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Abstract— This paper presents a new method for further
optimizing the prediction dynamic of constrained robust model
predictive control. More slack variables are deployed in the
proposed linear matrix inequality (LMI) formulation in order
to provide extra degrees of freedom for the dynamic controller.
As illustrated by a canonical example, the extra degrees of
freedom allow for better performance and wider applicability.
In addition, such design can be performed offline leaving only
a simple optimization problem for online realization.
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I. INTRODUCTION

Model predictive control (MPC) is one strategy that deals
with controller design for systems with physical constraints.
The basic idea of MPC is first found in several textbooks
on the optimal control theory [1]–[3]. Over the last few
decades MPC has attracted notable attention in many fields
where slow dynamical systems are met (typically chemical
processes). The idea of MPC can be summarized as follows:
at each control interval, an explicit process model is utilized
to predict the future response of a plant, and a constrained
optimization problem is then solved to yield a sequence
of future manipulated variable control adjustments in order
to optimize future plant behavior. Only first move of the
sequence of manipulated variable control adjustments will
be implemented to the plant and then the entire calculation
is repeated at subsequent control intervals (see e.g. Garcı́a,
Prett, & Morari [4]).

MPC strategy has received much consideration since it
is possible to handle constrains on input, state and out-
put signals during the design procedure of the controller.
However, it has also been cited in many papers ( [5], etc)
that the computational complexity is the key factor that
limits MPC (especially for robust MPC) to slow dynamic
or low dimensional systems. Recently a lot of work that
aims at reducing the online computational complexity has
been reported. For example, [6] attempts to use an open-
loop parametric MPC where the objective function penalizes
the nominal system while the constraints are guaranteed
for all possible uncertainty. And in [7] the author tries to
recast a min-max MPC problem with quadratic cost to a
quadratically constrained quadratic program, which can be
efficiently solved by specially tailored interior-point meth-
ods whose computational cost are linear in the number of
variables. In [8], [9], an explicit solution of linear MPC
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in piecewise affine form has been derived by using multi-
parametric linear/quadratic programming, leaving only a
simple point location problem to online realization. However
the prohibitive online storage and offline partition complexity
limits its application to low dimensional systems.

On the other hand [10], [11] use ellipsoidal constraints
approximation to formulate the min-max MPC in an LMI
framework and solve it online. Such method provides an
efficient tool for robust MPC but the computational load
remains prohibitive when fast dynamic systems are used.
In view of this, [5], [12] introduce an alternative approach
which deploys a fixed state feedback law and extra degrees
of freedom through the use of perturbations, thereby moves
all demanding computations offline leaving only a small
fraction of the computational load for the online realiza-
tion. This approach is improved in [13], [14] by using
varying parameters in the dynamic feedback law. However
the formulation in [13], [14] is non-convex hence leads to
no guarantee on convergency of the solution. In [15] the
dynamic feedback law is further optimized and formulated
into a convex problem.

Inspired by advances in output feedback controller design
methods [16], [17], this paper aims at reducing the design
conservativeness by introducing more slack variables such
that the associated maximal stabilizable set is enlarged. By
using a nonlinear parameter transformation technique, result-
ing optimization problem admits a convex formulation which
can be solved efficiently. Despite this, since the demanding
optimization can be performed offline, the proposed approach
will not induce any extra online computational load.

The paper is organized as follows. In Section II, the
problem is presented and some basic concepts concerning
MPC are reviewed. In Section III, the new approach is
present. In Section IV-A, a numerical example is presented
followed by some conclusion remarks in Section V.

