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Abstract— In approximate identification, the goal of the
model should be taken into account when evaluating model
quality. The purpose of this paper is the development of a
system identification procedure, resulting in model sets that
are suitable for subsequent robust control design. Incorporation
of control relevance in the procedure results in a closed-loop
frequency response-based multivariable system identification
procedure. The model is represented as a coprime factorization,
enabling the usage of stable model perturbations. The main
result is the direct estimation of control-relevant coprime
factors, exploiting knowledge of a stabilizing controller during
the identification experiment. A numerically reliable iterative
algorithm is devised, which is illustrated by means of experi-
mental results.

I. INTRODUCTION

When evaluating model quality, the intended goal of the

model should always be taken into account. In fact, any

model is a simplification of reality and can only reproduce

certain phenomena accurately. Whether a certain model is

useful thus depends on its purpose.

If the goal of the approximate model is subsequent control

design, then the model should only represent the phenomena

that are relevant for control. In fact, low complexity models

are highly desirable in control design since the complexity of

the model commonly dictates the complexity of the resulting

controller. In addition, a robust feedback control design

can cope with large systematic modeling errors in certain

frequency ranges [1], enabling the use of low complexity

models.

High performance robust feedback control design requires

a control-relevant model set, however, such model sets are

not delivered by standard system identification procedures.

Typical model sets for robust control consist of a nominal

model with a certain perturbation model [2], [3]. In this

paper, robust control-relevant model sets are investigated,

where both the control performance and the size of the

perturbation model are measured in the H∞-norm.

In [4], [5], methods are presented that directly deliver

nominal models with a guaranteed error bound in H∞. The

resulting models can be used directly in H∞-optimal robust

control. However, these methods deliver high order nominal

models, especially in case of lightly damped systems [6].

To obtain a controller of restricted complexity, a low order

nominal model is desirable.

The authors are with the Eindhoven University of Technology,
Eindhoven, The Netherlands, t.a.e.oomen@tue.nl,
o.h.bosgra@tue.nl. This research is supported by Philips
Applied Technologies, Eindhoven, The Netherlands.

A model set of restricted complexity can be obtained if

a low order nominal model is first estimated, followed by

an error-modeling step, e.g., [7], [8]. To ensure the model

set is control-relevant, both the nominal model and model

error should be control relevant. Control-relevant nominal

models [9] typically involve iterative procedures, alternating

between closed-loop identification and control design. If the

nominal model is identified in closed-loop, then it is most

natural to determine the modeling error under the same

operating conditions, i.e., from closed-loop data.

Determining the model error in closed-loop requires pre-

cautions regarding the structure of the perturbation model.

Typical perturbation models, including H∞-norm bounded

perturbations, correspond to stable operators. If identification

is performed in closed-loop, it is generally impossible to

determine whether the open-loop system is stable, excluding

the usage of standard model uncertainty structures [2], e.g.,

additive perturbations models at the plant output. This fact

has also been observed in [10], [11], [12], [13], where the

plant is represented as a coprime factorization, and stable

perturbations on stable factors are considered.

Identification of coprime factors followed by error model-

ing is a sensible approach to merge identification and robust

control. In [14] and [15], coprime factors are identified in the

time and frequency domain, respectively. In [16] and [17],

[18] the coprime factor identification approach is further

refined in the time and frequency domain, resulting in nor-

malized coprime factors. Normalized coprime factors play a

central role in certain robust control methodologies [10]. In-

deed, estimation of normalized coprime factors corresponds

to a general type of uncertainty, resulting in a small distance

between the designed and the achieved loop [1]. However,

the fact that a known controller has stabilized the system and

has achieved a certain performance during the identification

experiment, is not exploited in a normalized coprime factor

domain. This controller is often ‘close’ to optimal, hence this

knowledge should be exploited if a high performance control

design is pursued.

The main contributions of this paper include a new defini-

tion of control relevant coprime factorizations (Section II and

Section III). These coprime factorizations are not necessarily

normalized and can be identified directly from data, i.e., no

iterations as in [16] are required, since only knowledge of

the controller that is used during identification is required.

