
Sliding Mode Control of F-16 Longitudinal Dynamics

Sridhar Seshagiri

ECE Dept., San Diego State University

San Diego, CA 92182, USA

seshagir@engineering.sdsu.edu

Ekprasit Promtun*

Royal Thai Air Force, Thailand

promtun@rohan.sdsu.edu

Abstract— We consider the application of a conditional inte-
grator based sliding mode control design for robust regulation
of minimum-phase nonlinear systems to the control of the
longitudinal flight dynamics of an F-16 aircraft. The design
exploits the modal decomposition of the linearized dynamics
into its short-period and phugoid approximations. The control
design is based on linearization, but is implemented on the
nonlinear multiple-input multiple-output longitudinal model of
the F-16 aircraft. We consider model following for the angle-of-
attack, with the regulation of the aircraft velocity (or the Mach-
hold autopilot) as a secondary objective. It is shown through
extensive simulations that the inherent robustness of the SMC
design provides a convenient way to design controllers without
gain scheduling, with transient performance that is far superior
to that of a conventional gain-scheduled approach with integral
control.

I. INTRODUCTION

The dynamic response characteristics of aircraft are highly

nonlinear. Traditionally, flight control systems have been

designed using mathematical models of the aircraft linearized

at various flight conditions, with the controller parameters

or gains “scheduled” or varied with the flight operating

conditions. Various robust multivariable techniques including

linear quadratic optimal control (LQR/LQG), H∞ control,

and structured singular value µ-synthesis have been em-

ployed in controller design, an excellent and exhaustive com-

pendium of which is available in [10]. In order to guarantee

stability and performance of the resulting gain-scheduled

controllers, analytical frameworks of gain scheduling have

been developed, including the powerful technique of linear-

parameter-varying (LPV) control [4], [9], [18], [21]. Nonlin-

ear design techniques such as dynamic inversion have been

used in [1], [14], [20], while a technique that combines model

inversion control with an online adaptive neural network to

“robustify” the design is described in [16], and a nonlinear

adaptive design based on backstepping and neural networks

in [7]. A RBFNN based adaptive design with time-scale

separation between the system and controller dynamics, with

applications to control of both longitudinal (angle-of-attack

command systems) as well as lateral (regulation of the

sideslip and roll angles) is described in [23]. A succinct

“industry perspective” on flight control design, including the

techniques of robust control (H∞, µ-synthesis), LPV control,

dynamic inversion, adaptive control, neural networks, and

more, can be found in [3].

Our interest is in the design of robust sliding mode control

(SMC) for the longitudinal flight dynamics of a F-16 aircraft

*Financially supported in part by the Royal Thai Air Force.

that does not use gain-scheduling. The application of SMC

to flight control has been pursued by several others authors,

see, for example, [5], [6], [19]. Our work differs from earlier

ones in that it is based on a recent technique in [17] for

introducing integral action in SMC. While we design a

nonlinear controller, it is still designed based upon plant

linearization. In particular, our design exploits the modal

decomposition of the linearized dynamics into its short-

period and phugoid approximations. Our primary emphasis

is on the transient and steady-state performance of control

of the aircraft’s angle of attack, with the steady-state per-

formance and disturbance rejection of the aircraft’s velocity

as a (minor) secondary objective. The desired transient and

steady-state specifications for the angle of attack are encap-

sulated in the response of a reference model, and the (SMC)

controller is designed as a model-following controller. As a

consequence of exploiting the modal decomposition of the

aircraft dynamics, the controller has a very simple structure.

It is simply a high-gain PI/PID controller with an “anti-

windup” integrator, followed by saturation. This controller

structure is a special case of a general design for robust

output regulation for multiple-input multiple-output (MIMO)

nonlinear systems transformable to the normal form, with

analytical results for stability and performance described in

[17]. Through simulations, we show the efficacy of the design

and that it outperforms a traditional gain-scheduled controller

design based on the polynomial approach to model-following

design.

The rest of this paper is organized as follows. In Section

2, we describe the nonlinear mathematical aircraft model, its

linearization and the decomposition of the dynamics into the

short-period and phugoid modes. This section is extracted

mostly from [22], with the Simulink model for simulation

purposes based on [15]. Controller design is discussed in

Section 3, and simulation results showing the efficacy of the

design are presented in Section 4. Finally, a summary of

our work and some suggestions for possible extensions are

provided in Section 5.

