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Abstract— A new nonlinear protocol is proposed for state
consensus of multi-agent systems in this paper. It is shown
that this protocol can provide faster convergence rate than the
typical linear protocol, presented by Olfati-Saber and Murray,
and furthermore guarantees the states of agents reach a
consensus in finite time, provided that the interaction topology,
represented by a directed graph, has a spanning tree.

Index Terms— Multi-agent systems, coordination, finite-time
consensus, interaction topology.

I. INTRODUCTION

The object of this paper is to provide an effective fast-
convergent consensus protocol with finite settling time for
networks of autonomous agents.

In recent years, consensus problem has attracted consid-
erable attention of researchers and become an active area
of research in coordinated control of multi-agent systems.
Compared to sole agent, cooperation of multiple agents
can perform more complex tasks, enhance efficiency, and
be more robust against device failure. In order to reach
a cooperation, it is often required that individual agents
interact with each other and eventually agree on certain
qualities of interest or share a common view of information.
Those qualities, for instance, may be the aimed positions in
rendezvous problem, the anticipated formation information
in formation control, or the favorite attitude in attitude
alignment, etc. In the study of consensus problem, consensus
protocol (algorithm) is an interaction rule, which is designed,
based on the local information obtained by each agent,
to guarantee those critical information to be shared in a
distributed manner. “Consensus” means that the states of
agents, which can be viewed as the estimations of sharing
information, are all the same.

In [1], Vicsek et al. proposed a simple but interesting
discrete-time model of finite agents all moving in the plane.
Each agent’s motion is updated using a local rule based
on its own state and the states of its neighbors. By using
graph theory and nonnegative matrix theory, Jadbabaie et al.
provided a theoretical explanation of the consensus property
of the Vicsek model in [2], where each agent’s set of
neighbors was supposed to change with time as system
evolves. The typical continuous-time model was proposed
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by Olfati-Saber and Murray in [3], where the concepts of
solvability of consensus problem and consensus protocol
were first introduced. In [3], the authors used a directed graph
to model the interaction topology among agents and studied
three consensus problems, namely, directed networks with
fixed topology, directed networks with switching topology,
and undirected networks with communication time-delays
and fixed topology, where it was assumed that the directed
topology is balanced and strongly connected. In [4], Ren
and Beard extended the results of [2] and [3] and presented
mathematically weaker conditions for state consensus under
dynamically changing directed interaction topology. In [5],
[6], Z. Lin et al. studied consensus problem in the context
of formation control of autonomous vehicles and proved that
formation stabilization to a point is feasible if and only if
the sensor digraph has a globally reachable node. In the
past several years, consensus problem of multi-agent systems
has been developing fast and several research topics have
been addressed, such as agreement over random networks
[7], [8], asynchronous information consensus [9], networks
with nonlinear consensus protocols [10], networks with time-
delays [3], [11], [12], [13], and high-dimensional consensus
problem [14]. For details, see the survey papers [15] and [16]
and references therein.

One main research topic in consensus problem is how
to design consensus protocol. Consensus protocol is a dis-
tributed interaction rule among agents, which is aimed at
ensuring that the concerned states of agents converge to a
common value. Convergence rate is an importance index
to evaluate the proposed protocol. It was shown that the
algebraic connectivity of interaction topology quantifies the
convergence speed of the typical linear consensus protocol,
given in [3]. Kim and Mesbahi considered the problem of
finding the best vertex positional configuration to maximize
the associated algebraic connectivity [17]. To increase con-
vergence rate, Xiao and Boyd provided a method of how to
choose edge weights for discrete-time systems [18]. In [19],
it was shown that small-word network topology is of large
algebraic connectivity. Note that the above results are on
how to find appropriate interaction topology so as to increase
the convergence rate of their proposed protocols but not on
how to improve the effectiveness of the proposed protocols
themselves when the topology is given. Furthermore, the
state consensus can never occur in a finite time under the
aforementioned protocols. In some practical situations, it
is required that the consensus be reached in a finite time.
Therefore, finite-time agreement is more appealing and there
are a number of settings where finite-time convergence is
desirable. The protocol presented in this paper is shown to be
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with better convergence rate than the typical linear protocol
when they are acting on the same topology, and moreover it
is with finite settling time. The method used in this paper is
of interest itself, which is partly motivated by the work of
[20], in which continuous finite-time differential equations
were introduced as fast accurate controllers for dynamical
systems, and partly by the results of finite-time stability of
homogeneous systems [21].