In fact, a nonparametric frequency response representation

of these coprime factors can be determined directly from

closed-loop frequency response data (Section IV). In addi-

tion, a novel tailor-made parametrization for coprime fac-
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Fig. 1. Feedback configuration.

torizations is introduced (Section V), connecting require-

ments regarding coprimeness and control-relevance. This

parametrization extends the results in [16], [14], where these

conditions are separated. Indeed, separation of the conditions

results in a cumbersome optimization problem. Finally, a

numerically reliable procedure for frequency response esti-

mation is presented (Section VI). Addressing the numerical

properties is essential in frequency response-based identifi-

cation of multivariable systems, since frequency response-

based identification is notoriously ill-conditioned [19]. The

resulting procedure is illustrated by experimental results

(Section VII), followed by conclusions (Section VIII).

Notation. The considered feedback configuration is de-

picted in Figure 1, where C,P ∈ R denote the controller

and plant, respectively, and R is the set of finite dimensional

real-rational transfer function matrices. Arguments are often

omitted if these are clear from the context. It is assumed that

both C and P are proper and the feedback system is well-

posed [3]. The closed-loop transfer function matrix T (P,C)
is given by
[

y

u

]

=

[

P

I

]

(I + CP )−1
[

C I
]

[

r2

r1

]

= T (P,C)

[

r2

r1

]

, (1)

where r1, u and r2, y are nu and ny dimensional signals,

respectively. If T (P,C) ∈ RH∞, then C internally stabilizes

P . The pair {N,D} denotes a Right Coprime Factorization

(RCF) of P if D is invertible, N,D ∈ RH∞, P =
ND−1, and ∃Xr, Yr ∈ RH∞ such that the Bézout identity

XrD + YrN = I holds. The pair {N̄ , D̄} is said to be a

Normalized RCF (NRCF) if it is an RCF and in addition

D̄∗D̄ + N̄∗N̄ = I . Dual definitions hold for Left Coprime

Factorizations (LCFs) and Normalized LCFs (NLCFs), see

[20]. Throughout, N and D are used exclusively to denote

rational coprime factorizations over RH∞. Occasionally, P

is represented by the polynomial Right Matrix Fraction De-

scription (RMFD) P = BA−1, B,A ∈ R[ξ], i.e., polynomial

matrices of appropriate sizes, see [21].

II. PROBLEM FORMULATION

The problem considered in this paper can be summarized

as follows. Given the true plant Po, stabilized by a controller

Cexp, design a controller Copt that achieves optimal perfor-

mance J(Po, C). Firstly, the criterion J(Po, C) is defined in

Section II-A, whereas the related identification problem is

elaborated on in Section II-B.

A. Control goal

The considered criterion is a weighted H∞-norm, given

by

J(Po, C) = ‖WT (Po, C)V ‖∞, (2)

where T (P,C) is defined in (1) and W = diag(Wy,Wu)
and V = diag(V2, V1) are bistable weighting filters of

appropriate sizes. The reason for considering the H∞-

norm is twofold. Firstly, the H∞-norm is an induced norm,

enabling the incorporation of model uncertainty. Secondly,

the H∞-norm enables the usage of general performance

specifications, including loopshaping design techniques [22],

[10], [23]. In virtue of the discrete time nature of many

system identification techniques and controller implementa-

tions, it has been motivated in [24] that discrete time systems

should be considered in (2) for optimal sampled-data control.

Hence, the norm in (2) should be interpreted as a discrete

time system norm. The discrete time nature of systems is

tacitly assumed throughout this paper, generalization to the

continuous time case is conceptually straightforward.

B. Control-relevant identification of model sets

The criterion (2) depends on the true plant, hence knowl-

edge of Po is required to compute Copt. This knowledge of

Po is reflected by a plant model P̂ . First, identification of

a nominal model is considered, followed by a discussion on

error modeling.

1) Control-relevant identification: Since P̂ is an approxi-

mation of Po, the goal of the model should be taken into

account in the estimation criterion. In case identification

is performed in closed-loop, a particular controller Cexp

is known that is stabilizing and achieves reasonable per-

formance. This knowledge can be exploited in the control-

relevant estimation of a plant model as explained next.

