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Abstract— The class of polytopic uncertain discrete-time
systems with time-varying delays is investigated in this paper.
Firstly, some convex conditions are presented in the form of
linear matrix inequalities (LMIs) to test robust stability. Then,
LMI conditions to design robust state feedback gains are pro-
posed. Both, delay-dependent and delay-independent conditions
are formulated as convex feasibility problems employing extra
matrices that yield less conservative results. Some numerical
examples are presented to illustrate the application of the
conditions for analysis and synthesis of robust state feedback
gains.

I. INTRODUCTION

Systems with delayed states have been received lots of

attention in the last years, for instance, see [11], [13], [8]

and [14]. The investigation of robust stability analysis as

well as robust state feedback gain design for the class of

uncertain discrete-time system with state delay (DTSSD)

are relevant issues, since the study of an augmented system

presents strong restrictions, for example, in case of time-

varying delays. Most of the used techniques for robust

stability analysis and robust control design are based on

Lyapunov-Krasovskii approach [14], [15]. This approach is

used to obtain convex formulation problems in terms of linear

matrix inequalities (LMIs) which allow to treat time-varying

delays.

For uncertain DTSSD systems, it is possible to find

approaches based on LMIs, but most of them are based on the

quadratic stability (QS), i.e., the matrices of the Lyapunov-

Krasovskii functional are constant and independent of the

uncertain parameters. In the context of QS, non-convex

formulations of delay-independent type have been proposed

in [16] where the delay is considered time-invariant. In this

case, the uncertainties are supposed to be of the norm-

bounded type and the design conditions are nonconvex. In

[20] this same type of system is investigated, assuming time-

varying delay, but using nonconvex conditions. In [3] and [4]

delay-dependent conditions have been proposed as convex

problems for the analysis and nonconvex problems for the

synthesis. In [3] the uncertain DTSSD is described in a

polytopic framework while in [4] it is described in a norm-

bounded framework. Recently, in [10], the results of [7]

were improved, but the approach is based on QS and the
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design conditions are nonconvex depending directly on the

Lyapunov-Krasovskii functional matrices.

There are a few results using parameter dependent

Lyapunov-Krasovskii functionals for DTSSD. Convex delay-

independent conditions for robust stabilization of polytopic

systems [9] and with H∞ guaranteed performance of norm-

bounded systems [19] have been proposed, but the delay is

supposed to be time-invariant. In [1], convex conditions were

proposed for precisely known DTSSD with time-varying

delay. Those conditions depend on the size of delay variation,

but not on the delay value. In [6] several conditions for

access robust stability of DTSSD are discussed and some

over bounds usually employed in the literature are discussed

in details.

In the present paper, delay-dependent and delay-

independent convex conditions for both robust stability

analysis and robust synthesis of state feedback gains for

DTSSD with time-varying delay are presented. The condi-

tions proposed here employ parameter dependent Lyapunov-

Krasovskii functionals, that yield less conservative results.

The presented conditions can be seen as an improvement

on the results of [1] and [10]. The main advantage of the

present proposal is the existence of a convex formulation

for the synthesis of robust state feedback gains. Examples

are presented to illustrate the efficiency of the proposed

conditions.

Notation: The notation used is quite standard: xk is the state

at time k. R is the set of real numbers and N
∗ stands for

the set of the natural numbers excluded the 0. I and 0 are

the identity and the null matrices of appropriate dimensions,

respectively. M = block-diag{M1, M2} stands for the

block-diagonal matrix M made up by the matrices M1 and

M2 at the main diagonal. M > 0 (M < 0) means that M is

positive (negative) definite. M ′ stands for the transpose of

M . ