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Abstract— A number of iterative learning control algorithms
have been developed in a stochastic setting in recent years. The
results currently available are in the form of algorithm deriva-
tion and the establishment of various fundamental systems
theoretic properties. As the crucial, in terms of eventual use in
applications, next stage this paper compares their performance
when implemented on a gantry robot system.

I. INTRODUCTION

Iterative Learning Control (ILC) is concerned with the

performance of systems that operate in a repetitive manner,

where the task is to follow some specified trajectory defined

over a given finite time interval, also known as a pass or trial,

with high precision. The novel principle behind ILC is to use

information from previous trials, often in combination with

appropriate current trial information, to select the present

control input in order to improve the performance from trial-

to-trial. In particular, the aim is to sequentially reduce the

tracking error (the difference between the output of a trial

and the specified reference trajectory) until it is ideally zero.

The original work in this area is credited to [1] and

since then there have been substantial developments in both

system theoretic and application terms. For an overview of

the algorithm development side see, for example, [2], [3]

(the second of these references has the additional feature of

a categorization of what is a very diverse area). Application

areas include robotics, automated manufacturing plants and

food processing. For more details, including some areas

where there is clear potential for significant added benefit

from fully developed ILC, one possible source is the survey

article [2].

II. BACKGROUND

The algorithms considered in this work have arisen from

research reported in [4], [5], [6] for discrete linear time

varying systems whose dynamics can be described by

xk(t +1) = A(t)xk(t)+B(t)uk(t)+ωk(t)
yk(t) = C(t)xk(t)+νk(t)

(1)

where t ∈ [0,T ], where T < ∞ denotes the trial length, the

system state xk(t) ∈ ℜn, the system input uk(t) ∈ ℜp, the

state disturbance ωk(t) ∈ ℜn, the system measured output

yk(t) ∈ ℜq and the system measurement error νk(t) ∈ ℜq.

In this work, however, the interest lies in time invariant

dynamics. Attention will focus on the following algorithms
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from [7], [4], [5]:

D-type ILC — this uses the approximate error differenti-

ation instead of the error derivative considered in [1] for

continuous-time systems

uk+1(t) = uk(t)+Kk[ek(t +1)− ek(t)] (2)

P-type ILC — here

uk+1(t) = uk(t)+Kkek(t +1) (3)

where Kk is the (p× q) learning control gain matrix, and

ek(t) is the output error, i.e. ek(t) = r(t)− yk(t) where r(t)
is the desired reference output trajectory. In each case the

learning control gain matrix Kk is given by

Kk = Pu,k(CB)T · [(CB)Pu,k(CB)T

+(C−CA)Px,k(C−CA)T +CQtC
T +Rt ]

−1

Pu,k+1 = (I −KkCB)Pu,k

Px,k+1 = APx,kAT +BPu,kBT +Qt

where Qt = E(ω(t,k)ω(t,k)T ), Px,0 = Ek(δx(0,k)δx(0,k)T )
are positive semi-definite matrices, Rt = Ek(v(0,k)v(0,k)T )
is a positive definite matrix and Pu,0 = E(δu(t,0)δu(t,0)T )
is a symmetric positive definite matrix (E and Ek are the

expectation operators with respect to the time domain and

the trial domain respectively, δx(0,k),δu(t,0) are the initial

state error and the input error respectively).

III. GANTRY ROBOT TEST FACILITY

The algorithms above have been implemented on an

industrial gantry robot (see Figure 1) which performs a “pick

and place” task and is similar to systems which can be found

in industry. Such industrial processes include food canning,

bottle filling or automotive assembly, all of which require

accurate tracking control with a minimum level of error

in order to maximize production rates and minimize loss

of product due to faulty manufacture. The gantry robot is

constructed from two types of linear motion device. The X-

axis comprises the lowest horizontal section, and consists of

one brushless linear dc motor and a parallel free running

slide. The Y -axis lies directly above this, is perpendicular to

the X-axis, and has one end attached to the linear motor

and the other end to the slide. The Y -axis comprises a

single brushless linear dc motor. The X and Y -axes are

1.02m and 0.91m long respectively. Finally, the vertical Z-

axis comprises a short 0.10m travel linear ball-screw stage

driven by a rotary brushless dc motor. All axes are powered

by matched brushless motor dc amplifiers and axis motion
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Fig. 1. The multi-axes gantry robot.

is detected and recorded with appropriate optical encoder

systems. Each axis has been modeled using the velocity

control mode of operation, in which the amplifier receives the

encoder data as well as the computer, therefore providing an

inner closed loop and an integrating action to the system.