The optimization of the criterion (2) is solved by employ-

ing a model P̂ of Po. Rewriting the criterion and applying

the triangle inequality yields

‖WT (Po, C)V ‖∞ ≤

‖WT (P̂ , C)V ‖∞ + ‖W (T (Po, C) − T (P̂ , C))V ‖∞.
(3)

The first term on the right hand side of (3) involves a model-

based control design, whereas the second term amounts to a

control-relevant identification problem of a nominal model.

In view of (2), the control-relevant identification involves

an optimization over both C and P̂ , i.e., control-relevant

estimation of P̂ depends on Copt. Approximating Copt

by Cexp yields the following control-relevant identification

criterion, which is the main problem that is considered in

this paper.

Definition 1 The control-relevant identification criterion is

given by

min
P̂

‖W (T (Po, C
exp) − T (P̂ , Cexp))V ‖∞. (4)

This approximation is justified if Cexp is sufficiently close to

Copt. If the distance between Cexp and Copt is large, (3) can

be used as a basis for iterative identification and control [9].

2) Control-relevant error modeling: As motivated in Sec-

tion I, the main reason to consider coprime factorizations

is to enable uncertainty modeling. In the next section, (4)

is replaced by an equivalent criterion over coprime factors.
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Precisely, Po = NoD
−1
o is approximated by P̂ = N̂D̂−1,

where {No, Do}, {N̂ , D̂} are RCFs.

By considering a perturbation ∆ on the RCFs {N̂ , D̂},

there always exists a ∆ ∈ RH∞ such that Po is in the

uncertain model set [1], [20]. In fact, coprime factor models

can be further refined to guarantee that all models are

stabilized by Cexp. This refinement is known as the dual-

Youla parameterization, see [25], and introduces candidate

plant models most parsimoniously.

In this paper the freedom in the coprime factors is ex-

ploited to enable error modeling in the same domain as

identification of {N̂ , D̂}. This approach enables control-

relevant error modeling in both the coprime factor and dual-

Youla case. Due to space limitations, uncertainty modeling

is not discussed further in this paper.

III. CONTROL-RELEVANT COPRIME FACTOR

IDENTIFICATION

In this section, the control-relevant identification prob-

lem (4) is recast as a coprime factor identification problem.

The pursued approach exploits the structure of the four-block

problem (4) and results in an equivalent optimization prob-

lem over coprime factors. Besides the fact that the obtained

coprime factors enable control-relevant model uncertainty

representations, the resulting two-block problem reduces the

complexity of the optimization problem by a factor
ny+nu

nu
.

Throughout, the superscript in Cexp is omitted if it is clear

from the context.

The following proposition reveals that the four-block prob-

lem can be recast as a two-block problem.

Proposition 2 Consider the control-relevant identification

criterion (4) and let { ¯̃
Ne,

¯̃
De} be an NLCF of V −1

1 CV2.

Then, (4) is equivalent to

min
N̂,D̂

‖W
(

[

No

Do

]

−

[

N̂

D̂

]

)

‖∞, (5)

where
[

No

Do

]

=

[

Po

I

]

( ¯̃
DeV

−1
1 + ¯̃

NeV
−1
2 Po)

−1 (6)

[

N̂

D̂

]

=

[

P̂

I

]

( ¯̃
DeV

−1
1 + ¯̃

NeV
−1
2 P̂ )−1. (7)

Proof: Let {Ñe, D̃e} be any LCF of

V −1
1 CV2 and observe that WT (P,C)V =

W

[

P

I

]

(I + CV2V
−1
2 P )−1V1D̃

−1
e

[

Ñe D̃e

]

. Next,

multiplication of the latter expression to the right

by a right inverse of
[

Ñe D̃e

]

and rearranging

yields W

[

P

I

]

(D̃eV
−1
1 + ÑeV

−1
2 P )−1. Employing

‖XY ‖∞ = ‖X‖∞ if Y is co-inner, i.e., Y Y ∗ = I ,

and considering an NLCF { ¯̃
Ne,

¯̃
De} of V −1

1 CV2, i.e.,
[

¯̃
Ne

¯̃
De

] [

¯̃
Ne

¯̃
De

]∗

= I establishes the equivalence

between (4) and (5).

The following proposition reveals that (6) and (7) cor-

respond to coprime factorizations under a certain stability

condition.

