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Abstract— This paper investigates performance analysis
problem under a given feedback law for discrete-time linear
systems subject to actuator saturation. Two performance mea-
sures, the estimation of domain of attraction and L2 perfor-
mance, are considered by combining the saturation-dependent
Lyapunov function method with Finsler’s Lemma. New and
less conservative conditions in the enlarged space containing
both the state and its time difference, allowing extra degree
of freedom for various performance analysis, are proposed.
Furthermore, based on these results, two important lemmas
and two iterative LMI-based optimization algorithms are also
developed to optimize the performance indexes respectively. Nu-
merical examples illustrate that the proposed methods improve
recent results on the same problems.

Key words: Actuator saturation; estimation of domain of
attraction; L2 performance; LMIs.

I. INTRODUCTION

Saturation is probably the most commonly encountered
nonlinearity in control engineering because of the physical
impossibility of applying unlimited control signals. It is well
known that the input saturation is source of performance
degeneration, limit cycles, different equilibrium points, and
even instability. Hence, the attraction is great in the analysis
and design of saturating control laws. See, for instance [7],
[10], [17], and references therein.

With the absolute stability analysis tools, such as the circle
and Popov criteria, various methods have been developed on
controller synthesis, stability analysis and other performance
analysis: the estimation of the domain of attraction, distur-
bance tolerance , L2 gain analysis, etc. ( see, for example,
[2], [3], [5], [6], [8], [11], [13] and references therein). One
of the most relevant approaches to the analysis of saturated
systems is based on a novel polytopic model of the saturation
nonlinearity which was proposed in [7]. Based on that,
several interesting results were reported by developing vari-
ous Lyapunov functions, for example, quadratic Lyapunov
function [4], [7], [8]; Piecewise-affine Lyapunov function
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[12]; saturation-dependent Lyapunov function (parameter-
dependent Lyapunov function) [3], [18],(for linear discrete-
time system); convex hull quadratic Lyapunov function and
max quadratic Lyapunov function [9](for linear continuous-
time system). The advantages of using the polytopic model
have been shown in [16], etc. However, all the existing
results were obtained only in the state space by using
Lyapunov function approach solely. Obviously, in this case,
the degree of freedom for various analysis is restricted within
narrow limits. This paper is inspired to complete the above
conservativeness.

The objective of this paper is to reinvestigate performance
analysis problem under a given feedback law for discrete-
time linear systems subject to actuator saturation, which is
motivated by Finsler’s Lemma [14], [15]. Two performance
measures, the estimation of domain of attraction and L2
performance, are considered by combining the saturation-
dependent Lyapunov function method with Finsler’s Lemma.
The method is conceptually simple. Here, difference equa-
tions are considered as constraints and these dynamical con-
straints are incorporated into the stability analysis conditions
through the use of matrix Lagrange multipliers. New and
less conservative conditions in the enlarged space containing
both the state and its time difference, allowing extra degrees
of freedom for various performance analysis, are proposed.
Furthermore, based on these results, two important lemmas
and two iterative LMI-based optimization algorithms are also
developed to optimize the performance indexes respectively.
Numerical examples illustrate that the proposed methods
improve recent results on the same problems.

The paper is organized as follows. Section 2 gives
the problem under consideration. Two performance mea-
sures, the estimation of domain of attraction and the
L2 performance, are addressed in Section 3 by using
the saturation-dependent Lyapunov method combined with
Finsler’s Lemma. Furthermore, two important lemmas and
two iterative LMI-based optimization algorithms are also
developed to optimize the performance indexes respectively
in this Section. Numerical examples are given to show
the effectiveness of the proposed methods in Section 4,
conclusions are made in Section 5.