Notation. R is the set of real numbers. For a matrix A,
AT denotes its transpose, and A−1 its inverse (if exists). The
matrix inequality A > B (A � B) means that A and B are
square and symmetric and A−B is positive (positive semi-)
definite. I denotes the identity matrix. x(k) or x(k|k) denotes
the state measured at real time k; and x(k + i|k) (i � 1) the
state at prediction time k + i predicted at real time k. The
symbol ∗ within a matrix represents the symmetric entries.
For positive definite matrix Q and compatible column vector
x, ‖x‖Q � xT Qx.
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II. PROBLEM FORMULATION

Consider the discrete-time uncertain linear system

x(k + 1)= A(k)x(k) + B(k)u(k)
y(k)= Cx(k)

[A(k), B(k)]∈ Ω := Co{[Aj , Bj ], j = 0, 1, . . . , l}
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the input and
y ∈ Rny is the output, Co{·} denotes the convex hull while
[Aj , Bj ] are vertices of the uncertain polytope Ω. Constraints
on the state x and input u are taken into account

Fx(k) + Eu(k) � f. (2)

Suppose the infinite horizon linear quadratic performance
index is given as

J(k) =
∞∑

i=0

‖y(k + i|k)‖Q + ‖u(k + i|k)‖R (3)

where Q and R are given positive semi-definite symmetric
matrices. Then the worst case performance index to be
minimized is

J̃(k) = max
[A(k+i),B(k+i)]∈Ω, i=0,1,...

J(k) (4)

subject to system dynamic for prediction

x(k+i+1|k)= A(k+i|k)x(k+i|k)+B(k+i|k)u(k+i|k)
y(k+i|k)= Cx(k+i|k) . (5)

In order to guarantee closed-loop stability, state/input
constraint (2) must be satisfied along predicted trajectories
for all possible future model uncertainty. Mathematically, this
requirement can be written as and constraints along predicted
trajectories

Fx(k + i|k) + Eu(k + i|k) � f,
∀[A(k + j), B(k + j)] ∈ Ω, j = 0, 1, . . . , i − 1.

(6)

As was done in [13]–[15], in the following the system
will be pre-stabilized with a state feedback controller K .
Such controller can be optimized in varied senses, e.g., LQ
optimal, feasible set maximal etc.

In the following we are ready to present the method pro-
posed in this paper for optimizing the prediction dynamics.

III. MAIN RESULT

A. Augmented system

Suppose the dynamic controller is modeled as

xc(k + i + 1|k)= Acxc(k + i|k) + Bcy(k + i|k)
v(k + i|k)= Ccxc(k + i|k) + Dcy(k + i|k)
u(k + i|k)= Kx(k + i|k) + v(i|k)

(7)

where xc ∈ Rnc is the state of the dynamic controller, Ac,
Bc, Cc and Dc are variables to be calculated. Please note

that when Bc = 0 and Dc = 0, it recovers the formulation
in [15]. Further more, if we define

Ac =

⎡
⎢⎢⎢⎣

0 Inu · · · 0
... 0 · · · 0
0 0 · · · Inu

0 0 · · · 0

⎤
⎥⎥⎥⎦ ,

Cc = [Inu ,0, . . . ,0], xc =

⎡
⎢⎢⎢⎣

v(0|k)
v(1|k)

...
v(N − 1|k)

⎤
⎥⎥⎥⎦ ,

where N is the control horizon that v(i|k) = 0 for all i � N ,
(7) recovers the formulation in [12]. Therefore, with extra
degrees of freedom provided by these parameters, we expect
to find a less conservative design.

Given (7) and (5), the overall system can be written as

ξ(k + i + 1|k) = A(k + i|k)ξ(k + i|k) (8)

where ξ = [xT , xT
c ]T and A(k + i|k) ∈ Co{Aj , j =

0, 1, . . . , l} with

Aj =
[

Φj + BjDcC BjCc

BcC Ac

]
, Φj = Aj + BjK. (9)

B. Offline optimization

The basic idea is to enlarge the feasible region asso-
ciated with the unconstrained controller K through use
of augmented state vector ξ. That is, we want to find
Ac, Bc, Cc, Dc that gives the largest possible region of
attraction. The optimization is done by looking for a a
positive-definite matrix Qz which defines invariant ellipsoid
Ez :=

