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Abstract— A new control concept for a class of simple
underactuated mechanical system, the so-called Acrobot, is
presented here. Despite being seemingly a simple system, the
acrobot comprises many important difficulties when controlling
the most challenging underactuated system - the walking robot.
This paper presents the design of the asymptotical tracking
of the prescribed trajectory generated by a suitable open-
loop input of the acrobot. Such a design is based on the
partial exact linearization of the third order combined with a
certain robust stabilization technique. The proposed control is
then demonstrated by the exponential tracking of the walking-
like trajectory of the acrobot. Besides theoretical proofs, our
approach is supported by numerical simulations and illustrated
by acrobot movement animations.

Index Terms– Mechanical Systems, exact feedback linearization,
underactuated system, walking robots.

I. INTRODUCTION

Efficient control of the underactuated mechanical system

constitutes one of the most challenging problems of recent

decades, see [12], [4] and references within there. Reliable

and economic walking is the typical example of the related

studies among both control and robotic community. One

of the simplest underactuated mechanical systems is the

acrobot. Despite being a seemingly simple system, the acro-

bot comprises many important features of the underactuated

walking robots having the degree of underactuation equal

to one. As a matter of fact, one can show that any n-link

having n−1 actuators between its links, can be decomposed

into a fully actuated system and an acrobot ”disturbed”

by some influence from that fully actuated (and therefore

fully exact feedback linearizable) subsystem, see [10], [7].

As a consequence, the effective control of the acrobot is

an important step on the route to underactuated walking.

Recently, numerous papers have addressed the stabilization

of its inverted position extending its domain of attraction [1],

[9], [5], [11], [3], [13].

This paper aims to use a similar approach as in [3], [13]

for the asymptotical tracking of a suitable target trajectory

generated by an open loop control. As might have been

expected, the asymptotical tracking constitutes principally a

more complicated problem than the stabilization since the
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corresponding error dynamics has a more complex structure

than the Acrobot model itself. In particular, designed tracking

feedback can handle limited initial tracking error only and

its performance is better when the Acrobot movement is

slower. On the other hand, the mentioned approach uses

a special coordinate and feedback transformation which,

in general, posseses singularities. It is worth to underline

that, as discussed later in more detail, these singularities

may occur during the stabilization of the Acrobot inverted

position, but are excluded along walking-like trajectories.

The rest of the paper is organized as follows. The next

section briefly presents the model of n-link underactuated

system together with various possibilities of partial exact

feedback linearization. Section 3 presents in detail the main

result of this contribution including proofs. Numerical simu-

lations are described in Section 4. Final section draws briefly

some conclusions and discusses some open future research

outlooks toward efficient underactuated walking.

II. ACROBOT

The acrobot depicted on Figure 1 is a special case of n-

link chain with n − 1 actuators attached by one of its ends

Fig. 1. Acrobot.

to a pivot point through an unactuated rotary joint. Such a

system can be modelled by usual Lagrangian approach [6].

The corresponding Lagrangian is as follows

L(q, q̇) = K − V =
1

2
q̇TD(q)q̇ − V (q) (1)

where q denotes a n-dimensional configuration vector on the

configuration manifold Q and D(q) is the inertia matrix, K
is the kinetic energy and V is the potential energy of the

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB05.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 874



system. The resulting Euler-Lagrange equation is







d
dt

∂L
∂q̇1

− ∂L
∂q1

...
d
dt

∂L
∂q̇n

− ∂L
∂qn






= u =











0
τ2
...

τn











, (2)

where u stands for vector of external controlled forces.

The system (2) is the so-called underactuated mechanical

system having the degree of the underactuation equal to one,

[10]. Moreover, the underactuated angle is at the pivot point.

Equation (2) leads to a dynamic equation in the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = u (3)

where D(q) is the inertia matrix, C(q, q̇) contains Coriolis

and centrifugal terms, G(q) contains gravity terms and u
stands for vector of external forces.