This paper is organized as follows. The problem is formu-
lated in Section II. Convergence results and their technical
proofs are given in Section III.

II. PROBLEM FORMULATION

A. Graph theory preliminary

Graph plays a key role in representing the interaction
topology among agents. We first give some basic definitions
in graph theory [22].

For simplicity, let In denote the set {1, 2, · · · , n}. A
directed graph G = (V(G), E(G)) consists a vertex set
V(G) = {vi, i ∈ In} and an edge set E(G) ⊂ {(vi, vj) :
i, j ∈ In}. If (vi, vj) is an edge of G, vi is called the parent
vertex. The set of neighbors of vertex vi in G is defined by
N (G, vi) = {vj : (vj , vi) ∈ E(G), j 6= i}. The associated
index set is denoted by N (G, i) = {j : vj ∈ N (G, vi)}.
A path in directed graph G is a sequence vi1 , · · · , vik

of
vertices such that (vij

, vij+1) ∈ E(G) for j = 1, · · · , k−1. A
directed tree is a directed graph, where every vertex, except
one special vertex without any parent, which is called the
root vertex, has exactly one parent, and the root vertex can be
connected to any other vertices through paths. Directed graph
G is strongly connected if between every pair of distinct
vertices vi, vj , there exists a path that begins at vi and ends
at vj .

A subgraph Gs of G is a directed graph such that the
vertex set V(Gs) ⊂ V(G) and the edge set E(Gs) ⊂ E(G). If
V(Gs) = V(G), Gs is called a spanning subgraph. For any
vi, vj ∈ V(Gs), if (vi, vj) ∈ E(Gs) ⇐⇒ (vi, vj) ∈ E(G),
Gs is called an induced subgraph. We also say that Gs is
induced by V(Gs). A spanning tree of G is a directed tree
that is a spanning subgraph of G. A directed graph is said
to have a spanning tree if a subset of the edges forms a
spanning tree. A strongly connected component of directed
graph G is an induced subgraph that is maximal, subject to
being strongly connected. Since any subgraph consisting of
only one vertex is strongly connected, it follows that each
vertex lies in a strongly connected component, and therefore
the strongly connected components of G partition its vertices.
Moreover, the relation determined by lying in the same
strongly connected component is an equivalence relation. We
introduce another directed graph, denoted by Gc, consisting
of all strongly connected components u1, u2, · · · , uk of G,
such that (ui, uj) ∈ E(Gc) if and only if there exist vi′ ∈
V(ui) and vj′ ∈ V(uj) satisfying (vi′ , vj′) ∈ E(G). A
weighted directed graph G(A) is a directed graph G plus a
nonnegative (element-wise) matrix A = [aij ] ∈ Rn×n such
that (vi, vj) ∈ G ⇐⇒ aji > 0. A is called the weight
matrix and aij is called the weight of edge (vj , vi). In what

follows, matrix A is said nonnegative or positive, denoted by
A ≥ 0 or A > 0 separately, if entries of matrix A are not less
or larger than zero. We say G is undirected if (vi, vj) ∈ V(G)
implies that (vj , vi) ∈ V(G), and we say G(A) is undirected
if AT = A. An undirected graph is connected if the graph,
as a special directed graph, is strongly connected.

B. Model

The system studied in this paper consists of n autonomous
agents, labeled 1 through n. All these agents share a common
state space R. Let xi denote the state of agent i, let x
denote [x1, x2, · · · , xn]T , and suppose that agent i takes the
following continuous-time dynamics

ẋi(t) = ui(t), i ∈ In, (1)

where ui(t) is the state feedback, called protocol, to be
designed based on the local state information obtained by
agent i from its neighbors.

We use a weighted directed graph G(A) to represent
the interaction topology among agents, where the diagonal
entries of A are supposed to be zeros. Vertex vi represents
agent i; edge (vi, vj) represents information channel from
agent i to agent j, which means that agent j can receive
the state information of agent i; the neighbors of agent
i are defined as those agents, whose information can be
received by agent i, namely, they correspond to N (G(A), vi).
The local interaction topology of a group of agents is the
subgraph induced by their associated vertices.

