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Abstract— A general numerical method for pricing American
options in regime-switching jump-diffusion models of stock
dynamics with stochastic interest rates and/or volatility is
developed. Time derivative and infinitesimal generator of the
process for factors that determine the dynamics of the interest
rate and/or volatility are discretized. The result is a sequence
of embedded perpetual options in a Markov-modulated Lévy
model. Options in this sequence are solved using an iteration
method based on the Wiener-Hopf factorization. Contrary to
the earlier version of the method, the interest rate may assume
non-positive values. As applications, explicit algorithms for
Vasicek and Black’s models with jumps are derived. Numerical
examples show that the option prices in these two models are
very close.

I. INTRODUCTION

There exist several groups of numerical methods for

pricing of American options: finite difference methods, vari-

ational methods, Monte-Carlo simulations, various analyt-

ical approximations, reduction to an integral equation for

the early exercise boundary, and the analytical method of

lines (a.k.a. Carr’s randomization or Canadization) in several

forms. See, e.g., [3], [4], [5], [6], [9] and the bibliogra-

phy therein. In [2], we suggested a general approach to

construction of numerical methods for pricing of American

options in models with 2-3 factors, which combines elements

of finite difference methods, Carr’s randomization, and the

Wiener-Hopf factorization in the form standard in analysis.

The basic case for our approach is a regime-switching Lévy

model, which we considered in [1]. Stochastic interest rates

and/or stochastic volatility are approximated by finite state

Markov chains. In [1], the pricing procedures were developed

under a certain technical assumption, which implied that it

is optimal to exercise the option should the stochastic factor

fall sufficiently low (the case of put-like options) or rise

sufficiently high (the case of call-like options). In this paper,

we relax this condition, and derive the rules which select

the states in which the option is never exercised. After that,

we modify the pricing procedure for American options with

finite time horizon so that this no-exercise effect is taken into

account. In applications to models with stochastic interest

rates, in presence of jumps, it is possible that the American

put option should not be exercised at any level of the stock

price if the riskless rate is below a certain positive level. We
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produce numerical examples for Vasicek and Black’s models

with embedded jumps.

II. PRELIMINARIES

A. Lévy processes and Expected Present Value operators

The results of the paper are valid for Lévy processes sat-

isfying (ACP)-condition, or absolute continuity of potential

measures (see Definition 41.11 in [10]). This condition is

satisfied if the transition kernel has the density. As a basic

example, we will use the the double-exponential model jump-

diffusion model (Kou’s model [7]), with the Lévy exponent

Ψ(z) =
σ2

2
z2 + bz +

c+z

λ+ − z
+

c−z

λ− − z
. (1)

Recall that Ψ appears in the representation of the moment

generating function of a Lévy process: E
[

ezXt
]

= etΨ(z)

and in the formula for action of the infinitesimal genera-

tor of Xt, denoted L, on exponential functions: Lezx =
Ψ(z)ezx. In Kou’s model, the coefficient c+ (respectively,

c−) characterizes the intensity of upward jumps (respectively,

downward jumps). The parameter λ+ describes the relative

intensity of large jumps: the smaller the λ+, the larger is the

probability of large upward jumps as opposed to small ones.

Likewise, the smaller the λ−, the larger is the probability of

large downward jumps. If one of the c± is zero, there are no

jumps in the corresponding direction.

In this section, we use the notation T ; in Sections II – VI,

T will denote the maturity of the American put. Introduce

the normalized resolvent or expected present value operator

(EPV-operator) of a stochastic process X:

Eg(x) = Ex[g(XT )] = qEx

[∫ +∞

0

e−qtg(Xt)dt

]

. (2)

This operator calculates the EPV of a stream qg(Xt). Ap-

plying E to g(x) = ezx and using the equality E
[

ezXt
]

=
etΨ(z), we obtain that E acts on exponential functions as

the multiplication operator by the number q(q − Ψ(z))−1.