For the Acrobot, these computations lead to a second-

order nonholonomic constraint and a kinetic symmetry, i.e.

the inertia matrix depends only on the second variable q2

D(q) =

[

θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2
θ2 + θ3 cos q2 θ2

]

, (4)

C(q, q̇) =

[

−θ3 sin q2q̇2 −(q̇2 + q̇1)θ3 sin q2
θ3 sin q2q̇1 0

]

, (5)

G(q) =

[

−θ4g sin q1 − θ5g sin (q1 + q2)
−θ5g sin (q1 + q2)

]

, (6)

where the 2-dimensional configuration vector (q1, q2) con-

sists of angles defined on Figure 1 and

θ1 = (m1 +m2)l
2
1 + I1, θ2 = m2l

2
2 + I2,

θ3 = m2l1l2, θ4 = (m1 +m2)l1, θ5 = m2l2.
(7)

The partial exact feedback linearization method is based

on a system transformation into a new system of coordinates

that display linear dependence between some output and

new input [8]. From the theoretical point of view, the

mechanical system dynamics is described by n-dimensional

state space. Static state feedback linearization of the suitable

output function relative degree r yields a linear subsystem

of dimension r. In other words, the maximal feedback

linearization problem consists in linearizing a function with

maximal relative degree. In [7] it was shown that if the

generalized momentum conjugate to the cyclic variable is

not conserved (as it is the case of Acrobot) then there exists

a set of outputs that defines a one-dimensional exponentially

stable zero dynamics. That means that it is possible to find

a function y(q, q̇) with relative degree 3 that transforms the

original system (3) by a local coordinate transformation

z = T (q, q̇), z1 = y, z2 = ẏ, z3 = ÿ, z4 = f(q, q̇), (8)

into the new input/output linear system with unobservable

nonlinear dynamics of dimension 1.

ż1 = z2, ż2 = z3, ż3 = α(q, q̇)v + β(q, q̇) = w,
ż4 = ψ1(q, q̇) + ψ2(q, q̇)τ2.

(9)

In the case of the Acrobot there are two independent func-

tions with relative degree 3 transforming the system into the

desired form1 (9), namely

σ =
∂L

∂q̇1
= (θ1 + θ2 + 2θ3 cos q2)q̇1 + (10)

(θ2 + θ3 cos q2)q̇2,

p = q1 +
q2
2

+
2θ2 − θ1 − θ2

√

(θ1 + θ2)2 − 4θ23
arctan

(

√

θ1 + θ2 − 2θ3
θ1 + θ2 + 2θ3

tan
q2
2

)

. (11)

The zero dynamics is used to investigate the internal stability

when the corresponding output is forced to zero. For the

most simple cases y = Cp or y = Cσ the resulting

zero dynamics is only critically stable. However, considering

the output function y = C1p(q) + C2σ(q, q̇) one gets

the following zero dynamics ṗ + C1[C2d11(q2)]
−1p = 0

which is asymptotically stable whenever C1/C2 is positive,

d11(q2) is the corresponding part of the inertia matrix D in

(3). Unfortunately, the corresponding transformations have a

complex set of singularities, unless C1 is very small, which

is not suitable for practical purposes.

III. MAIN RESULT

As already noticed, the maximal linearizations recalled

in the previous section are either only locally defined with

many complex singular points, or yield a critically stable

zero dynamics. Our main result takes advantage of other

special properties of the latter one represented by auxiliary

linearizing output y = σ. The corresponding linearizing

transformation will be shown to have quite limited singu-

larities. To be more specific, using the set of functions with

maximal relative degree, the following transformation

T : ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈ (12)

can be defined. Notice, that by (10,11) and some straightfor-

ward but laborious computations the following relation holds

ṗ = d11(q2)
−1σ, (13)

where d11(q2) = (θ1 + θ2 + 2θ3 cos q2) is the corresponding

element of the inertia matrix D in (3). Applying (12), (13)

to (3) we obtain the Acrobot’s dynamics in partial exact

linearized form

ξ̇1 = d11(q2)
−1ξ2

ξ̇2 = ξ3 (14)

