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Abstract— We consider consensus seeking with measurement
noise in directed graphs containing a spanning tree. By using
stochastic approximation type algorithms, we show the state
of each agent converges in mean square and almost surely to
the same limit. Furthermore, we show that the approximation
error, as the difference between the state vector and its limit,
is asymptotically normal after normalization, which in turn
characterizes the convergence rate of the algorithm. Finally, we
generalize the algorithm to networks with random link failures.

I. INTRODUCTION

A fundamental problem in the study of spatially distributed

multi-agent systems is the so-called consensus problem, and

a consensus algorithm or protocol provides a mechanism to

propagate shared information across the population of agents.

Due to its crucial role in such distributed systems, consensus

problems and various closely related formulations have been

intensively investigated in multi-agent control systems and

distributed computing [16], [21], [19]. A comprehensive

survey on recent research can be found in [22], [26].

In a basic setting with networked agents, a consensus

algorithm is to form a weighted averaging rule [16], [3],

where each agent uses data obtained from its neighbors and

itself, such that the iterates of all individual states converge

to a common value. Most existing algorithms assume exact

state averaging, which in general necessitates perfect state

exchange among the agents. Recently, there is an increas-

ing attention on models with noise or quantization effect

[25], [31], [5]. The early work [28] developed stochastic

gradient based consensus algorithms for distributed function

optimization. The communication or sensing noise issue also

arises in the setting of distributed function computation in

sensor networks [8] and formation control [1].

In consensus models with noisy measurements, the tra-

ditional algorithms involving constant or lowered bounded

averaging weights in general cannot ensure convergence. On

the other hand, however, in recursive computation of stochas-

tic systems for the purpose of either function optimization,

root-finding, or system identification, it has long been known

that a properly decreasing gain for the correction term is

essential for obtaining convergence, and there has existed a

vast literature on these broad areas [20], [2], [6], [4]. In [10],
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[11], [12], a stochastic approximation type algorithm with

a decreasing step size was proposed for consensus seeking

where the state information of other agents is corrupted by

white noise (see Fig. 1). In particular, almost sure (a.s.,

i.e., probability one) convergence results were obtained in

[10] via a double array analysis in directed graph (also

called digraph) models satisfying a circulant invariance prop-

erty. Mean square convergence was proved for connected

undirected graphs by using a stochastic Lyapunov function

[11]. The analysis in [10], [11] was generalized to strongly

connected digraphs in [13].

In this paper, we extend the analysis in [10], [11], and we

adopt the spanning tree based model [24] to give a unified

treatment of two scenarios: (i) leadless consensus seeking;

(ii) leader following. We prove the consensus algorithm

converges in mean square and almost surely. Subsequently,

we show that the approximation error is asymptotically

normally distributed after a suitable normalization; this, in

turn, characterizes the convergence rate of the algorithm.

Finally, the consensus formulation is generalized to models

with random independent link failures. For related random

graph based modeling, see e.g. [9], [30], [17], [23]. Within

the random graph model, our algorithm may be viewed as

an equivalent one with a fixed network topology subject to

unbiased perturbations. The paper is organized as follows.

Section II formulates the stochastic consensus algorithm and

some algebraic preliminaries are summarized in Section III.

After giving some preliminary lemmas in Section IV, the

main consensus results are stated in Section V. Asymptotic

normality results are established in Section VI. Section VII

deals with random link failures, and Section VIII presents

simulations. Section IX concludes the paper.

II. THE PROBLEM FORMULATION

Consider n agents distributed according to a digraph G =
(N ,E ) consisting of a set of nodes N = {1,2, · · · ,n} and

a set of directed edges E ⊂ N ×N . For brevity, a directed

edge will be simply called an edge. An edge from node i

to node j is denoted as an ordered pair (i, j) where i 6= j

(so there is no edge between a node and itself). A directed

path (from i1 to il , to be simply called a path) consists of a

sequence of nodes i1, i2, · · · , il , l ≥ 2, such that (ik, ik+1) ∈ E

for 1 ≤ k ≤ l−1. We say node i is connected to node j(6= i)
if there exists a path from i to j. The digraph G is said to

be strongly connected if each node is connected to any other

node by a path. A directed tree is a digraph where each node,

except the root node, has exactly one parent node. Hence,

the root node is connected to any other node by a path. The
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Fig. 1. Measurement with noise wik
t .

digraph G is said to contain a spanning tree Gs = (Ns,Es)
if Gs is a directed tree such that Ns = N and Es ⊂ E . A

strongly connected digraph always contains a spanning tree.