{
ξ|ξT Q−1

z ξ � 1
}

that the volume of the projection
from it onto the state space ( [12], [14]) is maximized, i.e.,
the volume of Exx :=

{
x|xT (TQzT

T )−1x � 1
}

(project
function x = Tz) is maximized. Equivalently, this problem
can be recast as follows

max
Qz ,Qj ,Ac,Bc,Cc,Dc

ln det(TQzT
T ) (10)

subject to stability constraint and state/input constraints in
LMI formulation,

Q−1
j −AT

j Q−1
j Aj �0, j = 0, 1, . . . , l, (11a)

Fx(k + i|k) + Eu(k + i|k)� f, i = 0, 1, . . . , (11b)

and an extra constraint to ensure Ez :=
{
ξ|ξT Q−1

z ξ � 1
}

is
invariant

Qz � Qj , j = 0, 1, . . . , l. (11c)

Theorem 3.1: Consider discrete time uncertain system (1)
with constraints (2).

(a) Existence: There exist matrices Qj , Ac,j , Bc,j , Cc, Dc

of appropriate dimension satisfying (11a) and (11b) only
if the following LMIs are feasible in positive definite
matrices X , Y , and symmetric positive definite matrices
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W , Qj,11, Qj,22, Qxx and matrices N , R, S, T , Dc,
Qj,21 that for j = 0, 1, . . . , l

⎡
⎢⎢⎣
X+XT−Qj,11 ∗ ∗ ∗
I + N −Qj,21 Y+ Y T −Qj,22 ∗ ∗
ΦjX + BjS Φj + BjDcC Qj,11 ∗

R Y T Φj + TC Qj,21 Qj,22

⎤
⎥⎥⎦�0,

(12)
where⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N= Y T X + V T U,
R= Y T(Φj+BjDcC)X+V TBc,jCX+Y TBjCcU

+V TAc,jU,
S= DcCX + CcU,
T= Y T BjDc + V T Bc,j .

(b) Constraints: Constraints (11b) is guaranteed if following
LMI holds⎡
⎣W FX + EKX + ES F + EK + EDcC
∗ X + XT −Qj,11 I + NT −QT

j,21

∗ ∗ Y + Y T −Qj,22

⎤
⎦ � 0.

(13)

(c) Optimization: The offline maximization of the volume
of Exx is performed by solving the following optimiza-
tion problem,

max
X,Y,W,N,R,S,T,Dc,Qj,11,Qj,21,Qj,22,Qxx

ln detQxx (14)

subject to ∀j = 0, 1, . . . , l

Qj,11 � Qxx, (15)

and LMI (12), (13).

(d) Controller: Suppose optimization problem in (c) admits
a solution. The resulting dynamic controller is given in
the following equations. Given U , V that satisfy N =
Y T X + V T U ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ac,j= V −T (R − Y T(Φj+BjDcC)X−V TBc,jCX
−Y TBjCcU)U−1,

Bc,j= V −T (T − Y T BjDc),
Cc= (S − DcCX)U−1,
Dc= Dc.

Proof:

(a) By using Shur complement, (11a) can be recast as
[

Qj ∗
AjQj Qj

]
� 0. (16)

Pre and post multiplying the above inequality by
diag[GT Q−1

j , I] and diag[Q−1
j G, I] respectively yields

[
GT Q−1

j G ∗
AjG Qj

]
� 0. (17)

Since (GT − Qj)Q−1
j (G − Qj) � 0, it follows that

G + GT − Qj � GT Q−1
j G. Therefore (17) is satisfied

if [
G + GT − Qj ∗

AjG Qj

]
� 0. (18)

Define

G =
[

X U1

U •
]

, G−1 =
[

Y V1

V •
]

(19)

where • indicates blocks of G and G−1 that are deter-
mined uniquely by X , U , U1 and Y , V , V1.
Pre and post multiplying (18) by[

ZT 0
0 ZT

]
,

[
Z 0
0 Z

]
with Z =

[
I Y
0 V

]

respectively yields (12).