Given protocol ui, i ∈ In, ui or this multi-agent system
is said to solve a consensus problem if for any initial states
and any i, j ∈ In, |xi(t) − xj(t)| → 0 as t → ∞ (cf. [3]),
and it is said to solve a finite-time consensus problem if
for any initial states, there exists a finite-time t∗ such that
xi(t) = xj(t) for any i, j and any t ≥ t∗. If protocol ui

solves a consensus problem under proper conditions, then
the protocol is said to be consensus protocol. Next section
will give a nonlinear protocol, which will be proved to be
effective in consensus building.

III. CONVERGENCE RESULTS

A. Consensus protocol

We first introduce the function sig(r)α , sign(r)|r|α,
where r ∈ R, α > 0 and sign(·) is the sign function, defined
by

sign(r) =





1, r > 0
0, r = 0

−1, r < 0
.

Function sig(r)α can be easily proved to be continuous with
respect to r. And d|r|α+1

dr = (α + 1) sig(r)α. For simplicity,
if r is a vector, then sig(r)α is also a vector with the same
dimensions as r, obtained by operating sig(·)α on each entry
of r.

With the above preparation, we present the following
protocol
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ui =β sig


 ∑

j∈N (G(A),i)

aij(xj − xi)




α

+ γ
∑

j∈N (G(A),i)

aij(xj − xi),
(2)

where 0 < α < 1, β > 0, γ ≥ 0.
By the property of function sig(r)α, ui is continuous with

respect to state variables xi, i ∈ In. If β = 0, γ = 1, then
the above protocol becomes the typical linear protocol[3],
which was presented by Olfati-Saber and Murray and was
proved to solve a consensus problem under appropriate
conditions. If α = 0, β 6= 0, then the above protocol becomes
discontinuous with respect to state variables. This case is
beyond the scope of our research. However, it is worthy of
mentioning that the case when α = 0, β = 1, γ = 0, and A
is a 0−1 symmetric matrix was studied by Cortés. Interested
reader may refer to [23].

Next, we list some basic properties of system (1) under
protocol (2).

Property 1: Protocol (2) is continuous with respect to
state variables x1, x2, . . . , xn. Moreover, under this proto-
col and given any initial state x(0), there exists at least
one solution of differential equations (1) on [0,∞). Fur-
thermore, maxi xi(t) is non-increasing and mini xi(t) is
non-decreasing. Hence, ‖x(t)‖∞ is also non-increasing and
‖x(t)‖∞ ≤ ‖x(0)‖∞ for all t ≥ 0.

B. Finite-time convergence

Now, we present one of the main results.
Theorem 1: If the interaction topology G(A) has a span-

ning tree, the proposed protocol (2) solves a finite-time
consensus problem.

To prove Theorem 1, we need the following lemmas.
Proofs of them are omitted due to the page limitation.

Lemma 1 ([3], [4]): Let L(A) = [lij ] ∈ Rn×n denote the
graph Laplacian of G(A), which is defined by

lij =
{ ∑n

k=1,k 6=i aik, j = i

−aij , j 6= i
.

Then
(i) 0 is an eigenvalue of L(A) and 1 is the associated

eigenvector, where 1 = [1, 1, · · · , 1]T with compatible di-
mensions;

(ii) if G(A) has a spanning tree, then eigenvalue 0 is alge-
braically simple and all other eigenvalues are with positive
real parts;

(iii) if G(A) is strongly connected, then there exists a
positive column vector ω ∈ Rn such that ωT L(A) = 0;

if G(A) is undirected, namely, AT = A, and connected,
then L(A) has the following properties:

(iv) ξT L(A)ξ = 1
2

∑n
i,j=1 aij(ξj − ξi)2 for any ξ =

[ξ1, ξ2, . . . , ξn]T ∈ Rn, and therefore L(A) is semi-positive
definite, which implies that all eigenvalues of L(A) are
nonnegative real numbers;

(v) denote the eigenvalues of L(A) by
0, λ2(L(A)), · · · , λn(L(A)) in the increasing order.
The second smallest eigenvalue of L(A), λ2(L(A)), called
the algebraic connectivity of G(A), is larger than zero;

(vi) the algebraic connectivity of G(A) is equal to
minξ 6=0,1T ξ=0

ξT L(A)ξ
ξT ξ

, and therefore, if 1T ξ = 0, then

ξT L(A)ξ ≥ λ2(L(A))ξT ξ.
Corollary 1: Suppose G(A) is strongly connected, and

let ω > 0 such that ωT L(A) = 0. Then diag(ω)L(A) +
L(A)T diag(ω) is the graph Laplacian of the undirected
weighted graph G(diag(ω)A + AT diag(ω)). And therefore
it is semi-positive definite, 0 is its algebraically simple
eigenvalue and 1 is the associated eigenvector.