For convenience of exposition, the two names, agent and

node, will be used alternatively. The agent Ak (resp., node k)

is a neighbor of Ai (resp., node i) if (k, i) ∈ E where k 6= i.

Denote the neighbor set of node i by Ni = {k|(k, i) ∈ E }.

A. The Measurement Model

For agent Ai, we denote its state at time t by xi
t ∈ R,

where t ∈ Z
+ = {0,1,2, · · ·}. For each i ∈ N , Ai receives

noisy measurements of the states of its neighbors if Ni 6=
/0, where /0 denotes the empty set. We denote the resulting

measurement by Ai of Ak’s state by

yik
t = xk

t + wik
t , t ∈ Z

+, k ∈ Ni 6= /0, (1)

where wik
t ∈R is the additive noise; see Fig. 1 for illustration.

The underlying probability space is denoted by (Ω,F ,P).
We call yik

t the observation of the state of Ak obtained by

Ai, and assume each Ai knows its own state xi
t exactly.

There may be various interpretations for the additive noise; a

natural one is that xi
t is corrupted by noise during inter-agent

communication [25]. We introduce the assumption:

(A1) The digraph G = (N ,E ) contains a spanning tree.

For each t ∈ Z
+, the set of noises {wik

t , i ∈ N and k ∈
Ni 6= /0} is listed into a vector wt in which the position of

wik
t depends only on (i,k) and does not change with t. Define

the state vector

xt = (x1
t , · · · ,xn

t )
T , t ≥ 0. (2)

(A2) The sequence {wt ,t ∈ Z
+} constitutes a sequence of

independent random vectors which is independent of x0 and

satisfies supt≥0 E|wt |2 < ∞. In addition E|x0|2 < ∞.

B. The Stochastic Approximation Algorithm

The state of each agent is updated by the rule

xi
t+1 = (1−atbii)x

i
t + at ∑

k∈Ni

bikyik
t , t ≥ 0, (3)

where i ∈N , at > 0 and the parameters bi j will be specified

subsequently. In this paper, we only consider scalar indi-

vidual states and the analysis may be easily generalized to

the case of vector individual states; see related discussions

in [10]. Throughout our analysis, we adopt the convention:

∑k∈ /0 = 0 regardless of the summand. For specifying bi j in

(3), we consider two cases in terms of Ni.

Case 1. If Ni 6= /0, we take:






bik > 0, if k ∈ Ni,
bik = 0, if k /∈ Ni ∪{i},
bii = ∑k∈Ni

bik,

and we call bik, k ∈ Ni, the relative weight that Ai assigns

to its neighbor Ak.

Case 2. If Ni = /0, we define bik ≡ 0 for all k ∈ N and

the state of agent i is fixed:

xi
t ≡ xi

0. (4)

For instance, (4) naturally arises in leader following. By our

earlier convention ∑k∈ /0 = 0, (4) may be interpreted as a

special case of (3).

Define the matrix

B =







−b11 · · · b1n

...
...

...

bn1 · · · −bnn






. (5)

Let wi
t = ∑k∈Ni

bikwik
t where i ∈ N , and define wt =

(w1
t , · · · ,wn

t )
T . In the case Ni = /0, we accordingly have

wi
t = ∑k∈ /0 = 0. Write (3) in the vector form

xt+1 = xt + atBxt + atwt , t ≥ 0. (6)

(A3) The sequence {at ,t ≥ 0} satisfies i) at ∈
(0,(maxi∈N bii)

−1] and ii) ∑∞
t=0 at = ∞, ∑∞

t=0 a2
t < ∞.

Under (A1), maxi∈N bii > 0 since at least one node

has a nonempty neighbor set. In (A3)-i), we restrict at ≤
(maxi∈N bii)

−1 so that the coefficients for xi
t and yik

t in (3) are

all nonnegative. This gives a weighted averaging as in typical

consensus algorithms. However, our convergence analysis for

(6) holds without imposing the upper bound in (A3)-i).

Definition 1: (mean square consensus) The agents are

said to reach mean square consensus if E|xt |2 < ∞, t ≥ 0,

and there exists a random variable x∗ such that limt→∞ E|xi
t −

x∗|2 = 0 for all i ∈ N .

