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Abstract— In this paper, an adaptive observer is proposed
to solve the problem of simultaneous parameter identification
and state estimation for a class of cascade state affine systems.
Sufficient conditions are given in order to guarantee the ex-
ponential convergence of the proposed observer. Furthermore,
simulation results are given illustrating the performance of the
proposed observer when it is applied in the synchronization
and identification problem of Rossler’s chaotic system.
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I. INTRODUCTION

Nonlinear observer design is an important problem in the

theory of systems. It is clear that no general procedure exists

to construct a nonlinear observer for a general nonlinear sys-

tem. However, for a class of nonlinear systems, under some

extra assumptions, such as Lipchitz, persistent exciting..., it

is possible to construct the observer. For the purpose of state

estimation, many works have been devoted [14],[13],[9],[11].

However, when dealing with the problem of parameter

identification, it becomes more difficult. The simultaneous

parameter identification and state estimation problem has

been attracted the attention of various research groups, since

it is very useful to treat many practical problems, such as

fault detection, signal transmission or control, and recently

for synchronization of chaotic systems. Motivated by this

interest, several approaches have been proposed to simulta-

neously estimate the state and identify the parameters. In

[8], author has proposed a novel adaptive observer with an

appropriate adaptation law for the unknown parameters. And

in [10], the unknown parameters were treated as the extended

state of the system, in such a way the existed ‘classical’

nonlinear observer design methods can be applied to the

augmented system. All these methods can be used to design

nonlinear observer for a large class of nonlinear system, such

as linear time invariant/variant systems, and a class of state

affine systems.

In this paper, our goal is firstly to design an adaptive

observer in order to estimate the unmeasurable state variables

of the system and to identify the unknown parameters

simultaneously for a class of cascade state affine systems.
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Furthermore, some sufficient conditions in order to guaran-

tee the exponential convergence of the proposed adaptive

observer are given.

Besides, according to [2], the problem of synchronization

of chaotic systems has been related to the concept of observer

design from theoretical point of view. Therefore, in order to

highlight the feasibility of the proposed observer, we apply

it to treat the problem of chaotic synchronization. In fact,

the topic of synchronization of chaotic system has attracted

many researchers’ attention since the work of [3]. After

that, many applications of chaotic synchronization have been

developed, such as chaotic secure communication based on

synchronization of chaotic system [4], [6], [7], [5] and [12].

Inspired by these works, in this paper, secondly, we also

try to deal with the synchronization problem for Rossler’s

chaotic system based on the proposed observer in order to

not only estimate the state of system, but also identify its

unknown parameters at the same time.

The paper is organized as follows: In section 2, some

basic notations about the considered nonlinear systems are

introduced. And section 3 is devoted to adaptive observer

design for such class of cascade state affine systems. In

section 4, an illustrative example dealing with the synchro-

nization and identification parameter problem of Rossler’s

chaotic systems is given. Simulation results are presented in

order to emphasize the performance of the proposed adaptive

observer.

II. NOTATIONS

In this paper, we are interested in designing an exponential

observer for the following cascade state affine system:

{

ż = A (y, u, z, θ) z + β (y, u, z, θ) + ϕ (y, u, z, θ) θ

y = Cz
(1)

where z ∈ Rn, u ∈ Rl, y ∈ Rp, θ ∈ Rq are respectively the

state, known input, output of the system and the parameter,

function A, β, ϕ and C are the matrices of appropriate

dimensions, and the components of matrix A, and vectors

β and ϕ are continuous functions depending on u, y and

z1, ..., zi−1, θ1, ..., θi−1, for 1 ≤ i ≤ p and uniformly

bounded, with

z =







z1

...

zp






, y =







y1

...

yp






, θ =







θ1

...

θp






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A (y, u, z, θ)

=

diag





A1 (y, u) ,

· · · ,

Ap (y, u, z1, ..., zp−1, θ1, ..., θp−1)



 ,

C = diag
(

C1, · · · , Cp

)

,

β (y, u) =







β1 (y, u)
...