Notation: For a vector υ ∈ Rn, we denote
the standard multivariable saturation function as
σ(υ) = [σ(υ1) σ(υ2) · · ·σ(υn)]T , where σ(υi) =
sign(υi)min{1, |υi|}, denote its Euclidean norm as
‖υ‖2 = (υT υ)1/2. For a signal υ(k) defined on [0,∞),
we define its l2 norm as ‖υ‖l2 = (∑∞

k=0 υ(k)T υ(k))1/2.
? denotes the transpose of the off diagonal element of
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a matrix. I(0) represents the identity(null) matrix of
appropriate dimension. Denote LV (1) = {x ∈ Rn | V (x)≤ 1}
as the level set of a Lyapunov function V (x). For a
matrix F ∈ Rm×n, denote the ith row as fi and define
L (F) = {x ∈ Rn| | fix| ≤ 1, 1≤ i≤ m}.

II. PROBLEM STATEMENT

Consider a discrete-time linear system subject to input
saturation

x(k +1) = Ax(k)+Bσ(u(k)) (1)

where x ∈ Rn denotes the state vector and u ∈ Rm is the
control input vector.

This paper considers two performance measures of system
(1) under a given linear state feedback law

u(k) = Fx(k) (2)

Two performance measures are the estimation of domain of
attraction and the L2 performance respectively. Designing op-
timal control strategies to obtain the optimized performance
indexes is the objective of this paper.

Now, let Ξ be the set of m×m diagonal matrices whose
diagonal elements are either 1 or 0. There are 2m elements
in Ξ. Suppose that each element of Ξ is labeled as Ds, s =
1,2, · · · ,2m, and denote D−

s = I−Ds. Clearly, D−
s is also an

element of Ξ if Ds ∈ Ξ.
By means of the following well-known Lemma [8]: Let

F,H ∈ Rm×n be given. For x ∈ Rn, if x ∈L (H), then there
exist ηs ≥ 0, s ∈ [1,2m] satisfying ∑2m

s=1 ηs = 1 such that

σ(Fx) =
2m

∑
s=1

ηs(DsF +D−
s H)x. (3)

the closed-loop system (1-2) can be rewritten as

x(k +1) = Â(η)x(k), ∀ x ∈L (H) (4)

where

Â(η) =
2m

∑
s=1

ηsÂs =
2m

∑
s=1

ηs(A+B(DsF +D−
s H)) (5)

and η = [η1 η2 · · · η2m ] is a function of x that satisfies (3).
Here and later in this paper, we use ηs(k) to denote ηs(xk).
It is easy to see that the parameters η(k) reflect the severity
of actuator saturation (see details in [3]).

III. PERFORMANCE ANALYSIS

In this section, two performance measures are considered:
the estimation of domain of attraction and the L2 perfor-
mance.

To check asymptotical stability of system (4), a saturation-
dependent Lyapunov function was used [3]:

V (k,x(k)) = xT (k)P(η(x(k)))x(k)
= xT (k)(∑2m

s=1 ηs(x(k))Ps)x(k), Ps > 0
(6)

if such a positive-definite Lyapunov function exists and

∆V (k,x(k)) = xT (k +1)P(η(k +1))x(k +1)
−x(k)T P(η(k))x(k) (7)

is negative definite along the solutions of (4), then the origin
of the saturated system (4) is asymptotically stable for ∀x0 ∈
L (H).

In what follows, new performance test criterion are ob-
tained by combining saturation-dependent Lyapunov func-
tion method with Finsler’s Lemma [14], [15]. These condi-
tions are more general than ones in existing references and no
matrix inversion is involved in the construction of saturation-
dependent Lyapunov function.

Before the main results are given, the following Finsler’s
lemma is needed.

Lemma 3.1(Finsler′s Lemma): Let x ∈ Rn, symmetric
matrix P ∈ Rn×n, and Φ ∈ Rm×n such that rank(Φ) = r < n.
Then the following statements are equivalent:

i) xT Px < 0, ∀ Φx = 0,x 6= 0.
ii) ∃ X ∈ Rn×m : P+XΦ+ΦT XT < 0.