Definition 2: (strong consensus) The agents are said to

reach strong consensus if there exists a random variable x∗

such that with probability one (w.p.1) limt→∞ xi
t = x∗ for all

i ∈ N .

III. ALGEBRAIC PRELIMINARIES

Let B be given by (5), and define the matrix

M = (mi j)1≤i, j≤n = I + γB, (7)

where bi j > 0 if and only if ( j, i) ∈ E by the definition of

B, and 0 < γ < (maxi∈N bii)
−1. Recall that maxi∈N bii > 0

when (A1) holds. It is obvious that M is a stochastic matrix

and can be naturally associated with a discrete time Markov

chain with state space S = {1,2, · · · ,n}.

Recall that a nonnegative matrix is irreducible if all its

associated states communicate with each other. Under (A1),

the key observation is that the set of states S = {1, · · · ,n}
associated with the stochastic matrix M contains a commu-

nicating subclass Sc such that each state in S can reach Sc by

finite transitions. By use of the method in [27], the following

result may be proved.
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Lemma 3: [14], [15] If G contains a spanning tree and M

is defined by (7), then we have:

(i) there exists a permutation (l1, · · · , ln) of (1,2, · · · ,n)
such that the blockwise lower triangular stochastic matrix

Mo =











Mo
11 0 · · · 0

Mo
21 Mo

22 · · · 0
...

...
...

...

Mo
k1 Mo

k2 · · · Mo
kk











(8)

satisfies Mo(i, j) = mlil j
and is called the canonical form of

M, where Mo(i, j) denotes the element of Mo at the ith row

and the jth column, each Mo
ii is a square matrix and we make

the convention that the right hand side of (8) reduces to Mo
11

in the case k = 1;

(ii) the d1 × d1 matrix Mo
11 is an irreducible stochastic

matrix;

(iii) if k ≥ 2, each Mo
ii , i ≥ 2, is strictly substochastic (i.e.,

at least one row sum is less than 1) and irreducible;

(iv) the algebraic multiplicity of the eigenvalue 1 for Mo

is one, and all other eigenvalues have a real part less than 1;

(v) the stochastic matrix Mo has a unique invariant proba-

bility measure of the form πo = (πl1 , · · · ,πld1
,0, · · · ,0) where

each πl j
> 0 for 1 ≤ j ≤ d1 and d1 is the order of Mo

11.

Moreover, πo is independent of γ ∈ (0,(maxi∈N bii)
−1).

Corollary 4: [14] If G contains a spanning tree, we have:

(i) the algebraic multiplicity of the eigenvalue 1 (resp., 0)

of M (resp., B) is one, and all other n−1 eigenvalues of M

(resp., B) have a real part less than 1 (resp., 0);

(ii) with πo given in Theorem 3, the row vector π =

∑
d1
i=1 πlieli satisfies πB = 0, where ei = (0, · · · ,0,1,0, · · · ,0);
(iii) Null(B) = span{1n}.

By using the structure of Mo and translating back into

the neighboring relation in G, we may classify the network

structure into two scenarios.

(i) The order of Mo
11 is greater than one; this implies lead-

erless consensus seeking (LLCS) where each agent receives

measurements from some neighbors for updating its state.

(ii) The order of Mo
11 is equal to one; then clearly, there

exists exactly one node which does not receive data from

others and its constant state is transmitted to other agents.

This situation corresponds to leader following (LF).

IV. THE EQUIVALENT STATE SPACE MODEL

Although (6) is a linear model, most existing methods in

stochastic approximation cannot be directly applied since B

is unstable. We introduce the class of matrices

C (B) =
{

φ ∈ R
n×(n−1)|span{φ} = span{B}

}

, (9)

where span{H} denotes the linear space spanned by the

columns of H. Under (A1), rank(B) = n−1, and accordingly,

each matrix in C (B) has rank n−1. Denote 1n = [1, · · · ,1]T .

Lemma 5: Assuming (A1), for algorithm (6) we have:

(i) For any given φn×(n−1) ∈ C (B), the matrix Φ =
(1n,φn×(n−1)) is nonsingular and

Φ−1BΦ =

(

0

B̃n−1

)

, (10)

where the (n−1)× (n−1) matrix B̃n−1 is stable, i.e., all its

eigenvalues have negative real parts.