βp

(

y, u, z1, ..., zp−1, θ1, ..., θp−1

)






,

ϕ (y, u, z, θ)

=

diag





ϕ1 (y, u) ,

· · · ,

ϕp (y, u, z1, ..., zp−1, θ1, ..., θp−1)





where zi ∈ Rni , θi ∈ Rqi , yi ∈ R, Ai, βi, ϕi, Ci are the

matrices of appropriate dimensions, for 1 ≤ i ≤ p, u ∈ Rl.

And
∑p

i=1 ni = n,
∑p

i=1 qi = q.

In the sequel, the dependence of

u, y, z1, ..., zi−1, θ1, ..., θi−1 and ẑi−1, θ̂1, ..., θ̂i−1, with

Ai, ϕi, βi and Âi, ϕ̂i, β̂i will be omitted in order to lighten

notations.

III. ADAPTIVE OBSERVER FOR CASCADE SYSTEMS

Before introducing our main result, we establish the

following assumptions:

Assumption A1. If the input is persistently exciting, in

the sense that there exist α2,i > α1,i > 0, T1,i > 0 and

t0 ≥ 0 such that for all initial condition x0, the following

condition for all t ≥ t0 is satisfied:

α1,iI ≤

t+T1,i
∫

t

ΨT
(u,x0,i) (s, t) CT

i Σi (s)CiΨ(u,x0,i) (s, t) ds

≤ α2,iI

where Ψ(u,x0,i) denotes the transition matrix for the system
{

żi = Ai (y, u, z1, ..., zi−1, θi, ..., θi−1) zi,

yi = Cizi

and Σi is some positive definite bounded matrix, for

1 ≤ i ≤ p.

Assumption A2. Considering matrix

Λ = diag {Λ1, ...,Λp} ,

where Λi is a matrix defined by

Λ̇i =
{

Ai − S−1
i CT

i ΣiCi

}

Λi + ϕi

Assume that ϕi is persistency exciting so that there exist

γ2,i > γ1,i > 0, T2,i > 0 and t0 ≥ 0 and some positive

definite matrix Σ, such that the following inequality holds

γ1,iI ≤

t+T2,i
∫

t

ΛT
i (s)CT

i Σi (s)CiΛi (s) ds ≤ γ2,iI

for all t ≥ t0 and for 1 ≤ i ≤ p.

Assumption A3. We assume that the components of z and

θ are bounded i.e. there exist positive constants such that

‖zi‖ ≤ δz
i , ‖θi‖ ≤ δθ

i

and the following inequalities hold

‖Âi − Ai‖ ≤

i−1
∑

j=1

δA
j ‖ej‖ +

i−1
∑

j=1

̺A
j ‖eθj

‖

‖β̂i − βi‖ ≤

i−1
∑

j=1

δ
β
j ‖ej‖ +

i−1
∑

j=1

̺
β
j ‖eθj

‖

‖ϕ̂i − ϕi‖ ≤

i−1
∑

j=1

δ
ϕ
j ‖ej‖ +

i−1
∑

j=1

̺
ϕ
j ‖eθj

‖

where ei = zi − ẑi and eθi
= θi − θ̂i, for 1 ≤ i ≤ p.

Theorem 1: Consider system (1), if assumptions A1, A2

and A3 are satisfied, then the following system

˙̂z = A
(

y, u, ẑ, θ̂
)

ẑ + β
(

y, u, ẑ, θ̂
)

+ ϕ
(

y, u, ẑ, θ̂
)

θ̂

+
{

S−1CT + ΛΓ−1ΛT CT
}

Σ(y − Cẑ)

where







































˙̂zi = Âiẑi + β̂i + ϕ̂iθ̂i

+
{

S−1
i CT

i + ΛiΓ
−1
i ΛT

i CT
i

}

Σi (yi − Ciẑi)

Ṡi = −ρiSi − ÂT
i Si − SiÂi + CT

i ΣiCi

Λ̇i =
{

Âi − S−1
i CT

i ΣiCi

}

Λi + ϕ̂i

Γ̇i = −λiΓi + ΛT
i CT

i ΣiCiΛi

˙̂
θi = Γ−1

i ΛT
i CT

i Σi (yi − Ciẑi)
(2)

is an exponential observer for system (1), where ρi and λi are

sufficiently large positive constants and Σi are some positive

definite matrices for 1 ≤ i ≤ p.

