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Model Reduction for Switched Linear Parameter Varying Systems With
Average Dwell Time

Lixian Zhang, Peng Shi and Michael Basin

Abstract—1In this paper, the model reduction problem is
studied for a class of discrete-time switched linear parame-
ter varying systems under average dwell time switching. A
parameterized reduced-order model is constructed and the
corresponding existence conditions of such models are derived
via LMI formulation. The minimal average dwell time among
all the subsystems and the desired reduced system are obtained
such that the resulting model error system is exponentially
stable and has a guaranteed /> — [ error performance. A
numerical example is given to demonstrate the potential and
effectiveness of the developed theoretical results.

I. INTRODUCTION

Switched systems have been extensively studied during
past decades and many useful results have been reported
in the literature, see, for instance, [1], [2], [6], [15], [17]
and references therein. Despite of a diversity of forms,
the switching patterns can be classified as autonomous or
controlled ones, which, respectively, developed by systems
themselves (objective behavior) [3] or designers’ intervention
(subjective behavior) [10]. The switching signals in both
autonomous and controlled switched systems can be repre-
sented as functions of time. As a result, considerable research
on the switched systems under arbitrary switching or average
dwell time (ADT) one have been conducted in recent years,
see, for example, [2], [5], [14], [15].

Arbitrary switching means that the switching time se-
quence (when to switch) is completely random and the
switching order of subsystems (which one is switched) is
real time accessible. Note that the so-called jump systems
governed by some kind of stochastic process can be included
in this category as a special case. The ADT switching
means that the time interval between consecutive switches
is required to be no less than a given positive number
on the average. As expected, such a switching rule not
only displays more flexible controlled switching mechanism
dependent on time, but also reflects the time property of
most autonomous and controlled switching logics, such as
hysteresis switching [4]. Therefore, many advanced results
for the switched systems with ADT switching have been
reported in the continuous-time context including both linear
and nonlinear case, see for example, [5], [11], [12]. Very
recently, motivated by practical applications such as active
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magnetic bearing system [8], missile autopilot system [7],
F-16 aircraft system [9], a special class of switched linear
parameter-varying systems (LPV) under ADT switching has
been modeled and studied. However, it must be noted that
the corresponding modeling process often results in a high-
order system, which needs to be simplified or reduced. Due
to the switching and parameters varying features, the model
reduction results for the underlying systems can not be strait-
forwardly achieved using the existing model simplification
techniques for general dynamic systems.

This paper presents the model reduction for a class of
switched linear discrete-time systems with time-varying pa-
rameters under ADT switching. A reduced-order model is
constructed to approximate the original system in the sense
of classical lo — l,, performance criterion, namely, energy
(of input signal) to peak (of output error) bounded. The
stability criterion for general discrete-time switched systems
is introduced and the p-dependent technique, proposed in
[14], is adopted to obtain LMI-based existence conditions
for a parameterized reduced model. The basic functions and
gridding technique are utilized to solve the corresponding
parameterized convex problem. An illustrative example is
given to demonstrate the feasibility and efficiency of the
constructed reduced model.

Notation: The notation used in this paper is fairly standard.
The superscript “T” stands for matrix transposition, R"
denotes the n dimensional Euclidean space and N represents
the set of nonnegative integers, the notation || || refers
to the Euclidean vector norm. [3[0,00) is the space of
square summable infinite sequences and, for u = {u(k)} €

> 2
VT lw?,
loo[0,00) is the space of all essentially bounded functions
and, for e = {e(k)} € 1-[0,00), its norm is given by

[5[0,00), its norm is given by |ull, =

lell, =, /sup{e”(k)e(k)}. C* denotes the space of con-
k

tinuously differentiable functions, and a scalar function (3 :
[0,00) — [0, 00) is said to be of class K if it is continuous,
strictly increasing, unbounded, and 3(0) = 0. In addition, in
symmetric block matrices or long matrix expressions, we
use * as an ellipsis for the terms introduced by symmetry,
and diag{- - - } stands for a block-diagonal matrix. Matrices,
if their dimensions are not explicitly stated, are assumed to
be compatible for algebraic operations. The notation P > (
(> 0) means that P is symmetric and positive (semi-positive)
definite. I and O represent, respectively, identity matrix and
Zero matrix.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of discrete-time switched linear systems
given by