The axes dynamics have been determined by performing

a series of open loop frequency response tests. From the

resulting measurements, linear approximations of the transfer

function for each axis were determined and then refined using

a non-linear optimization technique. The frequency response

obtained for the X-axis is shown in Figure 2 (the responses

of the other axes are similar). The X-axis dynamics are

approximated by a state-space model of order seven with

state, input and output matrices given by

Ax =















2.41 −0.86 0.85 −0.59 0.30 −0.19 0.32
4.00 0 0 0 0 0 0

0 1.00 0 0 0 0 0
0 0 1.00 0 0 0 0
0 0 0 1.00 0 0 0
0 0 0 0 0.50 0 0
0 0 0 0 0 0.25 0















Bx = [ 0.0313 0 0 0 0 0 0 ]T

Cx = [ 0.0095 −0.0023 0.0048 −0.0027 0.0029

−0.0011 0.0029 ]

The gantry robot is designed to perform a “pick and place”

action with a trial length of 2 seconds, which is equivalent

to 30 units per minute (UPM). Figure 3 shows the reference

trajectory. The stoppage time between each trial is used to

compute the control vector for the subsequent trial. The

gantry axes are homed to a predefined point before each

iteration begins with an accuracy of ±30 microns in order

to minimize the effects of initial state error. A sampling time

of Ts = 0.01s has been used in all tests.

IV. CONTROL SCHEMES

Figure 4 shows a block diagram of the control configura-

tion considered in this work. This is a parallel arrangement

of a PID feedback controller and an ILC controller, and has
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been shown to offer advantages over other arrangements, es-

pecially in the presence of sudden changes in plant dynamics

[8]. When the PID controller is shut down, or switched out,

(the gains Kp,Ki,Kd set to zero), the control input update

reduces to that of (2).

Plant ykPID Controller +
+

-
+r

ILC Controller

ek uk

fk

Fig. 4. Block diagram of the controller structure and arrangement.

When the PID controller is turned on, a feed-

back/feedforward scheme is implemented. Let fk be the

feedforward signal from the ILC controller, for the D-type

algorithm (2) this is given by

fk+1(t) = fk(t)+Kk[ek(t +1)− ek(t)] (4)

and for the P-type algorithm, by

fk+1(t) = fk(t)+Kkek(t +1) (5)

Hence for the D-type algorithm

uk(t) = fk(t)+ [Kpek(t)+Ki

∫ t

0
ek(τ)dτ +Kd

dek(t)

dt
] (6)
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Defining PID[ek(t)] , Kpek(t)+Ki

∫

ek(t)dt +Kd
dek(t)

dt
allows

this to be written as

uk(t) = fk(t)+PID[ek(t)]

uk+1(t) = fk+1(t)+PID[ek+1(t)]

= uk(t)+PID[ek+1(t)− ek(t)]

+Kk[ek(t +1)− ek(t)]

and similarly for the P-type algorithm

uk+1(t) = uk(t)+PID[ek+1(t)− ek(t)]+Kkek(t +1) (7)

With a PID feedback controller, the input update is con-

sequently the sum of the ILC update plus the response of

the PID controller to the difference between the current and

previous trial outputs. Note that, after sampling with period

Ts, (6) becomes

uk(t) = fk(t)+ [Kpek(t)+Ki

t

∑
τ=1

(ek(τ)+ ek(τ −1))Ts

2

+Kd

ek(t)− ek(t −1)

Ts

] t ∈ [0,T ] (8)

V. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Basic Design and Simulation Studies

Prior to experimental implementation, a series of designs

have been completed and their performance evaluated in

simulation. Figure 5 shows results using the D-type algorithm

with a variety of PID controller parameters, where PID=
{0,0,0} corresponds to neglecting this control loop from the

scheme. X-axis mean square error (mse) results are shown,

and it can be seen that higher PID gains are able to give

improved performance only on the first trial, but do not assist

the ILC controller in subsequent error reduction.