Corollary 2: Let b = [b1, b2, . . . , bn]T ≥ 0, b 6= 0, and let
G(A) be undirected and connected. Then L(A) + diag(b) is
positive definite, where diag(b) is the diagonal matrix with
the ith diagonal entry being bi.

Lemma 2: Let ξ1, ξ2, . . . , ξn ≥ 0 and let 0 < p ≤ 1. Then
n∑

i=1

ξp
i ≥

(
n∑

i=1

ξi

)p

.

Proof of Theorem 1:
Proof: This theorem is proved through the following

three steps.
Step 1: Suppose that G(A) is strongly connected.
Then by Lemma 1, there exists vector ω =

[ω1, ω2, · · · , ωn]T ∈ Rn such that ω > 0 and ωT L(A) = 0.
Let yi =

∑n
j=1 aij(xj − xi) and y = [y1, y2, · · · , yn]T .

Then ω ⊥ y and

ẏi =
n∑

j=1

aij

(
β sig(yj)α + γyj − β sig(yi)α − γyi

)
, i ∈ In,

which is equivalent to

ẏ = −βL(A) sig(y)α − γL(A)y.

Here, sig(y)α represents the column vector
[sig(y1)α, sig(y2)α, · · · , sig(yn)α]T .

Consider Lyapunov candidate

V1(t) =
n∑

i=1

ωi

(
β

1 + α
|yi|1+α +

γ

2
y2

i

)
.

Obviously, V1(t) ≥ 0. And

dV1(t)
dt

=
n∑

i=1

ωi

(
β sig(yi)α + γyi

)
ẏi

= −(
β sig(y)α+γy

)T diag(ω)L(A)
(
β sig(y)α+γy

)
.

Claim 1: Given initial state x(0), there exists K1 > 0 such
that
(
β sig(y)α+γy

)T
diag(ω)L(A)

(
β sig(y)α+γy

) ≥ K1V1(t)
2α

1+α .

Therefore,
dV1(t)

dt
≤ −K1V1(t)

2α
1+α .
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By Comparison Principle of differential equations, V1(t) ≤
v1(t), where

v1(t) =





(
−K1

1−α
1+α t + V1(0)

1−α
1+α

) 1+α
1−α

, t < t∗

0, t ≥ t∗
,

where t∗ = (1+α)V (0)
1−α
1+α

K1(1−α) .
Thus, V1(t) will reach zero in finite time t∗, which implies

that y will be zero. Since y = −L(A)x and rank(L(A)) =
n − 1 (by Lemma (1)), y = 0 implies that x ∈ span{1} ,
{r1 : r ∈ R} and ẋ(t) = 0. Therefore, this system solves a
finite-time consensus problem.

It is left to us to prove that Claim 1 holds.
Suppose that V1(t) 6= 0, namely, y 6= 0. Let f(y) denote(

β sig(y)α+γy
)T

diag(ω)L(A)
(
β sig(y)α+γy

)

V1(t)
2α

1+α
, let M denote the

matrix 1
2

(
diag(ω)L(A) + L(A)T diag(ω)

)
, and let U =

{ξ ∈ Rn : ξT ξ = 1, and, ξ = β sig(ζ)α + γζ for some
ζ ⊥ ω }. Then U is a bounded closed set. Since function
ξT Mξ is continuous and for any ξ ∈ U , ξT Mξ 6= 0 (by
Corollary 1), we have that minξ∈U ξT Mξ, denoted by k1,
exists and larger that zero. Since ω ⊥ y, we have that

β sig(y)α+γy√
(β sig(y)α+γy)T (β sig(y)α+γy)

∈ U and

(
β sig(y)α + γy

)T
M

(
β sig(y)α + γy

)
(
β sig(y)α + γy

)T (
β sig(y)α + γy

) ≥ k1.

Therefore,

f(y) ≥ k1

(
β sig(y)α + γy

)T (
β sig(y)α + γy

)

V (t)
2α

1+α

≥ k1

∑n
i=1

(
β sig(yi)α + γyi

)2

∑n
i=1

(
βωi

1+α

) 2α
1+α |yi|2α +

∑n
i=1

(
γωi

2

) 2α
1+α |yi|

4α
1+α

≥ k1β
2
∑n

i=1 |yi|2α

∑n
i=1

(
βωi

1+α

) 2α
1+α |yi|2α +

∑n
i=1

(
γωi

2

) 2α
1+α |yi|

4α
1+α

, g(y).