w(k+1) Ag () (p(K))2 (k) + Bo i) (p(k))u(k)
y(k) = Cow(p(k))x(k), ey

where z(k) € R™ is the state vector, u(k) € R! is the input
vector which belongs to /3]0, 00), y(k) € R™ is the output
vector. o (k) is a piecewise constant function of time, called
a switching signal, which takes its values in the finite set
Z =1{1,...,N}, N > 1 is the number of subsystems.
At an arbitrary discrete time k, o(k), denoted by o for
simplicity, is dependent on k or z(k), or both, or other
switching rules. As in [2], we assume that the sequence of
subsystems in switching signal ¢ is unknown a priori, but
its instantaneous value is available in real time. Meanwhile,
for the switching time sequence kg < k1 < ko < ... of
switching signal o, the holding time between [k;, kjyq] is
called the dwell time of the currently engaged subsystem,
where | € N. In addition, when o(k) = ¢ € Z, the
matrices (A;(p(k)), Bi(p(k)), Ci(p(k)), denoting the ith
subsystem, are known functions of measurable p(k), where
p(k) = [p1<k)7“-7ps(k”T7 lpu(k)] < pu,V1 < v < s is
a vector of time-varying parameters, which belongs to a
compact set ; € R*.

For switching signal o(k), we revisit the ADT property
from the following definition.

Definition 1: [5] For switching signal and any k, > kg >
ko, let Ny (xy(ks, k) be the switching numbers of o(k) over
the interval [k, k,]. If for any given Ny > 0, 7, > 0, we
have N, (i) (ks, kv) < No+ (kv —ks)/Ta, then 7, and Ny are
called average dwell time and the chatter bound, respectively.

Remark 1: Intuitively, the ADT property means the time
interval between consecutive switching is at least 7, on the
average. Then, a basic problem in the analysis and synthesis
for such systems is to specify the minimal 7, and the
corresponding admissible switching signals.

In this paper, we are interested in finding a reduced-
order model to approximate the original system under ADT
switching. Since the time-varying parameters are real-time
measurable, the desired reduced-order model can be con-
structed by:

=

(pr)&(k) + Bi(pr)u(k)

tk+1) = Pk
(1) (k), 2)

g(k) =

where Z(k) € R? is the state vector of the reduced-order
system with ¢ < n and Ai(pk),Bi(pk) and C’i(pk),z' <A
(we write p(k) as pj for notation simplicity) are matrices
with compatible dimensions to be determined, with the same
parameter dependence as in system (1). Also, the desired
reduced model (2) is assumed to be switched synchronously
by the switching signal ¢ in system (1).

Denoting §(k) < [ ™ (k) &% (k) |7, e(k) = y(k)—i(k)
and augmenting the model of (1) to include the states of

A;
G

system (2), we obtain the following model error system

§(k+1) Ai(pr)&(k) + Bi(pr)u(k)
e(k) = Cilpr)é(k), 3)
where
T Ai(pr) 0
Ailew) = [ ) A;(pr) ]’
5 Bi(pk)
Cilpr) = [ Cilpx) —Cilpr) |-

To present the main objective of this paper more clearly,
we also introduce the following definitions for switched
linear systems, which are essential for the later development.

Definition 2: The equilibrium z = 0 of system (1) is
exponentially stable under switching signal o(k) if there
exist constants K > 0,0 < < 1 such that the solution z(k)
of the system satisfies ||z(k)|| < KB*—F0)||z(ko)||, Yk >
ko.

Definition 3: Given scalars v > 0, system (3) is said
to be exponentially stable with a prescribed lo — [, error
performance index + if it is exponentially stable and, under
zero initial condition, ||e|| ., < 7 ||u||, hold for all nonzero
u(k) € I3]0, 00).

Therefore, the objective of this paper is to determine matri-

ces {Ai(pk), Bi(pk), C’i(pk)} of the parameterized reduced-
order model, and find out admissible switching signals such
that resulting model error system (3) is exponentially stable
and has a guaranteed Iy — [, error performance index.

Remark 2: Note that if we restrict [A;(px), Bi(pr),
Ci(pr)] £ [As, By, Gy or select [A;, B, Ci] £ [A, B, C] in
(2), one will readily obtain the different non-parameterized
reduced-order models with different conservatism and com-
putational complexity.

Before ending this section, we present the following
lemmas which are employed for further derivation.