Proof: Set e = (e1, ..., ep)
T

and eθ =
(

eθ1
, ..., eθp

)T
,

the state estimation error and the parameter estimation error

respectively, where ei = zi − ẑi and eθi
= θi − θ̂i, and θi is

a constant, for 1 ≤ i ≤ p.

For a general case of i, for 1 ≤ i ≤ p, the estimation error

dynamics for ei = zi − ẑi and eθi
= θi − θ̂i can be obtained

as follows

ėi =
(

Ai − S−1
i CT

i ΣiCi − ΛiΓ
−1
i ΛT

i CT
i ΣiCi

)

ei

+ϕieθi
+

(

Âi − Ai

)

zi +
(

β̂i − βi

)

+(ϕ̂i − ϕi) θi
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and

ėθi
= −Γ−1

i ΛT
i CT

i ΣiCiei

Introducing the following change of variable

ǫi = ei − Λieθi
(3)

we get

ǫ̇i =
(

Ai − S−1
i CT

i ΣiCi

)

ǫi +
(

Âi − Ai

)

zi

+
(

β̂i − βi

)

+ (ϕ̂i − ϕi) θi

Because Si and Γi are some positive definite matrices

according to Assumptions A1 and A2, a candidate Lyapunov

function can be chosen as follows

vi = ǫT
i Siǫi + eT

θi
Γieθi

Hence its time derivative is given by

v̇i = −ρiǫ
T
i Siǫi − λie

T
θi

Γieθi

− (ǫi + Λieθi
)
T

CT
i ΣiCi (ǫi + Λieθi

)

+2ǫT
i Si

{ (

Âi − Ai

)

zi +
(

β̂i − βi

)

+(ϕ̂i − ϕi) θi

}

According to Assumptions A1, A2 and A3, we obtain

v̇i ≤ −ρiǫ
T
i Siǫi − λie

T
θi

Γieθi

+2‖ǫi‖‖Si‖







δz
i





i−1
∑

j=1

δA
j ‖ej‖ +

i−1
∑

j=1

̺A
j ‖eθj

‖











+2‖ǫi‖‖Si‖







i−1
∑

j=1

δ
β
j ‖ej‖ +

i−1
∑

j=1

̺
β
j ‖eθj

‖







+2‖ǫi‖‖Si‖







δθ
i





i−1
∑

j=1

δ
ϕ
j ‖ej‖ +

i−1
∑

j=1

̺
ϕ
j ‖eθj

‖











which can be rearranged as follows

v̇i ≤ −ρiǫ
T
i Siǫi − λie

T
θi

Γieθi

+2‖ǫi‖‖Si‖

i−1
∑

j=1

{

δz
i δA

j + δ
β
j + δθ

i δ
ϕ
j

}

‖ej‖

+2‖ǫi‖‖Si‖

i−1
∑

j=1

{

δz
i ̺A

j + ̺
β
j + δθ

i ̺
ϕ
j

}

‖eθj
‖

Hence, using the following inequality

‖x‖‖y‖ ≤
1

2

(

‖x‖2 + ‖y‖2
)

we get

v̇i ≤ −ρiǫ
T
i Siǫi − λie

T
θi

Γieθi

+

i−1
∑

j=1

{

Li
j,1 + Li

j,2

}

‖ǫi‖
2 +

i−1
∑

j=1

Li
j,1‖ej‖

2

+
i−1
∑

j=1

Li
j,2‖eθj

‖2

where

Li
j,1 = ‖Si‖

{

δz
i δA

j + δ
β
j + δθ

i δ
ϕ
j

}

Li
j,2 = ‖Si‖

{

δz
i ̺A

j + ̺
β
j + δθ

i ̺
ϕ
j

}

for 1 ≤ i ≤ p, 1 ≤ j ≤ i − 1, with L1
j,1 = L1

j,1 = 0.