The second inequality follows from Lemma 2 and the third
inequality follows from the fact that yi and sig(yi)α are with
the same sign.

Let W = {ξ ∈ Rn : 1 ≤ ‖ξ‖∞ ≤ ‖L(A)‖i∞‖x(0)‖∞},
where ‖ ·‖i∞ is the induced matrix norm of maximum norm
‖ · ‖∞. Suppose W 6= ∅. Then it is compact, g(ξ) 6= 0 when
ξ ∈ W , and thus minξ∈W g(ξ), denoted by k2, exists, and is
also larger than zero. Therefore, if y ∈ W , then f(y) ≥ k2.

Because |yi(t)| ≤ ‖y(t)‖∞ = ‖ − L(A)x(t)‖∞ ≤
‖L(A)‖i∞‖x(t)‖∞ ≤ ‖L(A)‖i∞‖x(0)‖∞, if y 6∈ W , then
0 < ‖y‖∞ < 1, and thus

g(y) >
k1β

2
∑n

i=1 |yi|2α

2ω0

∑n
i=1 |yi|2α

=
k1β

2

2ω0
,

where ω0 = max
{ (

βωi

1+α

) 2α
1+α

, i ∈ In;
(

γωi

2

) 2α
1+α , i ∈ In

}
.

Let K1 = min
{
k2,

k1β2

2ω0

}
. Then Claim 1 holds.

Step 2: Next, we suppose that G(A) has a spanning tree,
the associated root vertex is vi, and the subgraph induced by
the remaining vertices is strongly connected. Furthermore,
we suppose that there exists not any path connecting those
vertices to vertex vi.

Without loss of generality, assume that the root vertex vi is
vn. Therefore, we get that an1 = an2 = · · · = ann = 0 and
a1n, a2n, · · · , an−1,n are not all zeros. For convenience, let
m = n − 1, b = [b1, b2, · · · , bm]T = [a1n, a2n, · · · , amn]T

and denote zi = xi−xn, i = 1, 2 · · · ,m, A0 = [aij ]1≤i,j≤m.
Then

żi = ẋi =β sig




m∑

j=1

aij(zj − zi)− bizi




α

+ γ




m∑

j=1

aij(zj − zi)− bizi


 .

Let yi =
∑m

j=1 aij(zj − zi)− bizi, i = 1, 2, · · · ,m, and let
y0 = [y1, y2, · · · , ym]T . Then

ẏi =
m∑

j=1

aij

(
β sig(yj)α + γyj − β sig(yi)α − γyi

)

− bi

(
β sig(yi)α + γyi

)
.

Because the subgraph induced by v1, v2, · · · , vm is
strongly connected, i.e., G(A0) is strongly connected, by
lemma 1, there exists a positive m-column vector ω0 =
[w1, w2, · · · , wm]T such that ω0L(A0) = 0. Consider Lya-
punov candidate

V2(t) =
m∑

i=1

ωi

(
β

1 + α
|yi|1+α +

γ

2
y2

i

)
.

dV2(t)
dt

=
m∑

i=1

wi

(
β sig(yi)α + γyi

)
ẏi

=
(
β sig(y0)α+γy0

)T(−diag(w0)L(A0)−diag(b)
)

× (
β sig(y0)α + γy0

)
.

Claim 2: Given initial state x(0), there exists K2 > 0 such
that

(
β sig(y0)α+γy0

)T (
diag(w0)L(A0) + diag(b)

)

× (
β sig(y0)α + γy0

) ≥ K2V2(t)
2α

1+α .

If Claim 2 holds, by the same arguments as in the
first step, we have that V2(t) will reach zero in finite
time. V2(t) = 0 implies that y0 = 0. Since L(A) =[

L(A0) + diag(b) −b
0 0

]
, by Lemma 1, L(A0) + diag(b)

is of full rank. And from y0 =
( − L(A0) − diag(b)

)
z, we

have z = 0, where z = [z1, z2, · · · , zm]T . Therefore, in this
case, the system also solves a finite-time consensus problem
and the final state is xn.