To ensure that the expectation is finite, it is necessary and

sufficient that the real part of q − Ψ(z) is positive. Since

(q − L)ezx = (q − Ψ(z))ezx, we conclude that q−1(q − L)
and E are mutual inverses. To make this statement precise, we

need to specify function spaces between which q−1(q − L)
and E act. We will also need the normalized EPV-operators

E± of the supremum process X̄t = sup0≤s≤t Xs and the

infimum process Xt = inf0≤s≤t Xs. They are defined by

replacing Xt in (2) with X̄t and XT , respectively. Evidently,

E+g(x) = Ex[g(X̄T )] and E−g(x) = Ex[g(XT )], where

T ∼ Exp q. It is straightforward to check that E+ and E−

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB10.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1023



also act on an exponential function ezx as multiplication

operators by numbers, which we denote κ+(z) and κ−(z),
respectively:

E+ezx = κ+(z)ezx, E−ezx = κ−(z)ezx. (3)

These numbers are κ+(z) = E
[

ezX̄T

]

, κ−(z) = E
[

ezXT

]

.

Note that to simplify the notation, we suppress the depen-

dence of the EPV-operators E , E± and numbers κ±(z) on q
(and on the process X).

B. Wiener-Hopf factorization

The Wiener-Hopf factorization formula reads:

E[ezXT ] = E[ezX̄T ]E[ezXT ], ∀ z ∈ iR.

Equivalently, ∀ z ∈ iR,

q/(q − Ψ(z)) = κ+(z)κ−(z). (4)

Applying E , E+ and E− to g(x) = ezx and using (4) and (3),

we obtain the third version of the Wiener-Hopf factorization

formula:

Eg(x) = E+E−g(x) = E−E+g(x). (5)

By linearity, (5) holds for linear combinations of exponents

and integrals of exponents, hence for wide classes of func-

tions. Equation (5) means that the normalized EPV-operator

of a Lévy process admits a factorization into a product of

the normalized EPV-operators of the supremum and infimum

processes.

C. Example

For the Lévy process with the characteristic exponent (1),

the Wiener-Hopf factors are

κ+(z) =
∏

l=1,2

β+
l

β+
l − z

, κ−(z) =
∏

l=1,2

β−
l

β−
l − z

,

where β−
2 < λ− < β−

1 < 0 < β+
1 < λ+ < β+

2 are the roots

of the “characteristic equation” q−Ψ(β) = 0. EPV-operators

act as follows

E±u(x) =
∑

l=1,2

a±
l β±

l

∫ ±∞

0

e−β±

l
yu(x + y)dy,

where a±
1 , a±

2 > 0 come from the decomposition of κ±(z)
into the sum of simple fractions.

III. CARR’S RANDOMIZATION IN

REGIME-SWITCHING MODELS

Using the appropriate change of the unknown functions

and variable x 7→ −x, it is easy to reduce the pricing of

American call options to pricing of American put options,

and vice versa. We will consider the put. Let λjk be the

transition rate from state j to state k. The riskless rate in

state j is qj . The infinitesimal generator of the driving Lévy

process X
(j)
t in state j is denoted by Lj , and the Lévy

exponent of the process X
(j)
t – by Ψj . We assume that

a switch from state j to state k and a jump of X
(j)
t do

not happen simultaneously, a.s. However, we may produce

simultaneous switches and jumps playing with different

payoff functions in different states of the Markov chain. The

payoff functions Gj are of the form Gj(x) = Kj − Bje
x,

where Kj and Bj are positive. We assume that

0 ≤
∑

k 6=j

λjk(Bj − Bk) + (qj − Ψj(1))Bj ∀ j, (6)

∃ j such that
∑

k 6=j

λjk(Kk − Kj) − qjKj < 0. (7)