II. 3-DOF LONGITUDINAL MODEL

Assuming no thrust-vectoring, the equations for pure lon-

gitudinal motion (pitching and translation) of a high perfor-

mance aircraft can be described by the 5th order nonlinear

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC16.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1770



longitudinal state model [8], [22]

V̇ = q̄Sc̄q
2mV

[Cxq(α) cos α + Czq(α) sin α]

+ q̄S
m

[Cx(α, δe) cos α + Cz(α, δe) sin α]
− g sin (θ − α) + T

m
cos (α)

α̇ = q
[

1 + q̄Sc̄
2mV 2 (Czq(α) cos α − Cxq sin α)

]

+ q̄S
mV

[Cz(α, δe) cos α − Cx(α, δe) sin α]
+ g

V
cos (θ − α) − T

mV
sin (α)

θ̇ = q

q̇ = q̄Sc̄q
2IyV

[c̄Cmq(α) + ∆Czq(α)]

+ q̄Sc̄
Iy

[

Cm(α, δe) + ∆

c̄
Cz(α, δe)

]

ḣ = V sin (θ − α)
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where V , α, θ, q and h are the aircraft’s velocity, angle-of-

attack, pitch attitude, pitch rate and altitude respectively, T
the thrust force, δe the elevator angle, m the mass of the

aircraft, Iy the moment of inertia about the Y-body axis,

q̄ = q̄(h, V ) = 1

2
ρ(h)V 2 the dynamic pressure, S the wing

area, ∆ the distance between the reference and actual center

of gravity, Cm(·) the pitching moment coefficient along the

Y-body axis, Cmq(·) = ∂Cm

∂q
the variation of Cm with

pitch rate, Cx(·) and Cz(·) the force coefficients along the

stability X and Z axes respectively, and Cxq(·) and Czq(·)
the variations of these coefficients with the pitch rate. The

system (1) can be compactly written in standard form as

ẋ = f(x, u), y = h(x), where x = [V α θ q h]T ∈ R5 is

the state vector, and u = [T δe]
T ∈ R2, y = [V h]T ∈ R2

are the control input and the measured “linearizing outputs”

respectively. We build a Simulink model for the above

longitudinal dynamics for a scaled F-16 aircraft model based

on NASA Langley wind tunnel tests [11], as described in

[15], [22]. Our model differs from the ones in [15], [22]

primarily in that

1) We only build a 3-DOF 5th order longitudinal model

(so β = 0) as opposed to the 6-DOF model for the full

12th order nonlinear state model.

2) We do not include lag effects. For example, the NASA

data [11] includes a model of the F-16 afterburning

turbofan engine, in which the thrust response is mod-

eled as a first-order lag, and the lag time constant is

a function of the actual engine power level, and the

commanded power. The command power is related to

the throttle position δth, which is taken as the input in

place of the thrust T , and the inclusion of the engine

model increases the system order by one. However, we

include magnitude saturation in our simulation.

3) We ignore the leading flap edge deflection. The F-16

has a leading-edge flap that is automatically controlled

as a function of α and Mach and responds rapidly to

α changes during maneuvering (see [15] for a further

discussion), and

4) We consider a smaller dynamic range for the angle of

attack, α ∈ [−10◦, 45◦].

In particular, the model that we build corresponds to the

low fidelity F-16 longitudinal model in [15], and to the

longitudinal F-16 model developed in [8], but without thrust

vectoring. For the aerodynamic data we use the approximate

data in [11], [22], with the mass and geometric properties as

listed in Table I. The coefficients Cxq(α), Czq(α), Cmq(α),
Cx(α, δe), Cz(α, δe), and Cm(α, δe) are taken from [11],

[22], and are included in [12, Appendix A.1] in tabular form.

In the simulation, the data is interpolated linearly between

the points, and extrapolated beyond the table boundaries.

TABLE I

MASS AND GEOMETRIC PROPERTIES.

Parameter Symbol Value

Weight W (lb) 20500

Moment of inertia Iy (slug-ft2) 55814

Wing area S (ft2) 300

Mean aerodynamic chord c̄ (ft) 11.32

Reference CG location xcg,ref 0.35c̄

Control design for (1) is challenging because the system

is highly nonlinear, and in fact, non-affine in the input.

While we believe that a controller design based on an affine

approximation of the form ẋ = f0(x) + g0(x)(u + gδ(x, u))
is feasible 1, we do not pursue that here, and instead adopt

the more common linearization based approach. In order to

perform the linearization, we make the following assumption.