(b) Following [15] it’s easy to show that constraints (11b)
is equivalent to the following LMI,[

W [F+EK+EDcC, ECc]
∗ Q−1

j

]
� 0 Wii � f2

i . (20)

Pre and post multiplying (20) by diag[I, GT ] and
diag[I, G] respectively and using similar technique
yields[

W [F+EK+EDcC, ECc]G
∗ G + GT − Qj

]
� 0 Wii � f2

i .

(21)
Pre and post multiplying (21) by[

I 0
0 ZT

]
,

[
I 0
0 Z

]

respectively yields (13).

(c, d) It’s straight forward from above derivation hence is
omitted here for brevity.

Remark 3.2: The above theorem considers the largest
possible region of attraction. With the extra parameters N ,
R, S, T , Dc, Qj,11, Qj,21, Qj,22, it’s safe to say that we
can reduce the design conservativeness.

Remark 3.3: In Theorem 3.1, Ac and Bc are allowed to
take vertex dependent value, i.e., Ac,j and Bc,j . Thus for any
A(k), B(k) in polytope Ω, there exist Ac(k) ∈ Co{Ac,j , j =
0, 1, . . . , l} and Bc(k) ∈ Co{Bc,j, j = 0, 1, . . . , l} so that
Ez :=

{
ξ|ξT Q−1

z ξ � 1
}

is invariant. This also apply to the
following result.

We can take into account prediction cost in the optimiza-
tion problem [15].

Theorem 3.4: Consider discrete time uncertain system (1)
with constraints (2).

(a) Existence: For a given positive scalar γ, it can be
guaranteed that J̃ � γ with LMIs (11a) and (11b) hold
only if the following LMIs admit a solution in positive
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definite matrices X , Y , and symmetric positive definite
matrices W , Qj,11, Qj,22 and matrices N , R, S, T , Dc,
Qj,21, for j = 0, 1, . . . , l.

⎡
⎢⎢⎢⎢⎢⎢⎣

X+XT−Qj,11 ∗
I + N −Qj,21 Y+ Y T−Qj,22

ΦjX + BjS Φj + BjDcC
R Y T Φj + TC

Q
1
2 CX Q

1
2 C

R
1
2 (KX + S) R

1
2 (K+DcC)

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Qj,11 ∗ ∗ ∗
Qj,21 Qj,22 ∗ ∗

0 0 γ ∗
0 0 0 γ

⎤
⎥⎥⎥⎥⎥⎥⎦
�0.

(22)
(b, c, d) The same as those of Theorem 3.1.

Proof: In the following we will only prove (a) since
(b, c, d) is the same as those in proof to Theorem 3.1.

Suppose that at time k Lyapunov function is given as
V (i, j) = ξ(k + i|k)T Q−1

j (ξk + i|k). Replace (11a) with

Q−1
j −AT

j Q−1
j Aj �

1
γ

[
C 0

K + DcC Cc

]T [
Q 0
0 R

]
[

C 0
K + DcC Cc

]
j = 0, 1, . . . , l.

(23)
Then it follows that

V (i, j)−V (i+1, j) � 1
γ

(‖y(k + i|k)‖Q + ‖u(k + i|k)‖R) .

(24)
Sum (24) from i = 0 to ∞ and with V (∞, j) = 0

1 � V (0, j) � 1
γ

∑∞
i=0 ‖y(k + i|k)‖Q + ‖u(k + i|k)‖R,

∀j = 0, 1, . . . , l.
(25)

hence J̃(k) � γ.
By using Shur complement, (23) can be rewritten as⎡

⎢⎢⎣
G + GT − Qj ∗ ∗

AjG Qj ∗[
Q 0
0 R

] 1
2
[

C 0
K+DcC Cc

]
0 γ

⎤
⎥⎥⎦ � 0. (26)

Pre and post multiplying (26) by⎡
⎣ ZT 0 0

0 ZT 0
0 0 ZT

⎤
⎦ ,

⎡
⎣ Z 0 0

0 Z 0
0 0 Z

⎤
⎦

respectively yields (22).