ξ̇3 = ξ4

ξ̇4 = α(q, q̇)τ2 + β(q, q̇) = w

with the new coordinates ξ and the input w being well

defined wherever α(q, q̇)−1 6= 0. To determine the region

1Actually, by (2) σ̇ = d
dt

∂L

∂q̇1
= ∂L

∂q1
and therefore by (1) σ̇ = −

∂V (q)
∂q1

as D(q) ≡ D(q2) by (4). In other words, σ̇ has relative degree 2, i.e. σ

has the relative degree 3. Moreover, by the straightforward differentiation
it holds ṗ = d11(q2)−1σ, i.e. ṗ has relative degree 2, i.e. p should have
relative degree 3 as well.
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where such a transformation can be applied, let us express it

in an explicit way. Namely, the straightforward computations

show that

ξ =









ξ1
ξ2
ξ3
ξ4









= T (q1, q2, q̇1, q̇2) :=









T1

T2

T3

T4









, (15)









T1

T3

T2

T4









=









p(q1, q2)
θ4g sin q1 + θ5g sin(q1 + q2)

Φ2(q1, q2)

[

q̇1
q̇2

]









(16)

where p, σ are given by (10,11) and Φ2 by (21) later on.

Further, denote

φ =

[

φ1(ξ1, ξ3)
φ2(ξ1, ξ3)

]

, such that (17)

T1(φ1(ξ1, ξ3), φ2(ξ1, ξ3)) = ξ1,
T3(φ1(ξ1, ξ3), φ2(ξ1, ξ3)) = ξ3.

(18)

It holds by (15-16) that

∂[ξ1, ξ3, ξ2, ξ4]
⊤

∂[q⊤, q̇⊤]⊤
=

[

Φ1(q1, q2) 0
Φ3(q, q̇) Φ2(q1, q2)

]

(19)

where q := [q1, q2]
⊤, Φ3(q, q̇) is a certain (2 × 2) matrix of

smooth functions while

Φ1(q1, q2) =









1 θ2+θ3 cos q2

θ1+θ2+2θ3 cos q2

θ4g cos q1+
θ5g cos(q1 + q2)

θ5g cos(q1 + q2)









, (20)

Φ2(q1, q2) =








θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ4g cos q1+
θ5g cos(q1 + q2)

θ5g cos(q1 + q2)









. (21)

Further, it obviously holds for (17,18)

∂φ(ξ1, ξ3)

∂[ξ1, ξ3]⊤
= Φ−1

1 (q1, q2) =

1

s(q)









θ5g cos(q1 + q2) − θ2+θ3 cos q2

θ1+θ2+2θ3 cos q2

−θ4g cos q1−
θ5g cos(q1 + q2)

1









, (22)

s(q) := detΦ1 =
detΦ2

d11(q)
= gd−1

11 (q)× (23)

(

(θ1 + θ3 cos q2)θ5 cos(q1 + q2)− (θ2 + θ3 cos q2)θ4 cos q1
)

.

Moreover, the coordinate change (15,16) is locally invertible

at each point where

s(q) 6= 0. (24)

Indeed, D(q) > 0 and the above α(q, q̇), β(q, q̇) from (14)

are given as

α(q, q̇) =
detΦ2

detD(q)
,

[

0
β(q, q̇)

]

= Φ3(q, q̇)q̇, (25)

where Φ2 is given by (21). As a matter of fact, by virtue of

[2] and the references therein, the coordinate change (16) is

globally invertible on any open set where (24) holds and

which is both connected and simply connected. In other

words, the acrobot model is state and feedback equivalent

on any such set to the system (14). Figure 2 depicts some

of these sets. Moreover, for possible walking application, the

following lemma is useful.

Lemma 1: The relation (24) holds if the Acrobot center

of mass is strictly above the surface and

(m1 +m2)l
2
1 + I1 > m2l1l2, m2l

2
2 + I2 > m2l1l2,

q1 ∈ (−π/2, π/2), q1 + q2 ∈ (3π/2, π/2).