Assumption 1: Given any desired equilibrium value ŷ =
[V̂ , ĥ]T , there exist a unique equilibrium input u = û and

state x = x̂, such that f(x̂, û) = 0.

Defining the perturbation input, state, and output respectively

by uδ = u − û, xδ = x − x̂, and yδ = y − ŷ, we have the

linear approximation ẋδ = Axδ + Buδ, yδ = Cxδ , where

A = ∂f
∂x

(x̂, û), B = ∂f
∂u

(x̂, û), and C = ∂h
∂x

(x̂, û). The

well-known modal decomposition of the MIMO linearized

flight dynamics into its component short-period and phugoid

modes 2 yields the SISO-like state equations
[

α̇δ

q̇δ

]

≈ A11

[

αδ

qδ

]

+ B12 δeδ

[

V̇δ

θ̇δ

]

≈ A21

[

αδ

qδ

]

+ A22

[

Vδ

θδ

]

+ B21 Tδ + B22 δeδ

(2)

Note that we did not include the altitude equation in (2).

This is because h is not a regulated output and also does not

enter the short-period and phugoid approximations (these are

respectively the 2 separate sets of equations in (2)) explicitly.

We exploit the decoupling in (2) in our controller designs

in the next section. In particular, we use the elevator δe to

control the angle of attack α, and the thrust T to control the

aircraft’s velocity V . We emphasize that the linearization is

only used in the above sense in our design, i.e., it only makes

use of the decoupling in (2). Since the drag coefficients Ci(·)
are not specified explicitly as functions of their arguments,

but in tabular form (as look-up data), we use numerical

techniques to both solve for the trim (equilibrium) points and

1A design for non-affine systems that partially uses the idea above can
be found in [23].

2That such a decomposition holds for our F16 model has been verified
numerically for each trim condition.
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to compute the linearization. The flight envelope that we use

for computing the trim conditions and the linearization is the

cross product set (V̂ , ĥ) ∈ ΩV ×Ωh, where ΩV = [300, 900]
ft/s in steps of 100, while Ωh = [5000, 40000] ft in steps

of 5000. Both our design and the traditional gain-scheduled

design are evaluated on the full fifth order nonlinear state

model (1).

III. CONTROL DESIGN

Our primary control objective is the design of an angle

of attack command system. For such a system, the entire

dynamic response is important, and we assume that the

desired specifications are encapsulated in a reference model.

Whereas a parameter-varying reference model with higher

bandwidths at higher speeds and lower bandwidths at lower

speeds has been used in [4], we use a reference model

with fixed parameters in our simulations. However, it is

straightforward to include a parameter-varying reference

model. Since the original system is MIMO, we also consider,

but as a secondary objective, a Mach-hold autopilot for the

regulation of the velocity V . The reference model that we

use for the control of α is similar (but not identical) to the

one in [4]

Gm(s) =
αm(s)

αd(s)
=

9

s2 + 1.4s + 9

where αd is the angle of attack pilot command. Our approach

to control design for α is based (see [17]) on minimum-

phase systems transformable to the normal form η̇ = φ(η, ξ),
ξ̇ = Acξ+Bc γ(x) [u−α(x)], y = Ccξ, where x ∈ Rn is the

state, u the input, ρ is the system’s relative degree, ξ ∈ Rρ

the output and its derivatives up to order ρ − 1, η ∈ Rn−ρ

the part of the state corresponding to the internal dynamics,

and the triple (Ac, Bc, Cc) a canonical form representation

of a chain of ρ integrators. A SMC design for such a system

was carried out in [17], with the assumption that the internal

dynamics η̇ = φ(η, ξ) are input-to-state stable (ISS) with ξ
as the driving input. For such systems, it is shown in [17]

that a continuous sliding mode controller of the form

u = −ksign(γ(x)) sat

(

k0σ + k1e1 + k2e2 + · · · + eρ

µ

)

(3)

can be designed to achieve robust regulation, where e1, ...,

eρ are the tracking error and its derivatives up to order ρ, the

positive constants ki, i = 1, · · · , ρ− 1 in the sliding surface

function

s = k0σ +

ρ
∑

i=1

kiei + eρ (4)

are chosen such that the polynomial λρ−1 + kρ−1λ
ρ−2 +

· · ·+ k1 is Hurwitz, and σi is the output of the “conditional

integrator”

σ̇ = −k0σ + µ sat

(

s

µ

)