(ii) Letting zt = (z1
t , · · · ,zn

t )
T = Φ−1xt and vt =

(v1
t , · · · ,vn

t )
T = Φ−1wt , we have the relation

z1
t+1 = z1

t + atv
1
t , (11)

z
(n−1)
t+1 = (I + atB̃n−1)z

(n−1)
t + atv

(n−1)
t , t ≥ 0, (12)

where z(n−1) = (z2
t , · · · ,zn

t )
T and v

(n−1)
t = (v2

t , · · · ,vn
t )

T .

Proof: (i) We show that 1n /∈ span{φn×(n−1)}= span{B};

otherwise, there exists ξ ∈R
n such that 1n = Bξ , which gives

the contradiction 0 < π1n = πBξ = 0 where π is determined

in Corollary 4. Hence Φ = (1n,φn×(n−1)) is nonsingular. Let

Φ−1 =

[

Ψ1

Ψ2

]

, where Ψ1 is the first row. Then Ψ11n = 1 and

Ψ1φn×(n−1) = 0. Since span{φn×(n−1)}= span{B}, Ψ1B = 0.

Recalling Corollary 4, we obtain Ψ1 = π and

Φ−1 =

[

π
Ψ2

]

. (13)

Now (10) is easily verified and in fact B̃n−1 = Ψ2Bφn×(n−1).

By the eigenvalue distribution of B in Corollary 4, all

eigenvalues of B̃n−1 have negative real parts.

(ii) This part follows from (6) and (10).

Equation (12) is a linear stochastic approximation model,

and since B̃n−1 is stable, the convergence of z
(n−1)
t can be

handled by existing methods (see e.g. [29], [2]).

Lemma 6: [14], [15] Assume (A1) and let zt be defined

in Lemma 5. The n agents reach mean square (resp., strong)

consensus if and only if z1
t converges in mean square (resp.,

a.s.) to a random variable z1
∞ and z

(n−1)
t converges in mean

square (resp., a.s.) to 0, as t → ∞.

The convergence of zt may be completely determined

by the noise sample path without assuming any statistical

properties of the noise sequence.

Lemma 7: With the notation in Lemma 5, algorithm (6)

ensures strong consensus if and only if the two conditions

hold:

(i) ∑k
t=0 atv

1
t converges a.s., as k → ∞, and

(ii) limk→∞ supk≤t≤κ(k,T ) |∑t
j=k a jv

(n−1)
j | = 0 a.s., where

κ(k,T ) = max{ j|ak + · · ·+ a j ≤ T} for some constant 0 <
T < ∞.

Proof: We write (12) in the equivalent form

z
(n−1)
t+1 = z

(n−1)
t + at

[

B̃n−1z
(n−1)
t + v

(n−1)
t

]

.

Since B̃n is stable, for any fixed sample ω0 ∈ Ω, z
(n)
t (ω0)

converges to zero if and only if

lim
k→∞

sup
k≤t≤κ(k,T )

|
t

∑
j=k

a jv
(n−1)
j (ω0)| = 0. (14)

For a proof of this fact, see e.g. [29] (Theorem 4). Equality

(14) is usually called the Kushner-Clark condition [18], [29]

along that noise sample path.

Hence, if (i) and (ii) hold, we have the a.s. convergence

of z1
t to z1

∞, and z
(n−1)
t to 0, as t → ∞. By Lemma 6,
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strong consensus follows. Conversely, if algorithm (6) en-

sures strong consensus, Lemma 6 implies condition (i) and

also z
(n−1)
t → 0, a.s., which further implies condition (ii).

V. MEAN SQUARE AND ALMOST SURE CONVERGENCE

Theorem 8: Under (A1)-(A3), algorithm (6) achieves

mean square consensus.

Proof: By ∑∞
i=0 a2

i < ∞ and supt E|wt |2 < ∞, z1
t con-

verges in mean square. We now consider z
(n−1)
t . For any

K > 0, the Lyapunov equation QB̃n−1 + B̃T
n−1Q = −K has

a unique solution Q > 0. Denote Vt = E(z
(n−1)
t )T Qz

(n−1)
t .

Similar to the stochastic Lyapunov analysis in [11], we can

show that there exist constants c1 > 0,c2 > 0 such that

Vt+1 ≤ (1− c1at)Vt + c2a2
t , ∀ t ≥ T0,

where T0 is a large constant. By ∑∞
i=0 ai = ∞ and ∑∞

i=0 a2
i < ∞,

we can show limt→∞ Vt = 0, and hence limt→∞ E|z(n−1)
t |2 = 0.