C. Online realization

By augmenting the original state x with predictive con-
troller dynamics, we are able to ensure the ellipsoidal sta-
bility constraint at current time instant rather than at the
end of the control horizon. This in turn reduces the online

computational load although the optimality is sacrificed to
some extent, which can be reduced to a negligible level by
allowing a line search outside the ellipsoid ( [5], [13]).

The online computation is as follows

min
xc

xT
c Wcxc (27)

subject to ⎡
⎣ 1 ∗ ∗

x Qj,11 ∗
xc Qj,21 Qj,22

⎤
⎦ � 0 (28)

where Wc is the predefined weight matrix of appropriate
dimension and Qj,11, Qj,21 and Qj,22 are obtained from the
offline optimization.

In either case of a unique pair of Ac, Bc (LTI systems) or
they are from a polytopic set, the MPC law takes form of

u(k) = (K + DcC)x(k) + Ccxc(k). (29)

Overall, the feasible invariant set and the stabilizing K
render the closed loop system robust and asymptotically
stable.

IV. NUMERICAL EXAMPLE

A. Example 1

First let’s consider an LTI model. A constrained double
integrator used in [14], [15] is given as follows

A =
[

1 Ts

0 1

]
, B =

[
T 2

s

Ts

]
, C = [1 0],

where Ts = 0.5, and with input constraint

|u| � 1,

and state constraint
|x2| � 1.

Other parameters are set as follows

Q = 1, R = 1, K = [−0.9653 − 1.3655].

Therefore for l = 0, solving (14) subject to (22), (13) and
(15) gives the largest possible invariant set. The sizes of the
invariant sets with corresponding γ are given in Table I. For
comparison purpose, sizes of the invariant sets obtained in
[15] are also provided.

γ 102 103 104 105 106

det(Y )
1
2 in [15] 1.4626 3.1863 6.8689 14.8059 31.9032

det(Qxx)
1
2 here 1.4675 3.1990 6.9235 14.8788 32.0051

TABLE I

COMPARISON OF SIZE OF INVARIANT SETS

From the results given in Table I we can see that the
proposed method can reduce the design conservativeness and
improve the optimization efficiency. We should also note that
the improvement here is slight (around 4‰). This is because
that for LTI systems, only parameters Bc and Dc contribute
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to the improvement compared to formulation in [15]. When
LTV systems are adopted, other slack variables such as Qj

and G will reduce the design conservativeness to a further
extent.

B. Example 2

Consider uncertain LTV system using in [15], where

A0 =

⎡
⎢⎢⎣

0.3 0 −0.5 −0.5
0 0 0.6 −0.4

−0.5 0.6 0.2 0.2
−0.5 −0.4 0.2 −0.7

⎤
⎥⎥⎦ , B0 =

⎡
⎢⎢⎣

0.6
1.0

0
−1.1

⎤
⎥⎥⎦ ,

A1 =

⎡
⎢⎢⎣

0.4 0.3 0 0
0.3 0.3 0.1 0.2

0 0.1 0.7 −0.1
0 0.2 −0.1 0.6

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

0.1
0.2

−0.8
0

⎤
⎥⎥⎦ ,

C = [0.8 0 0 0].

With input constraint |u| � 1, the maximal invariant set has
(detQxx)

1
2 = 899489. Compared to (detY )

1
2 = 539376

from [15], there is a 66.7% improvement.
From the optimization result, we can see that the proposed

approach significantly reduces the design conservativeness,
resulting in a much larger invariant feasible set.

V. CONCLUSION

This paper presents a new method which further optimizes
prediction dynamics for robust model predictive control.
Slack variables are used in order to reduce the design con-
servativeness. Nonlinear parameter transformation technique
is employed, leading the optimization to a convex problem
which can be solved efficiently by LMI solvers. Through
a canonical example the effectiveness of the proposed ap-
proach is evaluated.
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