Figures 6 and 7 show the X-axis mse results obtained by

varying Pu,0 (the initial value of Pu,k) and Qt where

Qt = Qt I (9)

Px,k = Px,kI (10)

here Qt and Px,k are scalars and I is the identity matrix of

appropriate dimensions. Rt is set to the mean value of the

white noise, this being extracted from the error vector after

each completed trial. These results indicate that selecting a

larger Pu,0 and a smaller Qt gives better tracking performance

both in terms of convergence speed and final error.

Since ILC design may be anti-causal along-the-pass, zero-

phase filtering (see, for example, [9]) is feasible and here

a low-pass filter of this form has been used to mitigate

the effects of high frequency noise (note that it has been

reported [10] that excessive phase shift can cause the ILC

controller to incorrectly compensate for the error and lead to

an unstable system). Here, a third order, low-pass, zero-phase

Chebychev filter with a 20 dB attenuation at 15 Hz (94.25

rad/sec) has been used with discrete-time transfer function

H(z) =
0.102693+0.002934z−1 +0.002934z−2 +0.102693z−3

1−1.644597z−1 +1.091881z−2 −0.236029z−3

(11)
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Moreover, since the filter placement in the overall scheme is

also critical for convergence and tracking performance, two

arrangements have been considered: In Figure 8(a) the filter

is applied to the feedforward signal and in Figure 8(b) it is

applied to the error signal prior to computation of the control

signal for the next trial. Experiments have shown that the

latter arrangement provides the superior performance, and

so it will be adopted in the tests which follow.

Plant ykPID Controller +
+

-
+r

ILC Controller

ek uk

fk
Zero-phase Filter

(a) Filtering the output of the ILC controller.

Plant ykPID Controller +
+

-
+r

ek uk

fk
Zero-phase Filter ILC Controller

(b) Filtering error vector before the ILC update

Fig. 8. Filter arrangements.

B. Experimental Results — D-type

The ILC controller has been applied to all three axes of

the gantry robot, and the zero-phase filter given by (11) has
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been used in all experiments. The reference trajectories (see

Figure 3) are the same as those used in all previously reported

results in which ILC algorithms have been implemented on

the gantry robot (to enable the broadest possible comparison

to be made).

Figure 9 shows the resulting errors for all axes without

a PID feedback controller, for various values of Pu,0. In
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Fig. 9. Experimental results (PID={0,0,0},Qt = 0.001,Px,0 = 0.1).

contrast to the simulation results, use of larger values of Pu,0

does not lead to appreciable differences in the levels of error

produced.

Figure 10 shows the errors for all axes without a PID

feedback controller, using various values of Qt . With smaller

values of Qt , the performance is improved, especially for the

Y and Z-axes. However, reducing Qt further provides pro-

gressively less advantage in terms of performance. From the

mse curves, it can be seen that the value of Qt significantly

influences the learning speed.

It has been found that use of the PID feedback controller

provides a higher level of tracking performance over initial

trials. This is illustrated by Figure 11 in which error plots are

given for all axes which show that, with small PID gains, the

ILC controller is able to cooperate more effectively with the

PID controller. Without the PID controller, the convergence

rates for all axes are higher, but the performance in terms of

the final level of error is diminished, especially for the Y -

axis. One possible reason for this is that the reference signal

for this axis is much higher than for the other two.

With the PID feedback controller in place, another series

of experiments have been conducted in order to compare the

effects of varying Pu,0. The results are given in Figure 12,

and it can be seen that the performance for different initial

values of Pu,0 is generally quite similar. Exceptions occur

in the case of the Y -axis, where the initial values of Pu,0 =
500 or Pu,0 = 800 clearly improve over those using Pu,0 =
100. These experimental results as a whole suggest that the
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Fig. 10. Experimental results (PID={0,0,0},Pu,0 = 100,Px,0 = 0.1).

algorithm has significant robustness and disturbance rejection

potential. Note also that very large unexpected errors can

arise on some trials (see for example, Figure 12, around trial

100 with Pu,0 = 100, and around trial 120 with Pu,0 = 200)

but overall they do not lead to long-lasting negative effects.

C. Experimental Results — P-type

Several experiments have been completed using the P-

type stochastic learning algorithm. These have firstly been

conducted using the same controller arrangement, the same

filtering method and smaller values of initial parameters as

used in the case of D-type ILC, however this did not lead

to a high level of performance. This is illustrated in Figure
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Fig. 11. Experimental results (Pu,0 = 1000,Qt = 0.001,Px,0 = 0.1).
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Fig. 12. Experimental results (PID={6,3,0.2},Qt = 0.001,Px,0 = 0.1).