, σ(0) ∈ [−µ/k0, µ/k0] (5)

where k0 > 0, and µ > 0 is the “width” of the boundary

layer. From (4) and (5), it is clear that inside the boundary

layer |s| ≤ µ, σ̇ = k1e1 + k2e2 + · · · + eρ, which implies

that ei = 0 at equilibrium, i.e., (5) is the equation of an

integrator that provides integral action “conditionally”, inside

the boundary layer. As shown in [17], such a design provides

asymptotic error regulation, while not degrading the transient

performance, as is common in a conventional design that

uses the integrator σ̇ = e1. In the case of relative degree

ρ = 1 and ρ = 2, the controller (3) is simply a specially

tuned saturated PI/PID controller with anti-windup (see [17,

Section 6]).

The control (3) can be extended to the output-feedback

case by replacing ei by its estimate êi, obtained using the

high-gain observer (HGO)

˙̂ei = êi+1 + αi(e1 − ê1)/ǫi, 1 ≤ i ≤ ρ − 1
˙̂eρ = αρ(e1 − ê1)/ǫρ

}

(6)

where ǫ > 0, and the positive constants αi are chosen such

that the roots of λρ + α1λ
ρ−1 + · · · + αρ−1λ + αρ = 0

have negative real parts. To complete the design, we need

to specify how k, µ and ǫ (in the output-feedback case) are

chosen. The parameter k is chosen “sufficiently large” (to

overbound uncanceled terms in ṡ) while µ and ǫ are chosen

“sufficiently small”, the former to recover the performance

of ideal (discontinuous) SMC (without an integrator) and

the latter to recover the performance under state-feedback

with the continuous SMC. Analytical results for stability

and performance are given in [17], but are not directly

applicable to this work since they were done for control

affine systems. Consequently, we only apply the design to

the (control affine) linear approximation (2) and “verify” the

efficacy of the design through simulations. A mention of

stability and boundedness under this design is made in the

concluding paragraph of this section.

A. The relative degree ρ = 1 case

In order to formally apply the controller design to the

short period approximation in (2), with δeδ
as input and αδ

as output, we need to compute this system’s relative degree,

transform it to normal form and check internal stability. The

next assumption states these properties.

Assumption 2: Consider the short-period approximation
[

α̇δ

q̇δ

]

def
=

[

aαα aαq

aqα aqq

] [

αδ

qδ

]

+

[

bαδ

bqδ

]

δeδ

with output αδ . Then (i) bαδ < 0, so that the relative degree

ρ = 1, and (ii) A11 =

[

aαα aαq

aqα aqq

]

is Hurwitz, i.e., the

system is minimum-phase.

While we have only verified Assumption 2 numerically, for

each trim condition, an analytic discussion based on the

stability derivatives can be found in [22]. Assumption 2

allows us to design a SMC controller of the form (3) for

the α-dynamics. Because of the integrator, we don’t need

to add a (gain-scheduled) nominal value to our perturbation

input, i.e., we can simply take the output of the controller

(3) to be u, not uδ. In particular, since ρ = 1, and the high-

frequency gain bαδ < 0, the control (3) specializes to the
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saturated PI controller

δe = k sat(s/µ) = k sat

(

k0σ + e

µ

)

(7)

with σ̇ = −k0σ+µ sat
(

k0σ+e
µ

)

where e = α−αm, k0, µ >

0, and k > 0 is simply chosen to be the maximum allowable

limit for δe. This completes the design of the controller.

B. The relative degree ρ = 2 case

While in Assumption 2(i), we said bαδ < 0, it is seen

(numerically) that bαδ ≈ 0 (this is not simply a “scaling”

issue, as |bαδ| ≪ |bqδ|). Consequently, the short period

approximation (2) with output αδ is “practically” relative

degree ρ = 2 3 and not ρ = 1, so that the control (3) now

becomes that of a saturated PID controller

u = k sat(s/µ) = k sat

(

k0σ + k1e + ė

µ

)

(8)

with k0, k1, µ > 0, and as before k > 0 simply chosen to be

the maximum allowable limit for δe. The expression for the

control involves the derivative of α, and it well-known that

the measurement of α is often noisy because of turbulence.