Lemma 1: Consider the discrete-time switched system
Try1 = foy(2r),0(k) € Tand let 0 < o < 1, > 1
be given constants. Suppose that there exists C! functions
Vo) : R" = R, (k) € Z, and two class K, functions (3;
and (5 such that Vo (k) =i € Z,

Bi(lz]) < Vi(z) < Ba(|z]) “4)
AVi(z) < —aVi(x) S

and V(o (k) = i,0(ki — 1) = j) €T x T , i # j,
Vi(zr,) < pVi(zr,), (6)

then the system is globally asymptotically stable for any

switching signals with the average dwell time
. Inp

Ta 2T, = *m- (7N

Remark 3: The proof of Lemma 1 can be obtained simliar

to Section 3.2 of [6]. Note that if we increase the value of p,

the existence likelihood of the multiple Lyapunov function

for the system stability will be increased, which means that
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the stability of system can be ensured at the expense of
increasing p. In other words, for a given «, the system
stability will directly depend on p.

Lemma 2: Consider model error system (3) and let o > 0,
v > 0 and p > 1 be given constants. If there exist matrix
functions P;(py) > 0, Vi € Z such that

—Pi(prs1)  Pilpes1)Ai(pr) [fgf)(};’;lﬂ)
* —(1 = a)Pi(pr) 0 o
* * _I
(®)
pl(*pk) c,: g;}k) > 0 9)
Bi(px) = uPji(pr) < 0 (o

then system (3) is exponentially stable and has an Iy — [
error performance 7y over the entire parameter set for any
switching signals with the ADT satisfying (7).

Remark 4: In Lemma 2, the desired I — [, performance
index for the underlying system in the paper is achieved
by setting v = max{~;};cz, where ~; corresponds to the
performance index for each subsystem. The proof of Lemma
2 can be readily obtained using Theorem 1 in [8] and Lemma
3 in [16].

III. MODEL REDUCTION

The following theorem presents sufficient conditions for
the existence of an Iy — [, reduced-order model in the form
(2).

Theorem 3: Consider switched linear system (1) and let
o >0,y > 0 and ¢ > 1 be given scalars. Then, an
admissible [, — [, reduced-order model in the form (2)
exists if there exist matrices Pp;(pr) > 0, P3;(pr) > 0,
and matrices ;i (pk), Ri(px), Si(px)s Tis Ai(pr), Bi(pk),
Ci(pr), Vi € T such that the following parameterized LMIs
hold:

Afp Ay z(pk) i(or)
x Ay ST(pr)Ai(pr)
*  x —(1—a)Pulp)

EAi(pr) Al

A (Plg) A7§5
—(1—=a)Py(pr) O < 0 D
—(1=a)Psi(pr) 0
* -1
Pulpr) Paulpr)  C (px)
* P3i(pr) —CT(px) | >0 (12)

1
* 721

[Pri(p) [P (pr)
—uR] (px) — pRi(pr)]  —pSi(pr) — pET}
* Psi(pr) — pT — uT;
*
*
Rg(pk) ET;
Si (pr) T}
15 2 <0 (13
—u " Pi(pr)  —p Pojpr) |~ (13)
* —p " Ps;(pk)
where
Ay 2 Piprnr) — B (pr) = Rilpr),
f2 = Paulprsr) — S (Pk) - ET;,
Az, 2 P32(pk+1) T
A5 £ Rl (px)B (Pk)+EB (o),
Ay 2 ST (pr)B (Pk) + Bi(pr),
E 2 [I 0] ,IcRr

Then, there exists a parameterized reduced-model such that
the corresponding model error system (3) is exponentially
stable with an guaranteed l» — [, performance index -y
for any switching signals with the ADT satisfying (7).
Furthermore, if a feasible solution to above LMIs exists, then
an admissible [y — [, reduced-order model in the form of
(2) are given by

Aupr) Bxpk)}é{ﬂgl ] [‘éﬁ”’“% Bilpw)

Ci(pr) 0

(14)
Proof: By Lemma 2, system (3) is exponentially stable
with a prescribed [y — [ error performance index -y if (8)-
(10) hold.
Then, consider an arbitrary matrix function G;(py),Vi € T
of compatible dimensions, which satisfies the inequalities