The meaning of conditions (6)–(7) is as follows. The RHS

in (6) is non-negative iff the asset price is a local super-

martingale, and zero, if it is a local martingale. Indeed,

(Ψj(1)− qj)Bj can be interpreted as the rate of local gains

in the discounted asset price while the process remains in

state j, and
∑

k 6=j λjk(Bk −Bj) as the rate of gains due to

regime switching (since the switches are instantaneous, no

discounting is involved). The total rate of gains cannot be

positive; if it is zero, the asset is a local martingale. If all

Kj are equal: K1 = K2 = · · · = K, then the LHS in (7)

is −qjK. If the interest rate is positive in all states, then

it is optimal to exercise the put option provided the stock

price falls sufficiently low. However, if there are no switches

and the riskless rate is zero then it is optimal not to exercise

the American put until expiry, at any level of the stochastic

factor. The same holds in the regime-switching case if the

riskless rate is zero in all states. If the riskless rate is zero

in some states and positive in the other states, then an early

exercise can be optimal in some states and non-optimal in the

other states, at any level of the stochastic factor; clearly, the

same conclusion holds if the riskless rate is negative. In the

case of different strike prices, the interpretation is similar:

the LHS in (7) is the rate of gains due to waiting in state

j, at very low levels of the stochastic factor Xt, where the

payoff equals Kj (modulo an error of order O(eXt)). Hence,

if the LHS is non-negative, then it may be non-optimal to

exercise the option in state j, even at very low levels of Xt.

We write j ∈ Iex (resp., j ∈ Ino−ex) if the inequality in

(7) holds (resp., fails). If Iex = ∅, then it is non-optimal to

exercise the option till expiry, and the American put option

is equivalent to the European put option. The following steps

are formulated for the case Iex 6= ∅.

I.Divide the time interval [0, T ] by points (0 =)t0 < t1 <
· · · < tN (= T ) into small intervals of lengths ∆s = ts+1 −
ts, s = 0, 1, . . . , N − 1, set qs

j = ∆−1
s + qj + Λj , and, using

qs
j and Lj in place of q and L, define the EPV-operators

Es
j , Es,−

j , Es,+
j and the Wiener-Hopf factors κs,−

j (1), κs,+
j (1).

II. Choose the grid in x-space and a quadrature procedure,

which will be used to calculate the action of the EPV-

operators Es
j , Es,−

j , Es,+
j . Denote by xmin the lowest point

on the grid.

III. For j = 1, 2, . . . ,m, set vN
j,∗(x) = Gj(x)+ (here and

below, calculations of function values are made at points of

the chosen grid).

IV. For a fixed s < N , we calculate

ws
0j = qs

j ((Bj/κs,−
j (1))ex − Kj), (8)
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and set vs0
j = 0, hs0

j = +∞, j = 1, 2, . . . ,m. Then, for

n = 1, 2, . . . , we define, step by step, in the interior cycle

in j = 1, 2, . . . ,m,

(i) functions

wsn
j = Es,+

j





∑

k 6=j

λjkvs,n−1
k + ∆−1

s vs+1
j,∗



 ; (9)

w̃sn
j = wsn

j + ws
0j ; (10)

(ii) if j ∈ Ino−ex, set hsn
j = xmin, otherwise, define hsn

j

as a unique solution of the equation

w̃sn
j (h) = 0; (11)

(iii) functions

vsn
0j = (qs

j )
−1Es,−

j 1(−∞,hsn
j

](−ws
j0), (12)

vsn
1j = (qs

j )
−1Es,−

j 1(hsn
j

,+∞)w
sn
j , (13)

vsn
j = vsn

1j + vsn
0j . (14)

When an appropriate termination rule for the cycle in n and

integration procedure for calculation of action of operators

Es,+
j and Es,−

j are chosen, the set of formulas (8)–(14)

becomes an algorithm for calculation of Carr’s randomization

approximations vsn
j and hsn

j to the put option price and

exercise threshold in each state, over the time interval [0, T ].

IV. MODELS WITH STOCHASTIC INTEREST RATE DRIVEN

BY A PROCESS OF THE ORNSTEIN-UHLENBECK TYPE AND

DETERMINISTIC VOLATILITY

A. The model

Below, all processes are under an EMM chosen by the

market. The interest rate is a deterministic function rt =
r(Yt) of a Markov process Yt with the state space R

n or

its subset. The basic examples are quadratic term structure

models (QTSM), Vasicek model, more general affine term

structure models (ATSM) of class A0(n) and Black’s model.