Mean square consensus follows from Lemma 6.

Theorem 9: Under (A1)-(A3), algorithm (6) ensures

strong consensus.

Proof: Since vt defined in Lemma 5 is linear in wt and

∑∞
t=0 a2

t E|wt |2 < ∞ by (A2), it follows that ∑∞
t=0 a2

t E|v1
t |2 < ∞

and ∑∞
t=0 a2

t E|v(n−1)
t |2 < ∞. By the Khintchine-Kolmogorov

theorem, it follows that both ∑k
t=0 atv

1
t and ∑k

t=0 atv
(n−1)
t

converge a.s., as k → ∞. The convergence of ∑k
t=0 atv

(n−1)
t

clearly implies condition (ii) in Lemma 7. Hence, strong

consensus follows from Lemma 7.

Corollary 10: Given p ∈ (1,2), we assume (A1)

holds, (A2) holds after replacing supt≥0 E|wt |2 < ∞
by supt≥0 E|wt |p < ∞, and (A3) holds after replacing

∑∞
i=0 a2

i < ∞ by ∑∞
i=0 a

p
i < ∞. Then algorithm (6) ensures

strong consensus.

Proof: We can first show the a.s. convergence of

∑k
t=0 atv

1
t and ∑k

t=0 atv
(n−1)
t ([7], pp. 114). Then strong con-

sensus follows as in Theorem 9.

VI. ASYMPTOTIC BEHAVIOR OF NORMALIZED

APPROXIMATION ERRORS

In this section we show that asymptotically the error xt −
x∞ is normally distributed after a suitable scaling. However,

since the limit of the state vector cannot be specified in

advance except the (LF) scenario, the error term depends on

future behavior of the iteration. This differs from the typical

analysis in the literature [2]. To simplify the analysis, we

make additional restrictions for the noise sequence. Let wt

be specified as in Section II.

(A2’) The sequence {wt ,t ∈ Z
+} constitutes i.i.d. vector

random variables with zero mean and finite covariance Qw

and is independent of x0, where E|x0|2 < ∞.

(A3’) The positive sequence {at ,t ≥ 0} satisfies at = at−1,

where a > 0, for t ≥ T̂ for some fixed T̂ > 0.

Letting x∞ = x1
∞1n be the limit state vector and φn×(n−1)

be selected as in Lemma 5, we have the decomposition

xt = z1
t 1n + φn×(n−1)z

(n−1)
t

= x1
∞1n +(z1

t − z1
∞)1n + φn×(n−1)z

(n−1)
t (15)

Define

x
e,a
t = (z1

t − z1
∞)1n, x

e,b
t = φn×(n−1)z

(n−1)
t . (16)

Thus, the approximation error for xt is decomposed into

two components x
e,a
t and x

e,b
t to give

xt − x1
∞1n = x

e,a
t + x

e,b
t . (17)

For the (LF) scenario with agent k0 being the leader, x
e,a
t = 0

a.s. since z1
t ≡ x

k0
0 for all t ≥ 0.

Lemma 11: Under (A1)-(A3), the decomposition in (16)-

(17) does not depend on the choice of φn×(n−1) ∈C (B) where

C (B) is defined by (9).

Proof: First, xt does not depend on φn×(n−1). Also, in

x
e,a
t = (πxt − x1

∞)1n, (18)

π is determined by B and does not change with φn×(n−1). So

x
e,a
t and consequently x

e,b
t , do not change with φn×(n−1).

Remark: In fact, by elementary linear algebra, we can

directly verify that φn×(n−1)Ψ2 and hence x
e,b
t remain the

same for all φn×(n−1) ∈ C (B).

Lemma 11 shows an invariance property of the decompo-

sition (17) with respect to all φn×(n−1) ∈C (B). This property

is useful in practical computation since it suffices to take any

fixed φn×(n−1) ∈C (B). We note that the error component x
e,b
t

may be evaluated on-line since x
e,b
t is a function of xt , but x

e,a
t

can not be observed on-line since it depends on the future

noise sequence.

Let ζi, i ≥ 0 be a sequence of (scalar or vector) random

variables. If ζi converges in distribution to a normal ran-

dom variable with mean µ and covariance Σ, we denote

ζi
d→ N(µ ,Σ). For additional materials on convergence in

distribution or weak convergence, see e.g. [7] (pp. 286).