By applying

‖x + y‖2 ≤ 2
(

‖x‖2 + ‖y‖2
)

and after straightforward computations, we obtain

v̇i ≤ −

{

ρi −

∑i−1
j=1

(

Li
j,1 + Li

j,2

)

ηi

}

ǫT
i Siǫi

−λie
T
θi

Γieθi

+

i−1
∑

j=1

{

2Li
j,1

ηj

ǫT
j Sjǫj

}

+
i−1
∑

j=1

{

2Li
j,1‖Λj‖

2 + Li
j,2

χj

eT
θj

Γjeθj

}

which follows

v̇i ≤ −µivi +

i−1
∑

j=1

κi,jvj

where µi = min

{

ρi −
∑ i−1

j=1(Li
j,1+Li

j,2)
ηi

, λi

}

and

κi,j = max
{

2Li
j,1

ηj
,

2Li
j,1‖Λj‖

2+Li
j,2

χj

}

, with κ1,j = 0.

As a result, the whole Lyapunov function can be chosen

as v =
∑p

i=1 vi, whose time derivative is v̇ =
∑p

i=1 v̇i, and

we have

v̇ ≤

p
∑

i=1







−µivi +

i−1
∑

j=1

κi,jvj







=

p
∑

i=1



−µi +

p
∑

j=i+1

κj,i



 vi

Consequently, if µ = min
{

µi|µi >
∑p

j=i+1 κj,i, 1 ≤ i ≤ p
}

,

then we obtain

v̇ ≤ −µv < 0

and this ends the proof.
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IV. APPLICATION INTO CHAOTIC SYNCHRONIZATION

AND PARAMETER IDENTIFICATION

As an illustrative example of adaptive state affine obser-

vation, let us consider the synchronization and parameter

identification problem of a chaotic system. It is well-known

that a chaotic system is a nonlinear deterministic system

having a complex and unpredictable behavior. The sensitive

dependence on initial conditions and the parameter variations

is a prominent feature of chaotic behavior. In the sequel, we

apply the proposed observer to simultaneously estimate states

and identify parameters for a given chaotic system.

A. Chaotic system

Considering the following 3-dimensional autonomous

Rossler’s chaotic system described by [15]






ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b + x3(x1 − c)
(4)

where xi(1 ≤ i ≤ 3) are the state variables, and a, b, c

are all positive real constant parameters. The actual system

parameters of (4) are set to a = 0.2, b = 0.2, and c = 5.7
for exhibiting the chaos phenomenon.

B. Change of coordinate and transformation into cascade

system

By considering the following change of coordinate

(

z1

z2

)

=





z1,1

z1,2

z2,1



 =





x1

x2

x2 + x3





where z1 ∈ R2, z2 ∈ R, the chaotic system (4) can be

rewritten into cascade system (1) as follows:























ż1 = A1 (y, u) z1 + β1 (y, u) + ϕ1 (y, u) θ1

ż2 = A2 (y, u, z1, θ1) z2 + β2 (y, u, z1, θ1)
+ϕ2 (y, u, z1, θ1) θ2

y1 = z1,2

y2 = z2

(5)

where y1 ∈ R and y2 ∈ R, with







































A1 (y, u) =

(

0 0
1 0

)

,

β1 (y, u) =

(

−y2

0

)

,

ϕ1 (y, u) =

(

0
y1

)

,

θ1 = a,

and















A2 (y, u, z1, θ1) = z1,1,

β2 (y, u, z1, θ1) = z1,1 + y1(a − z1,1),
ϕ2 (y, u, z1, θ1) =

(

1 y2 − y1

)

,

θ2 =
(

b c
)

.

From figure 4, the chaotic system (5) with the parameters

a = 0.2, b = 0.2, c = 5.7 and initial conditions z1,1 = 2,

z1,2 = 3, z2 = 2, exhibits the chaotic dynamics.