The stock price is modeled as

log St = Xt + bT Yt, (15)

where b ∈ R
n. The process (X, Y ) = {(Xt, Yt)}t≥0 is a

Markov process on the Descartes product of R and the state

space of Y . We assume that Y is independent of X but the

drift of Xt depends on Yt: µ = µ(Yt). (Thus, we assume that

the volatility of X and its jump density are independent of

Y . The generalization to the stochastic volatility case will be

considered in a separate publication.) To be more specific,

we assume that (Xt, Yt) evolves as a solution to the system

of stochastic differential equations

dYt = κ(θ − Yt)dt + dZr
t , (16)

dXt = µ(Yt)dt + dZt, (17)

where κ is an anti-stable n×n matrix, θ ∈ R
n, and Zr

t and

Zt are independent Lévy processes in R
n and R. Consider

a contingent claim with the deterministic or random expiry

date τ and payoff G(Xτ , Yτ ) = K−exp[Xτ + bYτ ]. Denote

by Lr and Ψr (resp., by L and Ψ) the infinitesimal generator

and Lévy exponent of Zr (resp., Z). Since we model the

stock dynamics as St = exp(Xt +bT Yt), we have to assume

that Ψr is well-defined at b, and Ψ is well-defined at 1.

Applying the Feynman-Kac theorem, we obtain that in the

region where the option remains alive, V is the solution of

the equation

(∂t+(κ(θ−y), ∂y)+(µ(y), ∂x)+Lr+L−r(y))V (t, x, y) = 0
(18)

(subject to appropriate boundary conditions), where Lr and

L act w.r.t. y and x, respectively, and (A,B) :=
∑m

j=1 AjBj

denotes the sum of ordered products of operators. If the

dividend rate, δ(Yt), is given, then

µ(y) = r(y) − δ(y) − bT κ(θ − y) − Ψr(b) − Ψ(1). (19)

B. Reduction to a regime-switching model

As in the Carr’s randomization procedure [4], we dis-

cretize time; in addition, we discretize the y-space. On the

first step, we discretize the former, and reduce the pricing

problem to the one in a regime-switching model. The state

space of the modulating Markov chain is ∆̄ · Z, where ∆̄ is

a chosen step in the y-space. We truncate the state space

∆̄ · Z to obtain a finite-state Markov chain. For realistic

parameter values, the short rate is of order several percent,

and the probability of deviation up to a level of 20 percent is

very small unless the time interval is extremely large. Thus,

it is safe to keep only yj = j∆ satisfying r(yj) ≤ 0.2.

If the riskless rate may assume non-positive values, we

also delete the states satisfying r(yj) < r−(≤ 0), where

the lower bound for the riskless rate is chosen so that

the probability that rt reaches r− during the life of the

option is small. After the discretization of y-variable and

truncation, we obtain a regime-switching model with the

payoffs Gj(x) = K − ex+byj .

This reduction involves two subtle issues related to ver-

ification of (6)–(7), one of the crucial conditions for the

algorithm for regime-switching models. First, if the dividend

rate is zero on a subset of non-zero measure, the RHS of (6)

is negative in some states. However, if the y-step is small,

the discrepancy is small as well, and it can be shown that

the procedure for regime-switching models still works.

Second, in all cases, the straightforward truncation leads

to a chain for which (6) fails at the boundary points. Hence,

we need to modify the transition rates at the boundary. In the

diffusion case, a convenient modification can be formulated

as the (discrete version of the) boundary condition Vyy =
0. The same modification of the diffusion component is

applied in the jump-diffusion case; for the jump component,

the modification is similar in spirit albeit different. Note

that this modification significantly decreases the truncation

error and increases the convergence of the computational

scheme. Numerical examples show that the resulting errors

become fairly small for reasonable values of parameters of

the numerical scheme.
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C. The gap between the strike and early exercise boundary

at expiry

Let H∗∗(t, y) = exp[h∗(t, y) + by] be the early exercise

boundary in S-space. If the stock pays no dividends, then,

in the pure diffusion case, the limit of the early exercise

boundary at expiry is the strike: limt↑T H∗∗(t, y) = K.