A. Estimation of Domain of Attraction

Theorem 3.1.1: Consider the closed-loop system (4) under
a given state feedback control matrix F . If there exist
matrices H,M,G and Ps > 0,s = 1,2, · · · ,2m, such that ∀s, l ∈
[1,2m]
[

Θ+ΘT −Ps −MT +AG+B(DsFG+D−
s HG)

? −G−GT +Pl

]
< 0 (8)

[
1 h j
? Ps

]
≥ 0 (9)

where
Θ = AM +B(DsFM +D−

s HM)

then the closed-loop system is asymptotically stable at the
origin with the level set LV (1) contained in the domain of
attraction.

Proof: Obviously, inequality (9) is equivalent to
h jP−1

s hT
j ≤ 1, it follows |hix| ≤ 1, ∀x ∈ LV (1), i ∈ [1,m], that

is, LV (1) ∈L (H). So system (1-2) can be written as (4).
Recall that the requirement ∆V (k,x(k)) < 0 for any x(k)∈

LV (1)\{0} can be stated as

[
xT (k) xT (k +1)

][−P(η(k)) 0
0 P(η(k +1))

][
x(k)

x(k +1)

]
< 0

(10)

∀ [
Â(η(k)) −I

][
x(k)

x(k +1)

]
= 0,

[
x(k)

x(k +1)

]
6= 0

Apply Lemma 3.1 with
[

x(k)
x(k +1)

]
→ x,

[−P(η(k)) 0
0 P(η(k +1))

]
→ P

[
Â(η(k)) −I

]→Φ,

[
MT

GT

]
→ X

Then system (4) is asymptotically stable if the following
inequality holds:

[
MT Â(η(k))+ ÂT (η(k))M−P(η(k))

GT Â(η(k))−M
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−MT + ÂT (η(k))G
−GT −G+P(η(k +1))

]
< 0 (11)

by transposing Â(η(k)), (11) can also be written as

2m

∑
s=1

ηs(k)
2m

∑
l=1

ηl(k+1)
[

MT ÂT
s + ÂsM−Ps −MT + ÂsG

GT ÂT
s −M −GT −G+Pl

]
< 0

(12)
obviously, the above inequality holds if

[
MT ÂT

s + ÂsM−Ps −MT + ÂsG
GT ÂT

s −M −GT −G+Pl

]
< 0, ∀s, l ∈ [1,2m]

(13)
via (5), (13) is nothing more than (8). then the closed-loop
system (4) is asymptotically stable at the origin with the level
set LV (1) contained in the domain of attraction. So the proof
is complete.

Remark 3.1.2: The key idea behind Theorem 3.1.1 is to
increase the dimension of the inequalities and to introduce
new matrix variables M and G, here identified as Lagrange
multipliers, allowing some degree of freedom. With special
choice M = 0, it is not difficult to see that Theorem 3.1.1 is
essentially equivalent to Theorem 1 in [3] while the proof
here is more straightforward.

Theorem 3.1.1 provides conditions under which the level
set LV (1) is inside the domain of attraction. In general, the
size of LV (1) can be measured with respect to a given shape
reference set XR which is a polyhedron defined as XR =
co{x1,x2, · · · ,xq}, where x1,x2, · · · ,xq are given points in
Rn a priori. we can optimize a scalar α > 0 such that

αXR ⊂ LV (1)|xt , xt ∈ Rn, t ∈ {1,2, · · · ,q}
it is

α2xT
t Psxt ≤ 1⇔

[
α−2 xT

t GT

Gxt GP−1
s GT

]
≥ 0 (14)

noting that
GP−1

s GT ≥ G+GT −Ps,

then (14) is satisfied if the the following inequality holds
[

α−2 xT
t GT

Gxt G+GT −Ps

]
≥ 0 (15)

Thus, the estimation of domain of attraction can be reduced
to the following optimization problem:

maximizePs>0,H,M,G,α>0 α

s.t. (8),(9),(15) (16)

It is noted that the condition (8) in above optimization
problem is not convex and cannot be solved directly. To
facilitate solving this non-convex problem, the following
useful lemma will be presented.