Now, for this cascade system (5), the proposed adaptive

observer (2) is applied and designed as follows:























































































































˙̂z1 = Â1 (y, u) ẑ1 + β̂1 (y, u) + ϕ̂1 (y, u) θ̂1

+
{

S−1
1 CT

1 + Λ1Γ
−1ΛT

1 CT
1

}

Σ1 (y1 − C1ẑ1)

Ṡ1 = −ρ1S1 − ÂT
1 S1 − S1Â1 + CT

1 Σ1C1

Λ̇1 =
{

Â1 − S−1
1 CT

1 Σ1C1

}

Λ1 + ϕ̂1

Γ̇1 = −λ1Γ1 + ΛT
1 CT

1 Σ1C1Λ1

˙̂
θ1 = Γ−1

1 ΛT
1 CT

1 Σ1 (y1 − C1ẑ1)

˙̂z2 = A2

(

y, u, ẑ1, θ̂1

)

ẑ2 + β̂2

(

y, u, ẑ1, θ̂1

)

+ϕ̂2

(

y, u, ẑ1, θ̂1

)

θ̂2

+
{

S−1
2 CT

2 + Λ2Γ
−1ΛT

2 CT
2

}

Σ2 (y2 − C2ẑ2)

Ṡ2 = −ρ2S2 − ÂT
2 S2 − S2Â2 + CT

2 Σ2C2

Λ̇2 =
{

Â2 − S−1
2 CT

2 Σ2C2

}

Λ2 + ϕ̂2

Γ̇2 = −λ2Γ2 + ΛT
2 CT

2 Σ2C2Λ2

˙̂
θ2 = Γ−1

2 ΛT
2 CT

2 Σ2 (y2 − C2ẑ2)

(6)

where

{

ẑ1 = [ẑ1,1, ẑ1,2]
T , Â1 = A1 (y, u) , β̂1 = β1 (y, u) ,

ϕ̂1 = ϕ1 (y, u) , θ̂1 = â, C1 =
(

0 1
)

and

{

ẑ2 ∈ R, Â2 = ẑ1,1, β̂1 = ẑ1,1 + y1(a − ẑ1,1),

ϕ̂1 =
(

1 y2 − y1

)

, θ̂2 =
(

b̂ ĉ
)

, C2 = 1.

C. Simulation results

The aim here is to illustrate the simulation results obtained

by the proposed cascade observer when it is applied in

the synchronization and parameter identification problem

of Rossler’s chaotic system. The chosen numerical values

(initial conditions and parameters) for Rossler’s chaotic

cascade system (5) are given in section (IV-B) while the

values of its observer (6) are as follows.

The initial conditions are

ẑ1,1 = ẑ1,2 = ẑ2 = 0; θ̂1 = â = 0, θ̂2 =
(

b̂ ĉ
)

= 01×2.

S1(0) = 2I2×2, Λ1(0) = 02×2, Γ1(0) = 10I2×2; S2(0) = 1,

Λ2(0) = 01×2, Γ2(0) = 10I2×2.

The gain were chosen as ρ1 = 20, λ1 = 15; ρ2 = 20,

λ2 = 15.

The simulation results obtained with the proposed observer

are illustrated in Figs. 1 to 7.
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Fig. 1. z1,1 and its estimate
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Fig. 2. z1,2 and its estimate

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

Time (s)

z
2
=z

2,1

estimate

Fig. 3. z2 and its estimate
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Fig. 4. Three-dimensional phase portrait of z1,1, z1,2 and z2 with initial
conditions z1,1 = 2, z1,2 = 3, and z2 = 2.
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Figs 1, 2 and 3 illustrate the simulation results of the

estimation of state variables, i.e. the problem of synchroniza-

tion. The parameter identification results are depicted from

Figs. 5, 6 and 7. Simulation results show that the proposed

cascade state affine observer performs well. In all cases, state

variables z1,1, z1,2, z2 and parameters a, b, c indeed appear

to be well estimated.

V. CONCLUSION

In this paper, the problem of adaptive observer for a

class of cascade state affine systems has been discussed.

Sufficient conditions have been given in order to guaran-

tee the exponential convergence of the adaptive observer.

Furthermore, it has been shown that the adaptive observer

has an arbitrarily tunable rate. One practical interest of

such observer is to study the synchronization and parameter

identification problem of chaotic systems. An example of

synchronization and parameter identification of Rossler’s

chaotic system has been studied in order to illustrate the

feasibility of the proposed observer.
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