Proposition 3 Let T (P,C) ∈ RH∞ and let {Ñe, D̃e}
be a (not necessarily normalized) LCF of V −1

1 CV2. Then,

{P (D̃eV
−1
1 + ÑeV

−1
2 P )−1, (D̃eV

−1
1 + ÑeV

−1
2 P )−1} is an

RCF of P .

Proof: Suppose T (P,C) ∈ RH∞ and V, V −1 ∈
RH∞. In addition, since {Ñe, D̃e} is an LCF, ∃Yl, Xl ∈
RH∞ such that ÑeYl + D̃eXl = I . Hence, T (P,C) ∈

RH∞ ⇔ T (P,C)V ∈ RH∞ ⇔

[

P

I

]

(D̃eV
−1
1 +

ÑeV
−1
2 P )−1

[

Ñe D̃e

]

∈ RH∞ ⇔

[

P

I

]

(D̃eV
−1
1 +

ÑeV
−1
2 P )−1

[

Ñe D̃e

]

[

Yl

Xl

]

∈ RH∞. ⇔

[

P

I

]

(D̃eV
−1
1 +

ÑeV
−1
2 P )−1 ∈ RH∞, revealing that {P (D̃eV

−1
1 +

ÑeV
−1
2 P )−1, (D̃eV

−1
1 + ÑeV

−1
2 P )−1} is a stable factor-

ization of P . The factorization is an RCF if ∃Xr, Yr such

that the Bézout identity holds. Let Xr = ÑeV
−1
2 and Yr =

D̃eV
−1
1 , hence Xr, Yr ∈ RH∞ by assumption. In addition,

[

Xr Yr

]

[

P

I

]

(D̃eV
−1
1 +ÑeV

−1
2 P )−1 = I, completing the

proof that the factorization indeed is an RCF.

In Propositions 2 and 3, there is still freedom in the choice of
¯̃
De. The impact of this freedom on the factorizations (6) and

thus (7) is investigated next and is given by the following

proposition.

Proposition 4 The coprime factors {No, Do} and {N̂ , D̂}
in (5) are unique up to a right multiplication by a constant

unitary matrix Q.

Proof: The proof is provided for {No, Do} and

follows along similar lines for {N̂ , D̂}. Suppose that

{ ¯̃
Ne,

¯̃
De} is an NLCF of V −1

1 CV2, resulting in the co-

prime factors {No, Do} as in (6). Let Q,Q−1 ∈ RH∞.

Then, it directly follows from the Bézout identity that

{Q−1 ¯̃
Ne, Q

−1 ¯̃
De} generates all LCFs of V −1

1 CV2 result-

ing in all RCFs {NoQ, DoQ} of Po. Next, observing that
[

Q−1 ¯̃
Ne Q−1 ¯̃

De

]

is co-inner iff Q is a constant unitary

matrix, i.e., it satisfies Q∗Q = I , directly yields that

{No, Do} is unique up to right multiplication by a constant

unitary matrix Q.

Proposition 4 implies that if the factorization {No, Do} as

defined in (6) is not normalized, then there does not exist

a normalized coprime factorization of Po that is control-

relevant in virtue of Proposition 2.

Finally, it is shown that in contrast to estimating normal-

ized coprime factorizations, e.g., [16], the suggested coprime

factorizations in Propositions 2 and 3 exploit the freedom

in the coprime factors to obtain a control-relevant coprime

factorization in the sense of (4). Thereto, a connection

between the coprime factorizations in Propositions 2 and 3

and previous results in a prediction error framework [16] is

established. First, suppose that W = I and V = I . Next,
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Fig. 2. Intermediate signal x.

observe that the coprime factorizations {No, Do} can be

interpreted as the mapping from an intermediate signal x

to y, u in Figure 2. In the prediction error framework, x

is obtained by filtering
[

r2 r1

]T
by F

[

C I
]

. In [16],

[26] it is shown that {No, Do} in Figure 2 is an RCF of

Po iff F = WD̃c, where {Ñc, D̃c} is an LCF of C and

W,W−1 ∈ RH∞. If only r1 is considered, then r1 is

filtered by WD̃c. In [16], [26], the freedom in the filter F is

exploited to iteratively obtain an NRCF of Po. In contrast,

the suggested choice in this paper is based on the controller

Cexp and is given by V1
¯̃
D−1

e .