Proof Instead of performing tedious computations, let us

give the following mechanics motivated proof. First, notice

that (24) means that the matrix (21) is regular. Secondly,

one can easily see that the first assumption of Lemma 1

is equivalent to θ1 > θ3, θ2 > θ3, cf. (7), therefore the

entries of the first row of the matrix (21) are always strictly

positive. At the same time, the first entry of the second row

of the matrix (21) is the overall Acrobot potential energy

with respect to the ground surface while the second entry

of the second row is the potential energy of the second link

only with respect to the actuated joint position. Notice, that

q1 ∈ (−π/2, π/2) means that the first link points upward

while q1 + q2 ∈ (3π/2, π/2) means that the second link

points downward. Therefore, the first entry of the second

row of the matrix (21) is positive, while its second entry

is negative. Taking into the account, as shown above, that

the entries of the first row of the matrix (21) are strictly

positive, one concludes that both rows of that matrix are

always linearly independent, i.e. the matrix (21) is regular

and therefore s(q) 6= 0. 2

Fig. 2. Singularities and possible regular set of the coordinate change (16).

Remark 1: Notice, that the second condition of Lemma

1 q1 ∈ (−π/2, π/2), q1 + q2 ∈ (3π/2, π/2) is quite

natural in case of possible future walking-like movement

of the Acrobot as its violation means that either the stance

leg is bellow or fully lying on walking surface, or the
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swing leg points horizontally or upward. Apparently, such

configurations are not likely during walking, or even have

to be avoided for other practical reasons as well. Moreover,

the first condition of Lemma 1 obviously holds for almost

any reasonable combination of lengths and masses, e.g. it

clearly holds for l1 = l2 and by continuity arguments for

sufficiently small |l1 − l2| as well. The last feature may be

used to shorten slightly the swing leg during a step not to

hit the ground. Again, walking robots having very different

lengths of their legs links are obviously unrealistic also for

many other practical reasons.

The situation is nicely demonstrated on Fig. 2, where full

lines show singularities s(q) = 0 while dashed lines denote

the configurations with center of mass lying on the walking

surface. Proof of Lemma 1 applies within the crosshatched

area and any reasonable walking takes place even deep inside

this crosshatched area. 2

In the sequel we will therefore concentrate ourselves to

study the system (14). This system is almost linear, but there

is a nonlinearity d11(q2)
−1 in the first row that depends on

q2 only. Instead of expressing this nonlinearity in coordinates

ξ1,2,3,4 and trying to study its exact influence one can use

some favorable qualitative properties. Namely, one can easily

see that

amin ≤ d11(q2)
−1 ≤ amax (26)

amin :=
1

m2(l1 + l2)2 +m1l21 + I1 + I2
(27)

amax :=
1

m2(l1 − l2)2 +m1l21 + I1 + I2
. (28)

Notice, that

amax − amin =

4l1l2m2(m2(l1 + l2)
2 +m1l

2
1 + I1 + I2)

−1

(m2(l1 − l2)2 +m1l21 + I1 + I2)
(29)

being quite small number and therefore the nonlinearity

d11(q2)
−1 is actually varying in a quite narrow range. There-

fore, its derivative also evolves in favorable way, namely

∂[d11(q2)
−1]

∂q2
= (2θ3 sin q2)d11(q2)

−2. (30)

∣

∣

∂[d−1
11 ]

∂q2

∣

∣ ≤ 2θ3a
2
max. (31)

The above favorable properties of the Acrobot partial lin-

earization will be used in the sequel for the feedback design

ensuring the exponentially tracking of a given walking like

trajectory. Assume that an open loop control generating a

suitable reference trajectory is given in partial exact lin-

earized coordinates (14). In other words, our task is to track

the following reference system

ξ̇ref
1 = d−1

11 (qref
2 )ξref

2 , ξ̇ref
2 = ξref

3 ,

ξ̇ref
3 = ξref

4 , ξ̇ref
4 = wref , (32)

The following theorem gives a constructive way how asymp-

totically track the reference system (32).

Theorem 1: Consider the system (14) with the by the

following feedback

w = wref+
Θ3K1e1 + Θ3K2e2 + Θ2K3e3 + ΘK4e4,
e =: ξ − ξref .