Lemma 3.1.3: For matrix variables Ps >
0,H,M,G,H0,M0,G0,∀s, l ∈ [1,2m], the following statements
hold: (8) holds if and only if the following inequality holds




Λ̃ −MT +AG+BDsFG U U +MT

? −G−GT +Pl +Θ2 GT 0
? ? −I 0
? ? ? −I


 < 0 (17)

where

U = BD−1
s H, Λ = AM +BDsFM

Λ̃ = Λ+ΛT −Ps +2Θ1 +Θ3
Θ1 =−U(BD−1

s H0)T −BD−1
s H0UT +BD−1

s H0(BD−1
s H0)T

Θ2 =−G0GT −GGT
0 +G0GT

0
Θ3 =−M0MT −MMT

0 +M0MT
0

Proof: Denote

W =
[

Λ+ΛT −Ps −MT +AG+BDsFG
? −G−GT +Pl

]

then, inequality (8) can be rewritten as

W +
[
UM +(UM)T 0

0 0

]
+

[
0 UG
? 0

]
< 0 (18)

Obviously, for any two matrices X and Y , the following
equality always holds

XY +Y T XT = (X +Y T )(X +Y T )T −XXT −Y TY (19)

Using equality (19), we have
[
UM +(UM)T 0

0 0

]
=

[
U
0

][
M 0

]
+

[
M 0

]T
[
U
0

]T

=
[
U +MT

0

][
U +MT

0

]T

+
[−UUT 0

0 0

]
+

[−MT M 0
0 0

]

(20)
and [

0 UG
? 0

]
=

[
U
0

][
0 G

]
+

[
0 G

]T
[
U
0

]T

=
[

U
GT

][
U
GT

]T

+
[−UUT 0

0 0

]
+

[
0 0
0 −GT G

]
(21)

As is known to all that for any matrix V , there always exists
a matrix V0 such that the following inequality holds

(V −V0)(V −V0)T ≥ 0 (22)

So, there exist matrices H0; M0 and G0 such that (18) holds
if the following inequality holds

W +
[

2Θ1 +Θ3 0
0 Θ2

]
+

[
U
GT

][
U
GT

]T

+
[
U +MT

0

][
U +MT

0

]T

< 0 (23)

On the other hand, when H0 = H;M0 = M and G0 = G, then
(23) holds if (18) holds. Now, by the Schur complement,
(23) is equivalent to (17). So the proof is complete.

Now, we can solve problem (16) involving the inequalities
(9), (15) and (17). But the inequality (17) is not convex with
respect to the matrix variables H0;G0 and M0, it is difficult
to solve them directly. However, when H0;G0 and M0 are
given, the inequalities (9), (15) and (17) are convex with
respect to Ps > 0,H,M,G,H0,M0,G0,µ, ∀s, l ∈ [1,2m] where
µ = α−2, and can be solved by using MATLAB via the LMI
Control Toolbox [1]. So, based on this property, we give an
iterative LMI-based optimization algorithm in the following
to optimize α:
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Let µ = α−2, the following algorithm is presented to
minimize µ .

Algorithm 3.1.4: Let ε > 0 be a given small constant
specifying a convergence criterion.

Step 1: By the result in [3], we can obtain an initial
value Hini. Let H = Hini be a given value, optimization
problem (16) is converted to a convex problem, then the
corresponding feasible solution G,M can be chosen as the
initial values Gini, Mini. Let µ0 = 1, go to Step 2.

Step 2: Let H0 = Hini, M0 = Mini, G0 = Gini, minimize µ
subject to the LMIs (9), (15) and (17), Hopt ,Mopt , Gopt and
µopt denote the optimized solutions, then go to Step 3.

Step 3: If |µopt−µ0|< ε , stop, then let µ = µopt . Else, let
Hini = Hopt , Mini = Mopt , Gini = Gopt and µ0 = µopt , return
to Step 2.

The above algorithm gives a suboptimal estimation α of
domain of attraction. Later, in Section 4, we shall illustrate
via a numerical example that the above algorithm can provide
quite satisfactory result.