IV. FREQUENCY RESPONSE-BASED CONTROL-RELEVANT

COPRIME FACTOR IDENTIFICATION

Identification using (5) cannot be performed directly due

to the use of the H∞-norm. In this section, the frequency do-

main interpretation of the H∞-norm is exploited to formulate

a solvable identification problem. Note that identification in

practice is always performed over a finite time interval, hence

a discrete frequency grid Ω is used in frequency response-

based identification. Introducing an appropriate parametriza-

tion
[

N̂T (θ) D̂T (θ)
]T

for (7), see Section V, gives the

following result.

Proposition 5 A lower bound for (5) is given by

min
θ

max
ωi∈Ω

σ̄
(

W
(

[

No(ωi)
Do(ωi)

]

−

[

N̂(θ, ωi)

D̂(θ, ωi)

]

))

subject to T (P̂ , C) ∈ RH∞.

(8)

Proof: Follows directly by considering the H∞-norm.

Throughout, criterion (8) is used as an approximation for the

control-relevant identification criterion (4).

In Proposition 5, {No(ωi), Do(ωi)} can be determined

directly from data if T (Po, C
exp) has been identified for

ωi ∈ Ω, which is in fact an open-loop identification

problem. In particular, {No(ωi), Do(ωi)} is obtained if

T (Po(ωi), C
exp(ωi)) is appended with weighting filters and

multiplied to the right by
[

¯̃
Ne(ωi)

¯̃
De(ωi)

]∗

.

V. MODEL PARAMETRIZATION

In the previous section, the control-relevant estimation of

Po has been recast as an equivalent optimization problem

of coprime factor frequency response functions. To estimate

parametric coprime factors of limited complexity, a suit-

able parametrization should be selected. The parametrization

P̂ = N̂D̂−1 should satisfy: 1) T (P̂ , C) ∈ RH∞, see (8);

2) {N̂ , D̂} stable and of low order; 3) efficient optimization

algorithms can be employed. To address the latter point,

i.e., the optimization algorithm, it is most convenient to

parameterize the coprime factors by means of (fractions

of) polynomial matrices of suitable dimensions. To satisfy

the above requirements, a tailor-made parametrization is

suggested. In particular, let P̂ (θ) = B(θ)A(θ)−1, where

A(θ) ∈ R[ξ]nu×nu , B(θ) ∈ R[ξ]ny×nu are parameterized

as a canonical MFD [21] that is linear in the parameters,

e.g., as in [27], and θ ∈ R, hence
[

N̂(θ)

D̂(θ)

]

=

[

B(θ)
A(θ)

]

(D̃eV
−1
1 A(θ) + ÑeV

−1
2 B(θ))−1. (9)

Throughout, it is assumed that A and B are coprime poly-

nomial matrices. In this case, P̂ is of McMillan degree

deg det A. Note that the McMillan degree of the coprime

factorization {N̂ , D̂} is of McMillan degree ≥ deg det A,

since C, V1, V2 also contribute to the McMillan degree of the

coprime factors. By the particular choice of the normalized

LCF of V −1
1 CV2 in Section IV, however, the McMillan

degree is not unnecessarily high. In addition, the structural

indices of B,A can be based only on the structural properties

of the true plant Po. It is not straightforward in the sug-

gested parametrization to enforce both 1) T (P̂ , C) ∈ RH∞,

2) N̂ , D̂ ∈ RH∞. However, these conditions can be verified

by one test, as formalized in the following proposition.

Proposition 6 Consider the factorization (9). Then, the fol-

lowing statements are equivalent:

1) T (P̂ (θ), C) ∈ RH∞.

2)

[

B(θ)
A(θ)

]

(D̃eV
−1
1 A(θ) + ÑeV

−1
2 B(θ))−1 ∈ RH∞

3) (D̃eV
−1
1 A(θ) + ÑeV

−1
2 B(θ))−1 ∈ RH∞

Proof: Let {Ñe, D̃e} denote an LCF of

V −1
1 CV2 with Bézout factors Yl, Xl ∈ RH∞.