Let

Q′ = a2
∫ ∞

0
e(aB̃n−1+I/2)tQ

v
(n−1)
0

e(aB̃T
n−1+I/2)tdt (19)

where Q
v
(n−1)
0

is the covariance of v
(n−1)
0 , and set Qb =

φn×(n−1)Q
′φT

n×(n−1). Denote the variance of v1
0 by σ2(v1

0),

and Qa = a2σ2(v1
0)1n1T

n .

Theorem 12: Assume (A1), (A2’) and (A3’) hold, and

aB̃n−1 + I/2 is a stable matrix. Then x
e,a
t

d→ N(0,Qa),√
tx

e,b
t

d→ N(0,Qb),
√

t(xe,a
t + x

e,b
t )

d→ N(0,Qa + Qb).

Proof (Sketch): We use the characteristic function ap-

proach. Let i denote the imaginary unit and ξ a real number.

We have z
1,e
t ,

√
t(z1

t − z1
∞) =

√
t ∑∞

k=t ak(−v1
k) and

eiξ z
1,e
t = lim

T→∞
Eeiξ

√
t ∑T

k=t ak(−v1
k) =

∞

∏
k=t

gv1
0
(ξ a

√
t/k),

where gv1
0
(ξ ) = Eeiξ (−v1

0). By the second order Taylor ex-

pansion of gv1
0
, we may show that for any given C > 0 and

ξ ∈ [−C,C], Eeiξ z
1,e
t = e−ξ 2a2σ 2(v1

0)/2 +o(1), as t →∞. Hence

z
1,e
t

d→ N(0,a2σ2(v1
0)), which implies x

e,a
t

d→ N(0,Qa).
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By [20] (pp. 147),
√

tz
(n−1)
t

d→ N(0,Q′), which implies√
tx

e,b
t

d→ N(0,Qb). By the independence of x
e,a
t and x

e,b
t for

each t, we further obtain
√

t(xe,a
t + x

e,b
t )

d→ N(0,Qa +Qb).
Remark: If, in addition to the conditions in Theorem 12,

the noise vector wt in (6) has a non-degenerate covariance,

i.e., Qw , Ewtw
T
t > 0, we can show that Qa +Qb > 0 by first

checking σ2(v1
0) > 0 and Q

v
(n−1)
0

> 0. Thus, N(0,Qa + Qb)

has a density in R
n.

VII. RANDOMLY TIME-VARYING COMMUNICATION

LINKS

Let us first introduce a fixed digraph G = (N ,E ) which

describes the maximal set of communication links when there

is no link failure. At time t the inter-agent communication

is described by a subgraph of G denoted by Gt = (N ,Et)
where Et ⊂ E ; the edge (i, j) ∈ Et if and only if there exists

a communication link from i to j at time t where (i, j) ∈ E .

The digraph Gt is generated as the outcome of random link

failures. Note that an edge (i, j) never appears in Gt if it

is not an edge of G. The neighbor set of node i is Nit =
{k|(k, i) ∈ Et} at time t.

At time t ≥ 0, the adjacency matrix of Gt is defined as

AN
t = (ai j

t )1≤i, j≤n, where a
i j
t = 1 if (i, j) ∈ Et , and a

i j
t = 0

otherwise. The digraph Gt is completely characterized by the

random matrix AN
t .

Now, the measurement relation is given as

yik
t = xk

t + wik
t if aki

t = 1 (i.e., k ∈ Nit),

where wik
t is the additive noise. The state of agent i ∈ N is

updated by the rule

xi
t+1 = (1−at|Nit |)xi

t + at ∑
k∈Nit

yik
t . (20)

If Nit = /0, (20) reduces to xi
t+1 = xi

t . Here for simplicity we

assign the same weight to the |Nit | observations yik
t .

For specifying the statistical properties of the noises, we

introduce the array of measurement noises as a square matrix:

Wt = (wik
t )1≤i,k≤n,

where it is restricted from the beginning that wik
t ≡ 0 if (k, i) /∈

E . It is sufficient to further specify wik
t with (k, i) ∈ E . The

combined link and noise assumption is stated below.