(Pi(prr1) = Gilpr) " B (pra)
X (P;(prt1) — (k) > 0
(Pi(pr) — Gilpr))" Py (por)
x(Pj(pr) — (Pk) > 0
Thus we have
Pi(prs1) — Gilpr) — G (pr) >
—G{ (o) B (orr1)Gi(pr)
Pj(pr) = Gi(px) — G (o) >
—G{ (pk) Py (pr)Gilpr)
Therefore, if one has
Pi(pr) — 1 [Gipr) + GT (pr)
—GT ()P (p)Gilpr)] < 0 (1)
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then (10) is satisfied. Also, if the following inequality holds

Pi(pr+1) = Gilpr) — Gl (px)  GT (px) Ai(pr)
* —(1—a)P;(pk)
GzT(pk)Bi(pk)
0 <0 (16)
T
it leads to
—GT (o) P (pr1)Gilpr)  GF (pr) Ai(pr)
* —(1—a)P;(pk)
G (pe)Bi(pr)
0 <0
-1

Performing a congruence transformation in the last inequality
to above formula via diag{G; ' (pr)P;(pr+1), I, I} yields
(8) (note that G;(py) is invertible, if it satisfies (16)).

In addition, by Schur complement, (15) is equivalent to

Pi(pr) — nGi(pe) — pGl (pr)  GT(pr)

_ <0.
* —H 1PJ(Pk) o

a7
Now, let us show that conditions (11)-(13) ensure, respec-
tively, that (16), (9) and (17) are satisfied. Firstly, if (11)
holds, we have Ps3;(pg+1) — T —T; < 0, thus we can infer
that TiT + T; > 0, which implies that 7; is nonsingular.
Then, one can always find nonsingular matrices Gg; and
G, satisfying T; = GTG5,'G4,Vi € T. Now, introduce the
following matrices related to G3; and Gy:

L [ o
Vi = {0 GMIGJ’
R, S;(pr) G Gs,
Gil) = | piloe) SondGar ],

Performing a congruence transformation to (11)-(13) via
diag{V;"", ;"' 1}, diag{V;"",1} and diag{V;"",V;"'},
respectively, and defining matrix functions

Pilpr) & Vi TPi(pr)V; !

- _ 711'(Pk) in(pk) -
Vi T[ * PSi(pk) }VZ 1

Bi(px) } { G'Gsi 0 ]
(18)

we obtain (16), (9) and (17).

Meanwhile, from (18), we know that an admissible
reduced-order model for the underlying system can be ob-
tained setting

() = Gy T Ai(pk)G1 ' G3i, Bilpy)
k)G

A
Ci(pr) = Ci(pr)Gr Gy

= G; " Bil(px),
(19)

Now, denote the reduced-order model transfer function from
u(k) to e(k) by

T(z) = Ci(px)(2I — Ai(p)) ' Bi(px)

Substituting the matrices (Ai(pk), Bi(pk)7 éi(pk)) in (19)

and considering T; = G4TG3_1.1G4, we have

T(z) = 1G’3,(zI Gy A(pk)G 1Ggi) 7t

i(pk)G
G."B; (Pk)
i(pr) (2]

Q( X Q(

T, Ai(pr)) " T Bi(pr)

which implies that an admissible reduced-order model can
be given by (14), this completes the proof. (]
Remark 5: From (7), it is easily seen that the ADT in
the solved switching signals will be not less than 7. Then,
one actually need to specify the minimal p for a given
system decay degree « for the underlying systems, which
is analogous to the delay-dependent issues in time-delay
systems to determine the delay bounds. Therefore, the so-
called p-dependent idea, proposed in [14], is adopted here
for the underlying system, and the results obtained with this
concept will be less conservative than the ones within the
“u-independent” framework such as those based on switched
Lyapunov function [2] or global Lyapunov function.
Remark 6: Conditions (11)-(13) are formulated in terms
of a set of parameterized LMIs, which involve not only
matrix variables but also the scalar 72. Therefore, the scalar
can be optimized by a u-dependent convex optimization
problem for a fixed system decay degree as follows.
Problem 1:

Min 6 subject to (11)-(13),Vi € Z, with § = 42
over Pli(pk)7 Fv)3i(p/€)7?2i(pk)7VRi(pk)a Sl(pk)7 n7
Ai(pr), Bilpr), Ci(pr)

The minimum error performance index is then obtained
setting v = /6, where 6* is the optimal value of &, and
the matrices of the corresponding reduced model are given
by (14).