(33)

Further, let K1 < 0 and K2,3,4 are such that the polynomial

λ3 +K4λ
2 +K3λ +K2 is Hurwitz. Then there exist Θ >

0,R > 0,B > 0 such that for all reference trajectories given

by (32) and satisfying

∀t ≥ 0 |s(φ2(ξ
ref )(t))| ≥ B > 0, (34)

|ξref
2 (t)| ≤ R, ∀t ≥ 0, (35)

where φ2 is given by (17,18)) and s(q) by (23), it holds

locally exponentially for e given by (33) that

e(t) → 0, t→ ∞.

Proof. Subtracting (32) from (14) with 33 one obtains

ė1 = d−1
11 (φ2(ξ1, ξ3))ξ2 − d−1

11 (φ2(ξ
ref
1 , ξref

3 ))ξref
2 ,

ė2 = e3, ė3 = e4, ė4 = Θ3K1e1+Θ3K2e2+Θ2K3e3+ΘK4,

where φ2 is given by (17,18). Straightforward computations

based on the Taylor expansions give

ė1 = µ2(t)e2 + µ1(t)e1 + µ3(t)e3 + o(e) (36)

ė2 = e3 (37)

ė3 = e4 (38)

ė4 = Θ3K1e1 + Θ3K2e2 + Θ2K3e3 + ΘK4, (39)

µ1(t) = ξref
2 (t)

∂[d−1
11 ]

∂q2

∂φ2

∂ξ1
(qref

2 (t)), (40)

µ2(t) = d−1
11 (qref

2 (t)), (41)

µ3(t) = ξref
2 (t)

∂[d−1
11 ]

∂q2

∂φ2

∂ξ3
(qref

2 (t)), (42)

qref
2 (t) = φ2(ξ

ref
1 (t), ξref

3 (t)), q2 ∈ [0, 2π). (43)

Using the relation (22), all the estimates (26-31) and fixing

some R,B > 0 in (34,35) one has that

|µ1(t)| ≤ 2θ3a
2
max(θ4 + θ5)

R

B
(44)

|µ3(t)| ≤ 2θ3a
2
max

R

B
, 0 < amin ≤ µ2(t) ≤ amax. (45)

Further, denote

A =





0 1 0
0 0 1
K2 K3 K4



 , A⊤S + SA = −I, (46)

where a symmetric positive definite matrix S exists as A
is obviously Hurwitz by the assumptions of the theorem

being proved. Consider the following Lyapunov’s function

candidate

V (ξ) =
1

2
(e21) + [e2, e3, e4]S[e2, e3, e4]

⊤
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where

e1 = e1, e2 = e2 +
K1

K2
e1, e3 = Θ−1e3, e4 = Θ−2e4.

Notice, that the system (36-39) can be written as

ė1 = µ2(t)e2 − (µ1(t) + µ2(t)
K1

K2
)e1 + Θµ3(t)e3 + o(e),

d

dt





e2
e3
e4



 = ΘA





e2
e3
e4



+







K1µ2(t)
K2

(

e2 −
K1

K2
e1

)

0
0






.

With all the above notations, the full derivation of the

Lyapunov’s function candidate can be expressed as follows

V̇ = Θ
(

µ3e1e3 − e22 − e23 − e24
)

−
K1µ2 +K2µ1

K2
e21 +o(e2)

+µ2e1e2 + 2[e2, e3, e4]S







K1µ2

K2

(

e2 −
K1

K2
e1

)

0
0






.

Recall, that in the formulation of the theorem being proved

it is claimed that “there exist Θ,R,B > 0”. Therefore, one

can in the sequel put always

B

R
Θ = 2θ3a

2
max(θ4 + θ5), (47)

to obtain after some straightforward computations that

V̇ ≤ o(e2) − Θ
(

e22 + e23 + e24
)

−
K1amin +K2

θ4+θ5

Θ

K2
e21

e1(e3+amaxe2)+2[e2, e3, e4]S







K1amax

K2

(

e2 −
K1

K2

e1

)

0
0






.

Now, the higher order terms o(e2) may be ignored as

they do not affect the local exponential stability which is

actually is investigated. Furthermore, notice that by (46),

matrix S is uniquely given by selection of gains K2,3,4.