For processes with jumps, in many numerical examples, we

observed the gap between the limit of the early exercise

boundary and strike, which agrees with the general result

(Theorem 2.2) in [8]. In the model under consideration, this

result is as follows. Fix (x, y) in the in-the-money region

for the American put, that is, G(x, y) := K − ex+by > 0.

In the pure diffusion case, if t is sufficiently close to T and

the process is at (x, y): (Xt, Yt) = (x, y), then it is optimal

to exercise the option. However, if jumps are present, and

δ(y)S − r(y)K +

∫

R

(Seby′ − K)+F r(dy′)

+

∫

R

(Sex′ − K)+F (dx′) > 0,

where S = ex+by , then it is non-optimal to exercise the

American put at (Xt, Yt) = (x, y) even if t is arbitrarily close

to T . In in-the-money region for the put K > S, therefore,

in the case b < 0, we have the condition

δ(y)S − r(y)K +

∫ log(K/S)/b

−∞

(Seby′ − K)F r(dy′)

+

∫ +∞

log(K/S)

(Sex′ − K)F (dx′) > 0. (20)

Theorem 4.1: Let δ ≥ 0, b < 0, and either F r(dy′) is

non-zero in a neighborhood of −∞ or F (dx′) is non-zero

in a neighborhood of +∞. Then

a) if r(y) ≤ 0, then H∗∗(0+, y) = 0;

b) if r(y) > 0 and the condition

r(y)−δ(y) <

∫ 0

−∞

(eby′−1)F r(dy′)+

∫ +∞

0

(ex′−1)F (dx′)

(21)

fails, then H∗∗(0+, y) = K;

c) if r(y) > 0 and (21) holds, then H∗∗(0+, y) =
KR0+(y), where R0+(y) is a unique solution of the

equation

r(y) = δ(y)R +

∫ − log(R)/b

−∞

(Reby′ − 1)F r(dy′)

+

∫ +∞

− log R

(Rex′ − 1)F (dx′). (22)

We see that if the dividend rate is non-negative and either

positive jumps in Xt or negative jumps in Yt are present,

then, at sufficiently low levels of the short rate r, there must

be a gap. This conclusion holds for b < 0. If b > 0, then

positive jumps in Yt matter, and if b = 0, then the gap is

independent of jumps in Yt.

V. REDUCTION TO A REGIME-SWITCHING MODEL FOR

PROCESSES OF ORNSTEIN-UHLENBECK TYPE

Assume for simplicity that Zr and Z are Brownian mo-

tions with embedded Poisson jumps, without drift compo-

nents. The volatilities and Lévy densities are denoted σr,

σ and F r(dy) and F (dx), respectively. Let ∆ be the time

step, and ∆̄ – the y-step. We choose ∆ so that N = T/∆
is an integer, and we take ∆̄ of order

√
∆. Set ts = s∆,

s = 0, 1, . . . , N , and yj = j∆̄, j ∈ Z. Further, denote

V s
j (x) = V (ts, x, yj), and approximate

• Vt(ts, x, yj) by ∆−1(V s+1
j (x) − V s

j (x));

• Vyy(ts, x, yj) by ∆̄−2
(

V s
j+1 − 2V s

j + V s
j−1

)

;

• κ(θ − yj)Vy(ts, x, yj) by ∆̄−1κ(θ − yj)(V
s
j+1(x) −

V s
j (x)), if κ(θ−yj) ≥ 0, and by ∆̄−1κ(θ−yj)(V

s
j (x)−

V s
j−1(x)), if κ(θ − yj) < 0.