As shown in the LPV literature [13], by choosing ap-
propriate basis functions {f;(py)},-,, the matrix functions
Yip) = {Prilpx), Psilpr)s Pauilpr)s Rilox)s Si(pk), Ti,
A;i(pr), Bi(pr), Ci(pr)} in above convex problem can be
represented as:

(20)

nf
p) = filpw) Vi
=1

where fi(pr) and ny can be chosen by designers according
to the dependence structure in system (1), and consequently,

= {P},, P}, P, R, S! Al B! C!} serves as the
corresponding decision variables in Problem 1. Also, one can
utilize the gridding technique to eliminate the dependence on
the parameter vector py in the parameterized LMIs emerging
in LPV systems (see [13] for more details).
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IV. NUMERICAL EXAMPLE

Consider the following discrete-time switched linear sys-
tems consisting of two subsystems with time-varying param-
eters:

0.78  0.82 —0.50 0.31
4 - 019 —0.18 0.74 —0.23+0.12p;
o -0.23 —0.19 -0.15 —0.46 ’
| —0.66 082 0.11 0.78
[ 0.74
0.70
B = 0.62 |’
| —0.31
[ 077 0.73  —0.45 0.28
4 = 0.18 —0.04 0.67 —0.21
27 | —021 —0.18 —0.07 —0.42+0.15p; |’
| —0.60 0.74  0.11 0.78
0.74
0.70
By = 0.55 |’
| —0.31
C, = Co=[047 059 051 —024 ],
where pr = cos(0.2wk) are the time-varying measurable
parameters.

Our purpose is to design a parameterized reduced-order
model in the form of (2) and find out the admissible ADT
switching signals for the above switched system such that the
resulting model error system is exponentially stable and has
a guaranteed [y — [, performance for a given decay degree
a.

According to the structure of the parameter dependence in
the above system, we choose the basic functions in (20) as
follows

filpr) =1, fapr) = cos(0.27k)

Gridding the parameter space of p; with 10 uniform grid,
assigning o = 0.1 and varying p, and solving Problem 1,
we obtain different ADT 77 and different optimal Iy — [
performance indices v*, as shown in Table 1. It is clear that
~* depends on y for a given system decay degree o, and we
obtain the minimal ;¢ = 1.08 such that the underlying system
can achieve the ls — [, performance indices. Note that the
larger p corresponds to the smaller ~*, but the corresponding
longer ADT are demanded in the system.

In addition, an admissible reduced model can be also
obtained by solving Problem 1. For instance, the desired
2nd-order reduced model corresponding to p = 1.40 with
the accessible parameters pp = cos(0.27k) is determined

TABLE I
p-dependent OPTIMAL * FOR GIVEN a = 0.1

i 1.07 1.08 1.25 1.40 1.60
T 0.64 0.73 2.11 3.19 4.46

~* infeasible 3.33 2.79 2.78 2.78

as:
Ao [ 095 086 ] [ 019 —0.50
FL=1 010 —002 | TP —017 049 |
[ —0.14 ~10.5
Bri=1 _158 ] Pk [ 10.9 ]

Cr1=[ —058 —0.60 | +pp[ —0.04 —0.05 ]

2D
Ao = [ 0.74 0.69 —-0.18 —0.21
27 008 013 |l -016 018 |’
[ —0.51 —1.34
Br2=1 _90 ] + Px [ 1.27 ]
Cpa=[ =062 —0.65 | +p[ —0.02 —0.03 |
(22)

Furthermore, consider the input signal
u(k) = 0.1 exp(—0.03k) sin(0.027k)

and apply the solved reduced-order model (21)-(22), Figures
1 and 2 show the output trajectories of the original system
and 2nd-order reduced model for given two different switch-
ing signals (both are with 7, = 4 > 3.19 for p = 1.40);
Figure 3 and 4 present the output errors between original
system and the reduced-order system. It is clearly observed
from the simulation curves that for given energy bounded
input u(k), the model error system is stable against time-
varying parameters under different switching signals, which
thereby implies that the designed reduced-order model is
feasible and effective.

V. CONCLUSIONS

The model reduction problem is studied for a class of
discrete-time switched linear parameter varying systems un-
der average dwell time switching. A parameterized reduced
model is designed and the corresponding existence condi-
tions of such reduced-order models are derived via LMI
formulation. By solving a convex optimization problem, the
minimal ADT and the desired reduced model can be obtained
for a given decay degree to ensure that the resulting model
error system is exponentially stable and has a guaranteed
lo — [ error performance. A numerical example is provided
to show the effectiveness and applicability of the developed
reduced model.