Suppose that C internally stabilizes P̂ (θ), i.e.,

T (P̂ (θ), C) ∈ RH∞. Then, T (P̂ (θ), C) ∈ RH∞ ⇔
[

B(θ)
A(θ)

]

(A(θ) + CB(θ))−1
[

CV2 V1

]

∈ RH∞ ⇔
[

B(θ)
A(θ)

]

(D̃eV
−1
1 A(θ) + ÑeV

−1
2 B(θ))−1

[

Ñe D̃e

]

[

Yl

Xl

]

∈

RH∞ ⇔

[

B(θ)
A(θ)

]

(D̃eV
−1
1 A(θ)+ÑeV

−1
2 B(θ))−1 ∈ RH∞,

proving 1) ⇔ 2). Next, observing that B,A in the latter

expression are polynomial matrices directly proves 1) ⇔ 3).

In Section VI, an optimization algorithm will be presented

that enables optimization of (5) using the parametrization (9).

The suggested parametrization has certain advantages over

a direct polynomial parametrization of coprime factors. In-

deed, the factorization (7) may suggest a parametrization of

the form [16]
[

N̂

D̂

]

=

[

BN

BD

]

A−1
F , (10)

where AF , BN , BD are polynomial matrices of appropriate

sizes. In general, deg(BN ) ≥ deg(B) and deg(BD) ≥
deg(A). Since common dynamics of BN , BD may not cancel
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exactly, in general P̂ = N̂D̂−1 = BNB−1
D has a higher

McMillan degree than deg det(A). In addition, compared

to the parametrization (9), stability of the nominal model

P̂ in (10) depends on BN , BD, whereas stability of the

factorization {N̂ , D̂} depends on AN . Hence, two separate

conditions are required if the parametrization (10) is used,

as opposed to the parametrization in Proposition 6.

VI. A NUMERICALLY RELIABLE ITERATIVE PROCEDURE

In this section, the control-relevant estimation of coprime

factors in (8) using the parametrization (9) is performed via a

numerically reliable procedure. In Section VI-A, the pursued

approach is briefly described, followed by numerical aspects

in Section VI-B.

A. ℓ∞ Approximation using Lawson’s algorithm

The optimization (8) involves an ℓ∞-type criterion, re-

sulting in a nonsmooth optimization problem, i.e., efficient

gradient-based optimization techniques cannot be used di-

rectly. In addition, the parametrization (9) is nonlinear in the

parameters θ, resulting in a generally non-convex optimiza-

tion problem.

To solve (8), Lawson’s algorithm [28], [27] is employed

as follows.

Algorithm 7 Set θ<o> = 0 and w<0>
i = 1

nω
, nω denoting

the number of frequencies in Ω. Iterate over k until conver-

gence:

θ<k> = arg min
θ

∑

i

w<k>
i ‖εi(θ)‖

2
F (11)

where w<k>
i =

σ̄(εi(θ
<k>))w<k−1>

i
∑

i(σ̄(εi(θ<k>))w<k−1>
i )

. (12)

Algorithm 7 iteratively solves the nonlinear least squares

problem (11), which is defined precisely in Section VI-B.

The weighting function w<k>
i is employed to minimize (8).

To anticipate on the results in the next section, convergence

of Algorithm 7 cannot be guaranteed since the nonlinear least

squares problem can result in local minima. However, numer-

ical experience indicates that the algorithm often converges

and the constraint T (P̂ , C) ∈ RH∞ in (8) is commonly

satisfied.

B. A numerically reliable approach for solving nonlinear

least squares problems

The nonlinear least squares problem in (11) is equivalent

to

∑

i

‖W<k>
h ◦

(

W
(

[

No

Do

]

−

[

N̂(θ)

D̂(θ)

]

))

‖2
F , (13)

where the elements of W<k>
h are equal to

√

w<k>
i and ◦ de-

notes the Hadamard product, which is introduced to separate

the weighting of Lawson’s algorithm and the nonlinear least

squares problem. Rearranging and using the following facts

from Kronecker algebra for matrices of suitable dimensions,

see, e.g., [29]:

• ‖A‖F = ‖vec(A)‖2

• vec(ABC) = (CT ⊗ A)vec(B)
• vec(A ◦ B) = diag(vec(A))vec(B),

reveals that (13) can be written as

∑

i

‖W<k>
lsq,i (θ)vec

([

B(θ)
A(θ)