B. L2 Performance Analysis

Consider systems
{

x(k +1) = Ax(k)+Bσ(u(k))+Eω(k)
z(k) = Cx(k)+Dω(k) (24)

where z(k) ∈ Rp is an output vector, ω(k) ∈ Rq is the
disturbance and assume that ω ∈W = {ω ∈ Rq : ‖ω‖2

l2
≤

β}, β > 0 is a given constant. Firstly, for a given γ > 0, the
L2 performance index is defined as follows:

Definition 3.2.1: Consider the saturated system (24), let
γ > 0 be a given constant, then the system (24) is said to
be with a L2 performance index less than γ , if there exists a
saturation-dependent Lyapunov function (6) such that:

i) when ω(k) = 0, x(k) 6= 0 , dV/dt < 0,
ii) when initial condition x(0) = 0, the performance index

J(ω) =
∞

∑
k=0

zT (k)z(k)− γ2
∞

∑
k=0

ωT (k)ω(k) < 0 (25)

for all nonzero ω(k) ∈W .
Then a sufficient condition under which system (24) has

L2 performance γ can be stated in the following Theorem:
Theorem 3.2.2: Consider the system (24) under a given

state feedback control matrix F . If there exist matrices
H,M,G,N and Ps > 0, such that ∀s, l ∈ [1,2m]



Θ −MT +Θ2 MT E +Θ3 +CT D
? −G−GT +Pl GT E−N
? ? NT E +ET N +DT D− γ2I


 < 0 (26)

[
1/β h j
? Ps

]
≥ 0 (27)

where
Θ = Θ1 +ΘT

1 −Ps +CTC
Θ1 = AM +B(DsFM +D−

s HM)
Θ2 = AG+B(DsFG+D−

s HG)
Θ3 = AN +B(DsFN +D−

s HN)

then there have J(ω) < 0, i.e.,
∞

∑
k=0

zT (k)z(k) < γ2
∞

∑
k=0

ωT (k)ω(k), ∀w(k) ∈W (28)

Proof: Similar to the proof of Theorem 3.1.1, we know
the condition (27) guarantees that the considered closed-loop
system can be written as

x(k +1) = Â(η)x(k)+Eω(k), ∀ x ∈L (H) (29)

where

Â(η) =
2m

∑
s=1

ηsÂs =
2m

∑
s=1

ηs(A+B(DsF +D−
s H)) (30)

Define the same Lyapunov function (6), then, when the
system (24) has a L2 performance index less than γ , there
have the modified Lyapunov stability conditions

∆V (k,x(k))+ zT (k)z(k)− γ2ωT (k)ω(k) < 0, ∀ω(k) ∈W
∀(x(k),x(k +1),ω(k)) satisfying (24),
(x(k),x(k +1),ω(k)) 6= 0.

(31)
If (31) is feasible, then it follows

V (k,x(k))−V (0,x(0)) <−
k−1

∑
i=0

zT (i)z(i)+ γ2
k−1

∑
i=0

ωT (i)ω(i),

∀k > 0

since x(0) = 0,V (k,x(k)) > 0 if x 6= 0, we can conclude that
the L2 performance index J(ω) < 0, ∀ ω(k) ∈ W ,x(k) ∈
LV (β ),k > 0.

Then (31) can be formulated



x(k)
x(k +1)

ω(k)




T

Ω




x(k)
x(k +1)

ω(k)


 < 0

∀ [
Â(η(k)) −I E

]



x(k)
x(k +1)

ω(k)


 = 0,




x(k)
x(k +1)

ω(k)


 6= 0

where

Ω =



−P(η(k))+CTC 0 CT D

0 P(η(k +1)) 0
DTC 0 DT D− γ2I




Assign

x←



x(k)
x(k +1)

ω(k)


 ,

P←


−P(η(k))+CTC 0 CT D

0 P(η(k +1)) 0
DTC 0 DT D− γ2I




Φ← [
Â(η(k)) −I E

]
, X ←




MT

GT

NT



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applying Lemma 3.1, it follows



Γ1 −MT + ÂT (η(k))G
? −GT −G+P(η(k +1))
? ?