Next, we prove Claim 2. By Corollaries 1 and 2,
1
2

(
diag(w0)L(A0)+L(A0)T diag(w0)

)
+diag(b) is positive
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definite. Denote the smallest eigenvalue of it by λ. Then if
V2(t) 6= 0,

−dV2(t)/dt

V2(t)
2α

1+α

≥ λ
∑m

i=1

(
β sig(yi)

α + γyi

)2

V2(t)
2α

1+α

≥ λ
∑m

i=1

(
β sig(yi)

α + γyi

)2

∑m
i=1

(
ωiβ
1+α

) 2α
1+α|yi|2α+

∑m
i=1

(
ωiγ
2

) 2α
1+α|yi|

4α
1+α

, g0(y0)

It can be observed that
[

y0

0

]
= −L(A)x and thus for

any i ∈ {1, 2, · · · ,m}, |yi| ≤ ‖ − L(A)‖i∞‖x(0)‖∞. With
the similar arguments as in the first step, there exists K2 > 0,
such that g0(y0) ≥ K2. Therefore, Claim 2 holds.

Step 3: Finally, we prove the general case, namely, the
case when G(A) has a spanning tree, by induction.

Consider the directed graph Gc(A) consisting of the
strongly components in G(A). Obviously, Gc(A) is a directed
tree.

(i) The dynamics of agents corresponding to the vertex set
of the root of Gc(A) is not affected by others and the local
interaction topology among them is strongly connected. By
the conclusion of the first step, the states of them will reach
consensus in a finite time. The final state is denoted by x0.

(ii) Consider the dynamics of agents, denoted by
vi1 , vi2 , · · · , viki

, corresponding to the vertex set of some
vertex (not the root vertex) of Gc(A). It is only affected by
those agents, such that there exist paths connecting them to
vil

, l = 1, · · · , ki. Suppose those agents excluding vil
, l =

1, 2, · · · , ki, are vj1 , vj2 , · · · , vikj
, the states of them have

already reached consensus, and the consensus state is x0.
Then for any l ∈ {1, 2, · · · , ki},

ki∑
s=1

ail,is(xis − xil
) +

kj∑
s=1

ail,js(xjs − xil
)

=
ki∑

s=1

ail,is
(xis

− xil
) +




kj∑
s=1

ail,js


 (x0 − xil

)

Therefore, vj1 , vj2 , · · · , vikj
, as a whole, can be seen as

one (virtual) agent and as the leader of vil
, l = 1, · · · , ki.

Specifically, if we relabel the vertices vil
, l = 1, · · · , ki by

vl, l = 1, · · · , ki and label the virtual agent by ki + 1, then
the dynamics of vl, l = 1, · · · , ki, is the same as when the
local interaction topology among vl, l = 1, 2, · · · , ki + 1 is
G(A′) and protocol (2) is applied, where

A′ =




ai1,i1 · · · ai1,iki

∑kj

s=1 ai1,js

...
. . .

...
...

aiki,k1
· · · aiki

,iki

∑kj

s=1 aiki
,js

0 0 0 0




.

It is not difficult to get that G(A′) satisfies the assumption of
the second step. Thus, the states of agents il, l = 1, 2, · · · , ki,

will reach consensus in finite time, and the final state of them
is x0.

(iii) With the above conclusion and by induction, the
system solves a finite-time consensus problem, and the final
state is also x0.

Remark: V1 and V2 can be viewed as the measurement of
the length of y and y0 respectively. Since ω ⊥ y, for any
x ∈ Rn, there exists r ∈ R such that x = r1+ y. Therefore,
the length of y reflects the difference of xi, i ∈ In, namely,
V1(t) measures the disagreement of agents’ states at time t.
On the other hand, because y0 = −(L(A0) + diag(b))z and
(L(A0)+diag(b)) is invertible, the length of y0 also can be
viewed as the length of z in the sense of norm equivalence.
And because zi = xi − xn, i = 1, 2, · · · , n − 1, V2(t)
measures the difference between agents’ current states and
their final agreement state.

C. Comparison with the typical linear protocol[3]

In fact, protocol (2) represents a class of protocols with
free parameters α, β, and γ. If β = 0 and γ 6= 0, protocol (2)
becomes the typical linear consensus protocol, presented by
Olfati-Saber and Murray, under interaction topology G(γA).
In this subsection, parameter γ in (2) is supposed to be equal
to one, that is, we compare the convergence speeds of the
following two protocols acting on the same topology G(A).