])

‖2
2, (14)

W<k>
lsq,i (θ) = diag(vec(W<k>

h ))
(

[

( ¯̃
DeV

−1
1 A(θ) + ¯̃

NeV
−1
2

B(θ))−1
]T

⊗
[

W
(

[

No
¯̃
NeV

−1
2 No

¯̃
DeV

−1
1

Do
¯̃
NeV

−1
2 Do

¯̃
DeV

−1
1

]

− I
)]

)

,

(15)

If both A(θ) and B(θ) are parameterized in a suitable

canonical polynomial basis, then (14) can be solved by

iteratively solving the linear least squares problem

∑

i

‖W<k>
lsq,i (θ<f−1>)vec

([

B(θ<f>)
A(θ<f>)

])

‖2
2, (16)

for f , since (16) is linear in the parameter vector θ<f>.

Convergence of the iterative procedure (16) hinges on the

accurate computation of the solution at each iteration step.

Hence, a necessary condition for convergence of the iterative

procedure is the computation of an accurate solution to the

linear least squares problem (16). If the normal equations

corresponding to the least squares problem (16) are poorly

conditioned, then the solution θ<f> is prone to numerical

errors and may be inaccurate.

Employing a monomial basis in continuous time system

identification leads to extremely ill-conditioned normal equa-

tions for moderate degrees of the vector polynomials [19].

Though the discrete time monomial basis is orthonormal

with respect to a continuous inner product, the weighted

evaluation on a discrete frequency grid Ω may result in a

poor numerical conditioning.

In this paper, a high performance numerical algorithm is

employed to construct a polynomial basis with respect to the

weighted discrete inner product

<f, g >Wlsq
=

∑

i

f(ωi)
∗W<k>

lsq,i (θ<f−1>)∗W<k>
lsq,i (θ<f−1>)g(ωi),

(17)

resulting in optimally conditioned normal equations for the

linear least squares problem (16), i.e., a condition number

κ = 1. The construction of these orthonormal vector polyno-

mials (OVPs) is performed by a modification of the results

in [30], see also [19], details of which are omitted due to

space limitations.

The iterative procedure (16) typically converges closely to

the global minimum. This is a remarkable property of such it-

erations and is enabled by the fact that the iterative procedure

does not search the error surface as is the case in common

optimization algorithms. However, in case of undermodeling

and noise, the stationary point of the iterations (16) need not

converge exactly to a minimum of (13) [31]. Thereto, the

solution resulting from the iterations (16) is further refined

using a Gauss-Newton optimization, possibly at the expense

of an increasing condition number κ.
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Fig. 3. Flexible beam experimental setup.

VII. EXPERIMENTAL EXAMPLE

A. Experimental setup

A flexible beam system, see Figure 3 is considered, which

is a prototype for high performance flexible positioning

systems. The setup consists of a steel beam (500×20×2 mm)

that is fixed to the environment by means of five leaf springs

such that four DOFs are fixed and the x and ϕ DOFs are

free.

The system has three inputs and three outputs for control

purposes. The inputs consist of current-driven voice-coil ac-

tuators, whereas the outputs are contactless fiberoptic sensors

with a positioning accuracy of 1 µm. To illustrate the results

of the previous sections, only the x direction is considered

using input 2 and output 2.

Due to the leaf springs, the remaining DOFs in x and φ

direction are suspended by soft springs, resulting in an open-

loop stable system. Due to weakly damped resonance phe-

nomena, closed-loop identification is necessary. The control

system is implemented in a rapid-prototyping environment

in conjunction with Matlab/Simulink. The controller Cexp is

given by

C
exp

=
6.540 − 13.02z−1

+ 7.248z−2
+ 2.087z−3

− 2.570z−4

1 − 2.130z−1 + 1.805z−2
− 0.684z−3 + 0.095z−4

,

(18)

and is implemented with a sampling frequency of 2 kHz.

The controller is a proportional-derivative type of controller

with a notch filter at 185 [Hz] and roll-off, achieving a

bandwidth of approximately 15 Hz. Note that any stabilizing

controller can be used, however, in view of the approximation

in Section II-A, it is desirable that Cexp is close to Copt.