MT E + ÂT (η(k))N +CT D
GT E−N

NT E +ET N +DT D− γ2I


 < 0

(32)
where

Γ1 = MT Â(η(k))+ ÂT (η(k))M−P(η(k))+CTC

by transposing Â(η(k)), (32) can be rewritten as
2m

∑
s=1

ηs(k)
2m

∑
l=1

ηl(k +1)ϒ < 0 (33)

where

ϒ =




Γ̂1 −MT + ÂsG MT E + ÂsN +CT D
? −GT −G+Pl GT E−N
? ? NT E +ET N +DT D− γ2I




Γ̂1 = MT ÂT
s + ÂsM−Ps +CTC

obviously, the above inequality holds if



Γ̂1 −MT + ÂsG MT E + ÂsN +CT D
? −GT −G+Pl GT E−N
? ? NT E +ET N +DT D− γ2I


 < 0,

(34)
∀s, l ∈ [1,2m]

via (30), (34) is nothing more than (26). Then the closed-
loop system (24) has an L2 performance index less than γ .
So the proof is complete.

Remark 3.2.3: By setting M = 0,N = 0, we can recover
a condition which is equivalent to Theorem 1 in [18] while
the proof here is more straightforward, Moreover, with no
matrix inversion involved in the Lyapunov function.

A natural idea is to optimize the L2 performance index γ
which can be formulated as:

minimizePs>0,H,M,G,N,γ>0 γ

s.t. (26),(27) (35)

Noticing that the condition (26) in above optimization prob-
lem is not convex and cannot be solved directly. Similar to
the method of dealing with problem (16), a lemma and an
optimal algorithm will be stated in the following.

Lemma 3.2.4: For matrix variables Ps >
0,H,M,G,N,H0,M0,G0,N0,∀s, l ∈ [1,2m], the following
statements hold: (26) holds if and only if the following
inequality holds



Λ −MT +Λ2 MT E +Λ3
? −G−GT +Pl +Θ2 GT E−N
? ? NT E +ET N− γ2I+Θ4
? ? ?
? ? ?
? ? ?
? ? ?

CT U U U +MT

0 GT 0 0
DT 0 NT 0
−I 0 0 0
? − I 0 0
? ? −I 0
? ? ? − I




< 0

(36)
where

U = BD−1
s H, Λ1 = AM +BDsFM

Λ2 = AG+BDsFG, Λ3 = AN +BDsFN
Λ = Λ1 +ΛT

1 −Ps +3Θ1 +Θ3
Θ1 =−U(BD−1

s H0)T −BD−1
s H0UT +BD−1

s H0(BD−1
s H0)T

Θ2 =−G0GT −GGT
0 +G0GT

0
Θ3 =−M0MT −MMT

0 +M0MT
0

Θ4 =−NT
0 N−NT N0 +NT

0 N0

Algorithm 3.2.5: Let ρ = γ2, ε > 0 be a given small
constant specifying a convergence criterion.

Step 1: Via the result in [18], we can obtain an initial
value Hini. Let H = Hini be a given value, optimization
problem (35) is converted to a convex problem, then the
corresponding feasible solution G,M,N can be chosen as
the initial values Gini, Mini, Nini. Let ρ0 = 1, go to Step 2.

Step 2: Let H0 = Hini, M0 = Mini, G0 = Gini, N0 =
Nini, minimize ρ subject to the LMIs (27) and (36),
Hopt ,Mopt , Gopt Nopt and ρopt denote the optimized solu-
tions, then go to Step 3.

Step 3: If |ρopt − ρ0| < ε , stop, then let ρ = ρopt . Else,
let Hini = Hopt , Mini = Mopt , Gini = Gopt , Nini = Nopt and
ρ0 = ρopt , return to Step 2.