(i) the linear protocol, presented by Olfati-Saber and
Murray,

ui =
∑

j∈N (G(A(t)),i)

aij(xj − xi). (3)

(ii) protocol (2) with γ = 1,

ui =β sig


 ∑

j∈N (G(A),i)

aij(xj − xi)




α

+
∑

j∈N (G(A),i)

aij(xj − xi);
(4)

To show our presented protocol (4) converge faster than
protocol (3), we first study the case when G(A) is undirected
and connected. In this case, the two systems have a common
Lyapunov candidate V3(t) = 1

4

∑n
i,j=1 aij

(
xj(t) − xi(t)

)2
,

with the property that ∂V3
∂xi

= −∑n
j=1 aij(xj − xi). If

V3(t) 6= 0,

dV3(t)
dt

∣∣∣∣
(3)

=
n∑

i=1

∂V3(t)
∂xi

ẋi

= −
n∑

i=1




n∑

j=1

aij(xj − xi)




2

= −xT L(A)T L(A)x
1
2xT L(A)x

V3(t) (5)

≤ −2λ2(L(A))V3(t),
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and

dV3(t)
dt

∣∣∣∣
(4)

=− β
n∑

i=1

∣∣∣∣∣∣

n∑

j=1

aij(xj − xi)

∣∣∣∣∣∣

1+α

(6)

−
n∑

i=1




n∑

j=1

aij(xj − xi)




2

≤− β
(
2λ2(L(A))V3(t)

) 1+α
2 − 2λ2(L(A))V3(t).

(7)

Therefore, the system under protocol (4) has a better
convergence rate than the system under protocol (3).

The following theorem also illustrates this fact, although
it is of a little conservation.

Theorem 2: Assume that G(A) is undirected and con-
nected, and λn(L(A)) 6= λ2(L(A)). Given initial state
x(0), denote V3(t) under protocol (3) and protocol (4)
by VL(t) and VN (t) separately. If VL(0) = VN (0) ≤(

β
(
2λ2(L(A))

) 2
1−α

2
(
λn(L(A))−λ2(L(A))

)
) 2

1−α

, then VN (t) ≤ VL(t) for all

t ≥ 0.
Proof: Since V̇N (t) ≤ 0, VN (t) ≤ VN (0), and thus

VN (t) ≤
(

β
(
2λ2(L(A))

) 1+α
2

2
(
λn(L(A))−λ2(L(A))

)
) 2

1−α

.

VN (t) ≤

 β

(
2λ2(L(A))

) 1+α
2

2
(
λn(L(A))− λ2(L(A))

)



2
1−α

⇐⇒ VN (t)
1−α

2 ≤ β
(
2λ2(L(A))

) 1+α
2

2
(
λn(L(A))− λ2(L(A))

)

⇐⇒ 2
(
λn(L(A))− λ2(L(A))

)
VN (t)

1−α
2

≤ β
(
2λ2(L(A))

) 1+α
2

⇐⇒ 2
(
λn(L(A))− λ2(L(A))

)
VN (t)

≤ β
(
2λ2(L(A))VN (t)

) 1+α
2

⇐⇒ − β
(
2λ2(L(A))VN (t)

) 1+α
2 − 2λ2(L(A))VN (t)

≤ −2λn(L(A))VN (t),

which further implies by (7) that dVN (t)
dt ≤

−2λn(L(A))VN (t). On the other hand, by (5),
dVL(t)

dt ≥ −2λn(L(A))VL(t). By Comparison Principle of
differential equations, VN (t) ≤ VL(t) for all t ≥ 0.

In the general case, that is, we only know that G(A) has
a spanning tree, we take the Lyapunov function V4(t) =
maxi∈In

xi − mini∈In
xi for consensus state, which was

presented in[24]. Clearly, V4(t) = 0 if and only if x ∈
span{1}.

Since for any i, xi is differentiable, V4(t) is piecewise
differentiable and its right-derivative V̇4+(t) exists. Given
x(t), let I1 = {j : xj = maxi∈In xi} and I2 = {j :
xj = mini∈In

xi}. It can be observed from the equations
(3) and (4) that maxi∈I1 ui|(4) ≤ maxi∈I1 ui|(3) ≤ 0

and mini∈I2 ui|(4) ≥ mini∈I2 ui|(3) ≥ 0. Since V̇4+(t) =
maxi∈I1 ui −mini∈I2 ui, we have that

V̇4+(t)|(4) ≤ V̇4+(t)|(3),

which also shows that the system under protocol (4) con-
verges faster than that under protocol (3).
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