definite matrices. Note

that (6) is obtained from (14) by setting P = X = Y = Z.

III. EXAMPLES

In this section the applicability of the proposed observer

design for Lipschitz nonlinear systems with nonuniformly

sampled measurements is demonstrated via two examples.

A. Flexible Joint Robotic Arm

In the following observer (3) is applied to estimate the state

of a flexible joint robotic arm [6] shown in Figure 1. The

dynamics of this robotic arm is described by (1) with system

state xT = [x1 x2 x3 x4] , system matrices

A =







0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0







, B =







0
21.6
0
0







,

G =







0
0
0
−1







,HT =







0
0
1
0







, CT =







0 1
1 0
0 0
0 0







,

function ρ(t, u) = Bu, and nonlinearity σ(Hx) = 3.3 sin x3

with Lipschitz constant γ = 3.3. Furthermore, it is assumed

that δ = 0.1. Solving the LMI conditions of Theorem 1 with

the above specified matrices and constants, one obtains the

observer matrix LT
=

»

−52 20.7 −1.2 −9.7

−0.5 −6.4 −0.3 2.0

–

. The simulation

results with u(t) = sin(t) and time-varying sampling inter-

vals δk (uniform probability distribution between δ = 0.001
and δ = 0.1) are plotted in Figure 3 and it can be seen

that the system state of the flexible joint robotic arm is

reconstructed.

K

x3

mg

M

x1

x2

x4

Fig. 1. Flexible joint robotic arm.

B. Chua’s Circuit

Now observer (3) is applied to Chua’s circuit, that is shown

in Figure 2. The dynamics of this circuit, see e.g. [1], is

given by (1) with xT = [x1 x2 x3], system matrices

A =





−3.2 10 0
1 −1 1
0 −14.87 0



 , G = HT = CT =





1
0
0



 ,

function ρ(t, u) = 0, and nonlinearity σ(Hx) = 2.95(|x1 +
1| − |x1 − 1|). Solving LMI conditions (9) with the above

specified matrices and constant δ = 0.05, one obtains the

observer matrix LT =
[
−0.9 −1.3 1.2

]
. Figure 4 shows

that the system state of Chua’s circuit is estimated via

observer (3).

R0

NR

R

x3

x2
L

x1
C2 C1

Fig. 2. Chua’s circuit.

IV. SUMMARY

In this paper an observer design for Lipschitz nonlinear

continuous-time systems with nonuniformly sampled mea-

surements has been proposed. To the authors’ best knowl-

edge, the proposed LMI-based observer design approach is

new for the considered observer design problem. Finally, the

applicability of the proposed observer has been successfully

demonstrated via two well-known observer examples, that

are the flexible joint robotic arm and Chua’s circuit.
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Fig. 3. Simulation results of Section III.A: The system state of the flexible joint robotic arm (gray) with input u(t) = sin(t), measured output y1

(gray), measured output y2 (dark gray), time-varying sampling intervals δk that are modeled by an uniform probability distribution between δ = 0.001
and δ = 0.1, and initial condition x0 = [3 2 3 − 2]T is estimated via observer (3) (black) with initial condition x̂0 = [0 0 0 0]T .
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Fig. 4. Simulation results of Section III.B: The system state of Chua’s circuit (gray) with measured output y, time-varying sampling intervals δk that are

modeled by an uniform probability distribution between δ = 0.001 and δ = 0.05, and initial condition x0 = [0.2 − 0.5 0.4]T is estimated via observer
(3) (black) with initial condition x̂0 = [0 0 0]T .
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