To discretize the integral part, we use the following approx-

imation:
∫ +∞

−∞

(u(yj +y′)−u(yj))F
r(dy′) ≈

∑

k 6=j

Ck(u(yk)−u(yj)),

where Ck = ck−j − c0
k−j + c0

k−j−1, and

cl =

∫ yl+1

yl

F r(dy′),

c0
l = ∆̄−1

∫ yl+1

yl

(y′ − yl)F
r(dy′).

Set Lj = µ(yj)∂x + L, qj = r(yj), Kj = K, Bj = ebyj ,

λj,j+1 =
σ2

r

2∆̄2
+

κ(θ − yj)+
∆̄

+ C1, (23)

λj,j−1 =
σ2

r

2∆̄2
+

κ(−θ + yj)+
∆̄

+ C−1, (24)

and, for |j − k| > 1, set λjk = Ck−j . The transition

rates introduced above define the regime-switching model,

which approximates the model with the stochastic interest

rates. The state space being Z, we need truncate it and

impose appropriate boundary conditions. In the BM case,

we use the discretized version of the standard condition

Vyy = 0 at the boundary, equivalently, we modify the

transition rates at the boundary. In the presence of jumps,

the same modification is used for the diffusion part of the

infinitesimal generator. For the jump part, we use a similar

non-local version. For motivation, we use the following

interpretation of the discretized boundary condition Vyy = 0
in the gaussian case. It is (a special case of) the following

linear extrapolation procedure: for −m + 1 < k < 1,

Vk = 2V1−V2−k, and for m < k < 2m, Vk = 2Vm−V2m−k.

This procedure can be applied in the case of jumps to

approximate a term λjk(Vk−Vj) in the analytical expression

for the infinitesimal generator of the infinite Markov chain

with λjk(2Vm − V2m−k − Vj). Our final goal being the

construction of a finite Markov chain with the state space

{1, 2, . . . ,m}, this approximation makes no sense for the

other k. Also, we feel that it would be somewhat unnatural

to approximate a jump up by a weighted sum of a jump
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up and jump down; in addition, such an approximation may

lead to negative transition rates (consider the case of jumps

in only one direction). Hence, for jumps up, we apply this

extrapolation procedure if k = m + 1, . . . , 2m − j − 1, and

for jumps down, if k = 3 − j, 3 − j + 1, . . . , 0. For any

other k, we simply replace λjk with zero. To sum up: we

consider the jump part of the infinitesimal generator Lr
J , with

the transition rates λJ
jk = Ck−j . First, we truncate the sum

in the formula for Lr
J and, for 1 ≤ j ≤ m, leave only

∑

k 6=j,1≤k≤m

λJ
jk(Vk − Vj) +

∑

2−j<k<1

λJ
jk(Vk − Vj)

+
∑

m<k<2m−j

λJ
jk(Vk − Vj).

After that, in the second sum, we substitute Vk = 2V 1 −
V2−k, and in the third sum, we set Vk = 2Vm − V2m−k.

These changes having being made, we compare the result

with the formula for the action of the infinitesimal generator

of the Markov chain with m states

(Lr
J,trV )j =

∑

k 6=j,1≤k≤m

λJ,tr
jk (Vk − Vj), (25)

and derive the following formula for transition rates λJ,tr
jk of

the truncated (and modified) chain: for 1 ≤ j ≤ m,

λJ,tr
jk =















λJ
jk − λJ

j,2m−k, j < k < m,

λJ
jm + 2

∑

j<l<m λJ
j,2m−l, k = m,

λJ
jk − λJ

j,2−k, 1 < k < j,

λJ
j1 + 2

∑

1<l<j λJ
j,2−l, k = 1

(26)

For l > 0, set C+
l = Cl, C

−
l = C−l. The resulting formulas

for the transition rates λjk of the truncated and modified

chain are

•
κ(θ−y1)

∆̄
+ C+

1 − C+
2m−3,, if j = 1, k = 2;

•
σ2

r

2∆̄2 +
κ(θ−yj)+

∆̄
+ C+

1 − C+
2m−2j−1,

if 2 ≤ j ≤ m − 2, k = j + 1;
• C+

k−j−C+
2m−k−j , if 1 ≤ j ≤ m−2, j+2 ≤ k ≤ m−1;