13, where the upper figure shows the tracking error over all

iterations. Only 10 trials were completed and the experiment

was then stopped due to the presence of instability over a

narrow frequency band. A frequency analysis was applied to

the error signal (see Figure 13 lower figure), and a frequency

of approximately 11-12Hz can be seen to build up. Another

4th order Chebychev filter (see (12)) which has a smaller cut

off frequency of around 5Hz has therefore been designed to

solve this problem, and is given by
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Fig. 13. The frequency spectrum of tracking error for some trials.

H(z) =
0.0002+0.0007z−1 +0.0011z−2

1−3.5328z−1 +4.7819z−2
· · ·

· · ·
+0.0007z−3 +0.0002z−4

−2.9328z−3 +0.6868z−4
(12)

Figure 14 shows a series of experimental results for all axes

obtained with the modified filter in place. It is clear that

larger initial values of Pu,k, Pu,0 provide superior perfor-

mance, especially for the Y -axis and Z-axis.

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−2

10
0

10
2

x−axis mse

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−2

10
0

10
2

y−axis mse

0 20 40 60 80 100 120 140 160 180 200
10

−3

10
−2

10
−1

10
0

Iteration Number

z−axis mse

P
u,0

=10

P
u,0

=50

P
u,0

=100

Fig. 14. Experimental results (PID={600,300,0.2},Qt = 0.1,Px,0 = 0.1).

Figure 15 shows a series of experimental results using

various values of Qt . Although simulation studies indicated

that smaller values of Qt lead to improved performance,

experimental results for the X-axis show little difference in

practice. Furthermore, the smaller values were not able to

provide superior results initially. For the Y -axis and Z-axis,

smaller values of Qt do lead to a reduced level of final error.

However, as with the X-axis results, too small a value of Qt

produces poorer performance in initial trials.
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VI. COMPARISON OF EXPERIMENTAL RESULTS

A. Comparison of D-type and P-type

The best performing results achieved for both the D-type

and P-type stochastic learning algorithms are compared in

Figure 16. This shows that the P-type algorithm produces

superior performance for the Y -axis compared with the use

of the D-type update. The P-type algorithm slightly improves

on results of the D-type when applied to the X-axis. However,

the performance is approximately equal in the case of the

Z-axis, but the P-type algorithm holds the final error with

significantly less fluctuation.
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Fig. 16. A comparison between the D-type and P-type stochastic learning
algorithms.

B. Comparison with Other Algorithms

Compared with other algorithms that have been imple-

mented on the gantry robot, which include the basic P-type

algorithm with an aliasing filter, the inverse algorithm, and

norm-optimal ILC (see [11], [8], [12] for details), a similar

performance is achieved using the discrete stochastic learning

algorithms. Figure 17 shows that the convergence speed

for the stochastic learning algorithms is much more rapid

than the P-type with an signal aliasing filter, and slightly

slower than when using norm-optimal ILC and the inverse

algorithm. In terms of tracking error, the stochastic learning

algorithms outperform the inverse algorithm, but are unable

to reach the level attained by norm-optimal ILC. P-type with

signal aliasing outperforms the remaining methods in terms

of reducing the fluctuation of the final error.

VII. CONCLUSION

Stochastic learning algorithms have been implemented on

a multi-axis gantry robot and their performance assessed.

The ILC controller has been combined with a PID feedback

controller in a parallel arrangement. Experimental results

have shown that the highest level of performance is achieved
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Fig. 17. Comparison of MSE for x-axis with other algorithms.

when the PID controller is tuned using small parameter

values. Moreover, it is found that use of a robustness filter

applied to the error signal prior to the ILC update greatly

improves upon the performance of previous implementations.

In comparing the two approaches it has been found that the

performance of the P-type stochastic learning algorithm was

slightly superior to that of the D-type stochastic learning

algorithm. Furthermore, when compared with other ILC al-

gorithms implemented on the same system, it has been found

that the performance of the stochastic learning algorithm

compares favourably, it only being eclipsed by the far more

computationally intensive norm-optimal ILC algorithm.
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