Therefore, the cross terms of the above expression for V̇
are independent of the design parameter Θ and they depend

only of the fixed pre-selected gains K1,2,3,4 and a given

systems physical parameters. Furthemore, as the parameter Θ
multiplies the negative quadrates of ξ2, ξ3, ξ4, by enhancing

parameter Θ one can make the full derivative of Lyapunov’s

function candidate less than a strictly negative quadratic

form. The last property, together with quadratic character

of the Lyapunov’s function guarantees global exponential

stability of the corresponding closed loop system. 2

Remark 2: One can easily see that using the constructive

character of the above proof it is possible in a straightforward

though tedious manner, to find reasonable estimates for

the parameter Θ giving the exponentially tracking feedback

(33). Then, based on (47) one can obtain relation between

estimates and R,B. Notice, that first of them characterize

the speed during the reference step while the second one

closeness to singular point of the linearizing transformations.

In such a way, the set of all reference walking trajectories

Fig. 3. Angular positions q1, q2 and references (dotted line)

where our approach is viable may be clearly described.

Currently, the methodology for target walking trajectory

design guaranteeing safe validity of (34) and (35) is devel-

oped. Its full description is out of the scope of this short

paper, its basic ideas are indicated in the simulations section.

Preliminary results indicate that one can always design the

step “slow enough” and therefore based on theorem just

proved guarantee its local exponential tracking. It is just

worth notice at this point, that this reference trajectory design

is also using favourable properties of the system in those very

same σ-linearized coordinates (14). 2

IV. SIMULATIONS

Theorem 1 and subsequent remarks are illustrated by the

simulation experiments using parameters mi = 1, l1,2 = 1
and Ii = 0.1, see (7). First, the walking target trajectory

generated by the reference model (32) having ξ̇ref
4 = 0 and

some sufficient initial conditions of the acrobot is obtained.

Such a trajectory will be called in the sequel a the pseudo-

passive one. The pseudo-passive above trajectory is passive

in the linearized coordinates, but after recomputing their

virtual input variable w = 0 into the original torques

Fig. 4. Angular velocities q̇1, q̇2 and references (dotted line)

τ2, τ3, . . ., a certain static state feedback maintaining constant

velocity of the Acrobot center of mass is obtained. With
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such a choice, the resulting trajectory depends merely on the

choice of initial angular velocities. These velocities can be

selected to ensure that at the given time the tip of the swing

leg reaches exactly the walking surface at the given distance

from the stance leg support point. After having designed

the target walking trajectory in the above way, Theorem 1

can be used to achieve its exponential tracking from fairly

different initial positions of the Acrobot. Choosing shorter

and slower steps one can always comply with the appropriate

assumptions of Theorem 1. These conclusions are supported

by numerous simulations experiments, some of them are

collected in figures bellow to illustrate our approach.

Fig. 5. Tracking errors e1, e2, e3.

Fig. 3, 4 present the tracking of the pseudo-passive target

trajectory generated by (q1(0), q2(0)) = (−0.4, π − 2q1(0))
(qref

1 (0), qref
2 (0)) = (−0.2, π − 2qref

1 (0)) and (q̇1, q̇2) =
(1,−0.5). Notice that the initial positions error may be

100%, or even more, if unlimited actuators torques are

allowed. The gains (K1,K2,K3,K4) = (−10, 6, 12, 8) and

factor Θ = 20 are selected as the coefficients of proposed

control law fulfilling Theorem 1.

Fig. 6. Tracking error e4

V. CONCLUSIONS

The main advantage of our new approach lies in using

special coordinates both suitable for tracking feedback design

and for future target walking trajectory design. Moreover, ex-

tension to more general walking like underactuated systems

is possible by simple combining our approach with a very

standard treatment for fully actuated systems. Summarizing,

the acrobot comprises typical underactuated walking features

and this helps to open new strategies for more complicated

configurations being the subject of the ongoing research.

Fig. 7. The animation of the single step shown in time moments with
gaps ∆t = 0.12s between them. Dotted line is the reference, the full one
represents the actual Acrobot movement.
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