For example, it is common (see, for example, [22]) to assume

measurements of α to be corrupted by vertical wind gust

noise wg , with spectral density given by the Dryden model,

and generated (approximately) by the controllable canonical

realization of the shaping filter

ż = Awz + Bww, wg = Cwz (9)

driven by the white noise input w(t) ∼ (0, 1). For our

purposes, we simply assume that the derivative ė in (8) is

unavailable as a direct measurement and use the HGO (6) to

estimate it (in fact, in simulations with noise, we also replace

e by its estimate ê obtained from the HGO). A discussion of

the effect of measurement noise on the HGO is discussed in

[2], under the assumption that the noise signal is the output

of a linear system driven by a bounded input, which is the

case here.

Since we are only interested in the Mach-hold autopilot

(for V ) as a secondary objective (of minor importance), and

this is usually designed simply to meet specifications on

steady-state error and disturbance rejection, we only design

a simple PI controller for the thrust T to regulate V . The

Vδ-dynamics in (2) are of the form

V̇δ
def
= aV ααδ + aV qqδ + aV V Vδ + aV θθδ + bV T Tδ + bV δδeδ

and it can be verified that for each trim condition, aV V < 0,

i.e., the Vδ-subsystem is stable. We view the term aV ααδ+
aV qqδ+ aV θθδ+ bV δδeδ

as constituting a “matched distur-

bance”, and simply “augment” the stability of this system by

designing Tδ as the PI controller

Tδ = −kP Vδ − kIσV , σ̇V = Vδ (10)

3This assumption corresponds to the observation that the lift derivative
is small with respect to the velocity V and can hence be neglected, and is
made in [23] right from the start.

with the gains kp, kI > 0 chosen to assign the eigenvalues

of the resulting 2nd-order system (with states σV and Vδ) at

desired pole locations.

As previously mentioned, the analytical results of [17] do

not directly apply to this design, and we do not provide a rig-

orous analysis here. However, assuming that the short-period

approximation holds, a naive argument that the controller

achieves boundedness of all states, and asymptotic error

regulation of the error e is presented below. The SMC (7)

achieves robust regulation of the angle of attack α, provided

the value of k is “sufficiently large”. The variable q is

bounded since the system is minimum-phase. The variable θ
evolves according to θ̇ = q, and hence is bounded whenever

q is. The PI controller (10) achieves boundedness of the

velocity V . Finally, from the equation of ḣ, it follows that

h is bounded for all finite time whenever V is, so that with

our SMC and PI controllers for δe and T respectively, all the

states of the closed-loop system are bounded. Our simulation

results, which we present next, appear to validate the above

conclusions.

IV. SIMULATION RESULTS

Numerical values of the SMC parameters that we use in

all the simulations are k0 = k1 = 1, and that k = 25,

so that −25 ≤ δe ≤ 25, also used in [15]. The initial

values in all simulations correspond to trim conditions with

(V̂ , ĥ) = (600ft/s, 20000ft). The control is always tested

on the full 5th order nonlinear model. While we did compare

our simulation results against a more classical gain-scheduled

polynomial-based approach to model following (described in

[12, Chapter 3]), they are not presented here, and we only

mention that the SMC design in this paper far outperforms

the gain-scheduled design.

Our first simulation shows the performance with no in-

tegral action and assuming ρ = 1, i.e., u = −k sat
(

e1

µ

)

,

with µ = 0.1, when the pilot command αd is a doublet-like

signal with value 15 for 0 ≤ t < 5, -5 deg for 5 ≤ t < 10
and 0 for t ≥ 10. The results are shown in Figure 1, and we

see that the controller achieves good performance, in spite

of reaching the saturation limits, and even without integral

control. In particular, the relative error is less than 0.4%

when the control is not saturated and roughly 8% for the

brief period when the control is saturated 4.

In order to demonstrate the performance of the robustness

of the SMC approach to matched disturbances, and the effect

of integral action on the steady-state performance, we repeat

the first simulation, but with an input additive disturbance

at the elevator input. Note that this disturbance effectively

replaces δe in every equation in (1) by δe+d. Figure 2 shows

the simulation results for d = −5, both without integral

control, and with the conditional integrator, and for the values

µ = 0.5 and µ = 0.1. The following inferences can be made

(i) the transient responses of the controllers are good, even

with the disturbance d, with a maximum absolute error of

4By comparison, max|e| ≈ 25% with the gain-scheduled polynomial
approach with integral control even when the control is not saturated.

1773



0 5 10 15
−0.2

0

0.2

0.4

0.6
e

 =
 α

 −
 α

m

0 5 10 15
−40

−20

0

20

40

Time (sec)

δ
e
 (

d
e

g
)

Fig. 1. Tracking errors with SMC without integral control, µ = 0.1.

approximately 0.04 (or a relative error of 0.8%) even without

integral control and with a value of µ as large as 0.5, (ii)

the steady-state error is non-zero without integral control,

and (approximately) zero with integral control. In particular,

in the absence of integral control, |e| = O(µ), and we

must decrease µ in order to achieve smaller steady-steady

state errors, and this is clear from the simulation results.