B. Procedure

The closed-loop transfer function matrix T (Po, C
exp) is

identified at ωi ∈ Ω using a multisine excitation signal con-

sisting of 250 logarithmically spaced frequency components

with equal amplitude and crest-factor optimized phases [32].

The weighting filters W and V are parametrized as sug-

gested in [23], [24] as follows:

Wy = 13.97 Wu = 1

V1 =
0.5031 − 0.4906z−1

1 − 0.9875z−1
V2 =

0.1136 − 0.05928z−1

1 + 0.5171z−1
,

(19)

where the gain of the filters is chosen to scale the entries

of T (P,C) such that these are approximately equal to one

around the target bandwidth (40 [Hz]), where the nonpara-

metric information from Figure 5 is employed. In addition,

V1 and V2 are used to enforce integral action and controller

roll-off, respectively.

10
1

10
2

10
3

−80

−60

−40

−20

0

|N̂
|
[d

B
]

10
1

10
2

10
3

−40

−30

−20

−10

0

10

|D̂
|
[d

B
]

f [Hz]

Fig. 4. Bode magnitude diagram of identified {No, Do} (solid) and
parametric coprime factors (9) (dashed) at ωi ∈ Ω.
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Fig. 5. Bode magnitude diagram of identified Po (solid) and P̂ = BA−1

(dashed) at ωi ∈ Ω.

C. Results

The optimization procedure in Section VI has been in-

voked. After several iterations, Lawson’s algorithm con-

verges to a stationary point. After convergence, Condition 3

in Proposition 6 turns out to hold. Hence, the nominal

model P̂ is indeed stabilized by Cexp and {N̂ , D̂} are

coprime factors. Bode diagrams of {No, Do} and {N̂ , D̂}
are depicted in Figure 4. The open-loop plants are shown in

Figure 5. The coprime factors are of order 14, whereas P̂ is

of order 8.

The estimated model accurately describes the resonance

phenomena at 10, 35, and 185 Hz. The former two resonance

phenomena are located in the cross-over region. The latter

resonance is indeed control-relevant, since a notch filter was

required in (18) to attenuate it. The resonance at approx-

imately 3 Hz, which is the largest one in the open-loop

situation, see Figure 5, is inaccurately modeled. Clearly, it

has a small contribution in control-relevant criterion (4). Con-

cluding, the suggested approach delivers a control-relevant

nominal model.

In Figure 6, N∗N + D∗D is depicted. Clearly, since

N∗N+D∗D is unequal to one, the coprime factors {No, Do}
and {N̂ , D̂} are not normalized. Finally, in Figure 7, the

condition number κ during the first series of Gauss-Newton

iterations is depicted, i.e., k = 0 in Algorithm 7. Clearly,

the condition number is close to one, indicating that the

numerical algorithm is reliable. The condition number during

subsequent iterations of Lawson’s algorithm is similar.

VIII. CONCLUSIONS

Control-relevant identification of limited order coprime

factorizations has been considered. The contributions in-
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clude the new definition of control relevant coprime fac-

torizations (Section III), the computation of nonparametric

control-relevant coprime factor frequency response functions

(Section IV), the specific coprime factor parametrization

(Section V), and a numerically reliable iterative optimization

algorithm (Section VI). Experimental results illustrate the

convergence of the algorithm for realistic measurements and

the capability of the algorithm to deliver a model suitable for

subsequent error modeling and robust control design. In fact,

the control-relevant coprime factor domain is directly useful

for control-relevant uncertainty modeling. Compared to es-

timating normalized coprime factors, the adopted approach

does not require iterating over coprime factors.

Compared to normalized coprime factorizations, the

McMillan degree of the identified coprime factors depends

on the McMillan degree of the controller Cexp and weighting

filters. Thus, the presented approach is especially useful if a

low complexity controller is used. In this perspective, it is

remarked that the normalized coprime factorizations in [10],

[11] are factorizations of the shaped plant, i.e., the nominal

plant with weighting filters.

Further research includes convergence analysis of the

iterative algorithm. Extensive simulations and experiments

reveal promising results regarding convergence, in addition,

the stability constraint in (8) is often satisfied for adequate

model orders.
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