(A4) (i) For (i, j) ∈ E , P{a
i j
t = 1}= P{(i, j) ∈ Et}= pi j >

0, (ii) the pair (AN
t ,Wt) is independent of (x0,A

N
k ,Wk,k ≤

t−1) where t ≥ 0, and (iii) conditioned on AN
t =(ai j

t )1≤i, j≤n,

the noises (wik
t , with all pairs (k, i) ∈ E ) are independent

and satisfy

P(wik
t = 0|aki

t = 0) = 1,

E(wik
t |aki

t = 1) = 0, sup
i,k,t

E(|wik
t |2|aki

t = 1) ≤Cw

where Cw < ∞ is a constant. The term (x0,A
N
k ,Wk,k ≤ t−1)

is interpreted as x0 when t = 0.

Remark: If we further define the distribution of wik
t condi-

tioned on {aki
t = 1}, then any finite dimensional distribution

of (x0,A
N
k ,Wk,k ≤ t) is well defined.

We still denote xt = (x1
t , · · · ,xn

t )
T . Define wi

t =

∑k∈Nit
aki

t wik
t and the noise vector

w(AN
t ,Wt) = (w1

t , · · · ,wn
t )

T .

Let D(AN
t ) = Diag(∑k∈N ak1

t , · · · ,∑k∈N akn
t ). We write (20)

in the vector form

xt+1 = xt + at[(A
N
t )T −D(AN

t )]xt + atw(AN
t ,Wt), t ≥ 0.

(21)

Let Bt = [(AN
t )T −D(AN

t )], B = EBt and ∆Bt = Bt −B, and

it can be shown that all row sums of both Bt and B are zero.

Now (21) may be written in the form

xt+1 = xt + atBxt + at∆Btxt + atw(AN
t ,Wt), t ≥ 0. (22)

Lemma 13: [14] Assuming (A4) holds, we have

(i) for t ≥ 0, the pair (∆Bt ,w(AN
t ,Wt)) is independent of

xt , and Ew(AN
t ,Wt) = 0;

(ii) if, in addition, G contains a spanning tree, then B

satisfies: a) it has a zero eigenvalue of algebraic multiplicity

equal to one, and n−1 eigenvalues with negative real parts;

b) there exists a unique probability measure π̄ such that π̄B =
0; c) Null(B) = span{1n}.

Equation (22) can be viewed as a perturbed version of (6)

where the additional term at∆Btxt is unbiased in the sense

∆Btxt has zero mean under (A4). The proof of convergence

of (22) (or (21)) follows similar ideas as in analyzing (6).

Theorem 14: [14], [15] Under (A1), (A3) and (A4), algo-

rithm (21) ensures mean square consensus, i.e., there exists

x∗ such that limt→∞ E|xi
t − x∗|2 = 0 for all i ∈ N .

Proof: The theorem may be proved by using (22) and a

linear transform to generate a perturbed version of (11)-(12).

See [14], [15] for details.

VIII. SIMULATIONS–ASYMPTOTIC BEHAVIOR

Consider a digraph shown in Fig. 2. The noises

{w12
t ,w21

t ,w23
t ,w31

t ,t ≥ 0} are i.i.d. and uniformly distributed

on the interval [−0.15,0.15]. The initial state vector is

xt |t=0 = [4,3,1]T . The algorithm (6) is applied by taking

B =





−1 1 0

0.5 −1 0.5
1 0 −1



 , (23)

and a0 = 0.5, at = 0.5t−1 for t ≥ 1. The 3 eigenvalues of

B are 0, −1.5± 0.5i. We use the first two columns in B to

construct

Φ =





1 −1 1

1 0.5 −1

1 1 0





and calculate x
e,b
t by (16). The asymptotic normality conclu-

sion of Theorem 12 holds for this example since aB̃n−1 + I/2

is stable with eigenvalues −0.25±0.25i when B is given by

(23) and a = 0.5. The convergence of xt is shown in Fig. 3

which displays the first 103 iterates, and the corresponding

scaled error process {
√

tx
e,b
t ,t ≥ 0} is displayed in Fig. 4

with a maintained magnitude in the long term while x
e,b
t

itself vanishes when t → ∞.
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Fig. 3. Convergence of the 3 trajectories using a decreasing step size.

IX. CONCLUSION

We consider stochastic consensus problems with measure-

ment noise. Stochastic approximate algorithms are applied to

achieve consensus. We also present consensus error analysis

via asymptotic normality results.
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