However, smaller values of µ can induce chattering when

there are switching imperfections such as delays, and has

been demonstrated by simulations for the case of pitch-rate

control of the same F-16 model as the one in this paper

in [13]. On the other hand, the inclusion of integral action

means that we don’t need to make µ very small to achieve

small errors, only small enough to stabilize the equilibrium

point.
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SMC with conditional integrator, µ = 0.5

Fig. 2. Tracking errors with input-additive disturbance, with and without
integral control, µ = = 0.1, 0.5.

Next, we compare the control designs for the ρ = 1 and

ρ = 2 cases, with µ = 0.1, and for a reference doublet

of magnitude 5 deg. We assume that the measurement of

α is not corrupted by noise, and use the HGO to estimate

the derivative ė required in the ρ = 2 case. The values of

the HGO parameters are taken as α1 = 15, α2 = 50, and

ǫ = 0.01. The simulation results are shown in Figure 3 (we

have plotted the results at the times when the input doublet

changes values), and some interesting observations can be

made: (i) the error is much smaller for the controller designed

under the assumption that ρ = 2, and moreover, (ii) the

control magnitude is smaller and “smoother” with ρ = 2
than for ρ = 1. We believe this is because of the small

magnitude of the high-frequency gain with ρ = 1, which

renders the control less effective than with the assumption

ρ = 2.
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Fig. 3. Effect of relative degree assumption: tracking errors with controller
designs for ρ = 1 and ρ = 2.

In order to demonstrate the effect of measurement noise on

the HGO, we repeat the previous simulation with α corrupted

by measurement noise, for ρ = 1 and u = ksat
(

k0σ+e
µ

)

,

and with ρ = 2 and u = ksat
(

k0σ+k1ê+ˆ̇e
µ

)

. We use the noise

model (9) with fixed coefficient matrices 5 (see [22]) Aw =
[

0 1
−0.0823 −0.5737

]

, Bw =

[

0
1

]

, Cw = [0.0043 0.0262].

The simulation results in Figure 4 clearly show that (i) the

presence of noise does not degrade the derivative estimate,

and in fact, as before (ii) the design with ρ = 2 (that uses the

derivative estimate from the HGO) is marginally better (note

the error at t = 5 and t = 10, when the doublet changes in

value) than the (differentiation-free) ρ = 1 based design.

Lastly, before we summarize our results, we present our

results for velocity tracking with the PI controller, with gains

kP = 828.4 and kI = 191.2 chosen to assign the roots of the

closed-loop characteristic polynomial λ2 +bV T kP λ+bV T kI

at -0.3 and -1. The desired velocity reference is the output

of the first order filter H(s) = 1

s+1
, to which the input is a

5This is not really an accurate wind turbulence model, since the matrices
depend on velocity, altitude and atmospheric conditions. Our goal is to
simply include a noise model.
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Fig. 4. Effect of measurement noise on output feedback using the HGO.

doublet-like signal with an initial value of 600 ft/s, changing

to 500 ft/s at t = 17s, and to 700 ft/s at t = 35s. The

results are shown in Figure 5, and it is clear that this simple

controller achieve robust regulation, even though its transient

performance is not very good, as expected. We can improve

the design of the velocity controller using techniques like

SMC or other robust linear techniques, but do not pursue it,

since velocity control is only a secondary objective.
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Fig. 5. Velocity (Mach-hold) autopilot response to velocity command: PI
controller.

V. CONCLUSIONS

We have presented a new SMC design for control of the

angle of attack of an F-16 aircraft, based on the conditional

integrator design of [17]. The design exploits the short-

period approximation of the linearized flight dynamics. The

robustness of the method to disturbances, modeling uncer-

tainties and measurement noise was demonstrated through

simulation, with the method outperforming, without any

scheduling, the transient and steady-state performance of a

conventional gain-scheduled model-following controller. The

method is also applicable to control of the pitch-rate. While

we did not present any analytical results, we believe, that

analytical results based on a control-affine approximation of

the nonlinear system should be possible. Consequently, we

believe that the results presented in this paper are a promising

start to demonstrate the efficacy of the conditional integrator

based SMC design to flight control.
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