• C+
m−j + 2

∑

j+1≤l≤m−1 C+
2m−l−j ,

if 1 ≤ j ≤ m − 2, k = m;

•
σ2

r

2∆̄2 + κ(θ−ym−1)+
∆̄

+ C+
1 , if j = m − 1, k = m;

•
κ(ym−θ)

∆̄
+ C−

1 − C−
2m−3, if j = m, k = m − 1;

•
σ2

r

2∆̄2 +
κ(−θ+yj)+

∆̄
+ C−

1 − C−
2j−3,

if 3 ≤ j ≤ m − 1, k = j − 1;
• C−

j−k − C−
j+k−2, 3 ≤ j ≤ m, 2 ≤ k ≤ j − 2;

• C−
j−1 + 2

∑

2≤l≤j−1 C−
j+l−2, if 3 ≤ j ≤ m, k = 1;

•
σ2

r

2∆̄2 + κ(−θ+y2)+
∆̄

+ C−
1 , if j = 2, k = 1.

In the pure Gaussian case, non-negativity of the transition

rates λjk is satisfied automatically. In the presence of jumps,

we need an additional condition. The following condition is

necessary and sufficient for |j − k| > 1 and sufficient for

k = j ± 1: C±
l ≥ 0 for all l > 0. For F r(dy) given by

exponential densities c±r (±λ±
r )e−λ±

r ydy on the positive and

negative half-axes, where c±r > 0 and λ−
r < 0 < λ+

r , the

Lévy exponent Ψr(z) is well-defined at z = b iff λ−
r < b <

λ+
r , and, therefore, this will be our standing assumption. The

straightforward calculations yield, for l > 0

C−
l = c−r eλ−

r yl(−λ−
r ∆̄)−1(e−λ−

r ∆̄ + eλ−
r ∆̄ − 2),

C+
l = c+

r e−λ+
r yl(λ+

r ∆̄)−1(e−λ+
r ∆̄ + eλ+

r ∆̄ − 2).

Hence, C±
l ≥ 0 for exponential densities on each half-axis,

and for linear combinations of such densities with positive

coefficients.

VI. NUMERICAL EXAMPLE: THE VASICEK MODEL AND

BLACK’S MODEL OF THE SHORT RATE
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Fig. 1. Early exercise boundary at τ ≤ 1 to expiry, in the Vasicek model
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Fig. 2. Early exercise boundary at τ ≤ 1 to expiry, in Black’s model

We consider the American put on a non-dividend paying

stock, with the payoff G(Xt, Yt) = K − exp(Xt + bYt).
We consider two cases: the riskless rate is as in the Vasicek

model: rt = Yt, and as in Black’s model: rt = max{0, Yt}.

The jump components of Xt and Yt are as in Kou’s model.

Parameters of the model are as follows:

• K = 100, b = −0.2, r0 = 0.01, κ = 1.5, θ = 0.2
• σr = 0.05, c−r = 0.25, λ−

r = −70, c+
r = 0.25, λ+

r = 75
• σ = 0.22, c− = 0.2, λ− = −5, c+ = 0.2, λ+ = 10

Calculations were made on a notebook PC, with the char-

acteristics Intel(R)Core(TM)2 CPU T7200 2.00 GHz RAM
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TABLE I

EARLY EXERCISE BOUNDARY FOR τ ≤ 1, IN THE VASICEK MODEL;