The above algorithm gives a suboptimal L2 performance
index γ . A numerical example will be provided to show the
above algorithm can provide more improved result than one
on the same problem in Section 4.

Remark 3.2.6: By viewing the feedback gain F as an
additional free parameter, based on Theorem 3.1.1 and The-
orem 3.2.2, both the corresponding Lemmas and algorithms
can be presented easily for controller design.

IV. NUMERICAL EXAMPLE

Several numerical examples borrowed from the literature
are now presented to illustrate the effectiveness of proposed
approaches.

Example 1: Let us consider the same system in [3] to
estimate its domain of attraction

A =
[

1 1
0 1

]
, B =

[
0.5
1.0

]
.

Design the state feedback control law by the LQR approach
with Q = I and R = 0.1. For the above system, we obtain
the following controller: F = [−0.6167 − 1.2703]. As in
[3], we use the shape reference set of the form XR ={[

sinθ
cosθ

]}
, θ ∈ [0,2π]. For this example, when θ =

0.4π , by means of the result in [3], the optimized α = 4.5235,
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Hini = [−0.1019 − 0.2929], let H = Hini in problem (16),
we obtain

Mini =
[−0.36087 1.0489

0.3576 −1.2615

]
, Gini =

[
0.2291 −0.4405
−0.6433 1.5335

]

In contrast, by Algorithm 3.1.4 with H0 = Hini,G0 =
Gini,M0 = Mini, ε = 0.00001 and µ0 = 1, after 5 iterations,
the optimized solutions obtained as αopt = 363.5185.

Hopt = [0.3251 −1.0032];

Mopt =
[−0.3717 1.1507

0.6449 −1.9994

]
, Gopt =

[
0.3972 −1.2273
−1.2291 3.7979

]

From the numerical value results, we can see that the result
is quite satisfied because it is much better than the one in
[3].

Example 2: The following example is borrowed from
[18]. Considering

A =
[

0 1
−0.58 −0.6

]
, B =

[
0
1

]
, E =

[
0
1

]
, C =

[
1 0

]
, D = 0.

let β = 10, we obtain the best L2 performance γ = 1.6564
with state feedback gain F = [0.5801 0.3510] via the
Corollary 2 in [18]. In addition, Hini = [0.2440 0.1362] can
also be obtained, by solving the convex optimization problem
(35) under H = Hini, there have

Mini =
[

4.9286 0.5089
−3.7523 1.7105

]
, Gini =

[
27.9442 −7.3413
−7.2827 8.2145

]

Nini =
[

7.1237
−8.1095

]

Whereafter, via Algorithm 3.2.5 under H0 = Hini,G0 =
Gini,M0 = Mini,N0 = Nini ε = 0.001 and ρ0 = 1, after 1 iter-
ation, the optimized solutions obtained as γopt = 9.5742e−
007.

Hopt = [0.5026 −0.1219];

Mopt =
[

4.5452 1.7948
−4.0507 1.4097

]
, Gopt =

[
29.1520 −7.1526
−7.6788 8.9061

]

Nopt =
[

7.3825
−8.1397

]

From the numerical value results, the proposed method in
this paper improve recent results in [18] very much, that is,
the result is very satisfactory.

V. CONCLUSION

This paper studies performance analysis problem for
discrete-time linear systems with input saturations by com-
bining the saturation-dependent Lyapunov function method
with Finsler’s Lemma. Two performance measures, the es-
timation of domain of attraction and the L2 performance,
are concerned in this paper. The used method is concep-
tually simple. Here, difference equations are considered as
constraints and these dynamical constraints are incorporated
into the stability analysis condition through the use of matrix
Lagrange multipliers. New and less conservative conditions
in the enlarged space containing both the state and its time

difference, allowing extra degree of freedom for various
performance analysis, are proposed. Furthermore, based on
these results, two important lemmas and two iterative LMI-
based optimization algorithms are also developed to optimize
the performance indexes respectively. Numerical examples
illustrate that the proposed methods improve recent results
on the same problems.
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