REFERENCES

[1] M. S. Branicky. Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems. [EEE Trans. Automat. Control,
43(4):475-782, 1998.

[2] J. Daafouz, P. Riedinger, and C. Tung. Stability analysis and con-
trol synthesis for switched systems: a switched Lyapunov function
approach. IEEE Trans. Automat. Control, 47(11):1883—-1887, 2002.

4003



[3]

[4]

[5]

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13

[14]

[15]

[16]

[17

Fig.

W. P. Dayawansa and C. F. Martin. A converse Lyapunov theorem for
a class of dynamical systems which undergo switching. IEEE Trans.
Automat. Control, 44:751-760, 1999.

J. P. Hespanha, D. Liberzon, and A. S. Morse. Hysteresis-based
switching algorithms for supervisory control of uncertain systems.
Automatica, 39(2):263-272, 2003.

J. P. Hespanha and A. S. Morse. Stability of switched systems with
average dwell time. In Proc. 38th Conf. Decision Control, pages 2655—
2660, Phoenix, AZ, 1999.

D. Liberzon. Switching in systems and control. Birkhauser, Berlin,
2003.

S. Lim and J. P. How. Modeling and Ho, control for switched linear
parameter-varying missile autopilot. IEEE Trans. Control Systems
Technology, 11(6):830-838, 2003.

B. Lu and F. Wu. Switching LPV control designs using multiple
parameter-dependent lyapunov functions. Automatica, 40(11):1973—
1980, 2004.

B. Lu, E. Wu, and S. K. Switching LPV control of an F-16 aircraft
via controller state reset. [EEE Trans. Control Systems Technology,
14(2):267-271, 2006.

A. S. Morse. Control using logic-based switching. Springer-Verlag,
Heidelberg, Germany, 1997.

C. D. Persis, R. D. Santis, and A. S. Morse. Switched nonlinear
systems with state-dependent dwell-time. Systems & Control Letters,
50(4):291-302, 2003.

Z. D. Sun. Combined stabilizing strategies for switched linear systems.
IEEE Trans. Automat. Control, 50(4):666—674, 2006.

F. Wu and K. Grigoriadis. LPV systems with parameter-varying time
delays:analysis and control. Automatica, 37(2):221-229, 2001.

L. Zhang, E. Boukas, and P. Shi. Exponential H, filtering for
uncertain discrete-time switched linear systems with average dwell
time: A p-dependent approach. Int. J. Robust & Nonlinear Control.
2007, to appear.

L. Zhang, P. Shi, and E. Boukas. H output-feedback control for
switched linear discrete-time systems with time-varying delays. Int.
J. Control. 2007, to appear.

L. Zhang, P. Shi, E. Boukas, and C. Wang. Robust l2-l filtering for
switched linear discrete time-delay systems with polytopic uncertain-
ties. IET Control Theory Appl., 1(3):722-730, 2007.

L. Zhang, P. Shi, C. Wang, and H. Gao. Robust H. filtering for
switched linear discrete-time systems with polytopic uncertainties. Int.
J. Adaptive Control & Signal Processing, 20(6):291-304, 2006.

T T
Orignal Model
— - — - Reduced Model

o
o

Switching signal o, (ADT=4)

—0.4F 2
5

o8l 0 50 100 J

Output trajectory
°
|

1 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Time in samples

1. Output trajectories of the original system and 2nd-order reduced

model for given switching signal 1

T T
Orignal Model
— - — Reduced Model

Output trajectory

Switching signal o, (ADT=4)

[IITurmy

o8l 0 50 100

_1 L L L

L
0 10 20 30 40

L L
50 60 70 80 90

Time in samples

Fig. 2.
model for given switching signal 2

100

Output trajectories of the original system and 2nd-order reduced

Output error
o

L
o
N

Switching signal o, (ADT=4)

-06 1 ]
08l 0 50 100 J
1 L L L L L L L L L
0 10 20 30 40 50 60 70 8 90

Time i

n samples

100

Fig. 3. Output errors between original system and the reduced-order system

for given switching signal 1

Output error
o

-0.2

-06 1 ]
-0.8 0 50 100 J
1 L L L L L L L L L
0 10 20 80 40 50 60 70 8 90

d)

Whm signal o,, (ADT=4)

Time i

n samples

100

Fig. 4. Output errors between original system and the reduced-order system

for given switching signal 2

4004