K = 100

r 0 0.02 0.04 0.06 0.08 0.1

0 1 1 1 1 1 1

0+ 0 98.9433 1 1 1 1

0.2 0 79.4772 83.7235 85.6632 87.0009 88.0336

τ 0.4 0 71.8504 79.405 82.1155 83.9386 85.3384

0.6 0 62.2367 76.369 79.7359 81.9306 83.598

0.8 0 6.2247 73.9338 77.8959 80.4017 82.2873

1 0 5.7985 71.862 76.3759 79.1525 81.2244

TABLE II

OPTION VALUES AT τ = 1, IN THE VASICEK MODEL; K = 100

S 81.87 90.48 100 110.52 122.14

log(S/K) -0.2 -0.1 0 0.1 0.2

0 20.5195 14.5104 9.5162 5.7983 3.3274

0.02 19.7047 13.7259 8.8698 5.3361 3.0359

r 0.04 19.0575 13.0361 8.2872 4.9201 2.7761

0.06 18.5846 12.4336 7.7611 4.5448 2.5441

0.08 18.2802 11.9076 7.2835 4.2047 2.3362

0.1 18.1381 11.4478 6.8476 3.8953 2.1493

2046 MB. The program was written in MATLAB, and

parallel computations were not used, although the structure

of the iteration procedure allows for independent calculations

for each yj , j = 1, 2, . . . ,m, at each step of the iteration

procedure. Since in the numerical example below, the number

of states is 81, one can expect that with parallel computations

the CPU time would had been much less. The general

conclusion is that, even with this inefficient realization, rel-

ative errors smaller than 0.005 – even for out-of-the-money

options – can be obtained in reasonable time, at millions

at points in (t, y, x)–space. Time per point is negligible.

Total CPU time is 924.2 sec; the output is the early exercise

threshold at 25 · 81 = 2025 points in (t, y)-space, and at

2025× several thousand points in (t, y, x)-space. Assuming

that the option values at 200 points in x-space are needed,

the CPU time per point is 0.0023 sec. The numerical results

shown in Tables 1–3 and Fig. 1–2 demonstrate that the option

prices in both models are very close. In both cases, the gap

between the early exercise boundary and strike is clearly

seen. The early exercise boundary differ very little above

r = 0.1 – the relative error is less than 0.0001. Near r = 0,

the difference can be very large because the “abysses” clearly

seen in Fig. 1 and 2 are a bit different. In particular, it is seen

that in the Vasicek model, the no-exercise region widens as

time to expiry increases whereas in Black’s model it remains

approximately the same. The intuition is simple: due to the

negative discounting below r = 0, it is advantageous to wait

so that the spot rate can reach this region. The larger time to

expiry, the higher is the probability of this favorable event,

and the higher is the option value of waiting.

TABLE III

BLACK’S MODEL VS. VASICEK MODEL: RELATIVE DIFFERENCE OF

OPTION VALUES, IN UNITS OF 10−4 . K = 100, τ = 1.

S 81.87 90.48 100 110.52 122.14

log(S/K) -0.2 -0.1 0 0.1 0.2

0 1.25 0.78 -0.21 -0.72 -4.8

0.02 -0.05 -0.81 -2.2 -3.2 -2.7

r 0.04 -0.42 -1.5 -3.1 4.3 -3.6

0.06 -0.43 -1.7 -3.4 -4.9 -4.3

0.08 -0.27 -1.7 -3.5 -5.0 -4.3

0.1 -0.1 -1.5 -3.5 -4.9 -4.2

VII. CONCLUSIONS AND FUTURE WORKS

In the paper, we extended a general algorithm developed in

[1] for pricing of American options in regime-switching Lévy

models to the case of non-positive interest rates, and applied

this algorithm to the American put and call options on a stock

under non-positive stochastic interest rates. We approximated

the stochastic factor that determines the interest rate dynam-

ics by a Markov chain, and derived explicit formulas for

transition rates. The stock price is modelled as St = eXt+bYy ,

and the short rate is modelled as a function of Yt, where

Xt is a Lévy process, and Yt is a jump-diffusion process

of the Ornstein-Uhlenbeck type, independent of Xt; drift of

Xt depends on Yt. The interest rate is assumed positive,

and the characteristics of the process are independent of t.
Thus, the basic examples for the interest rate dynamics are

the Vasicek model and Black’s model. The numerical results

show that the option prices in both models are very close.

The early exercise boundary differ very little above r = 0.1
– the relative error is less than 0.0001.

The method can be applied to more general affine term

structure models, in particular, CIR model, extended Vasicek

and CIR models, and to stochastic volatility models.
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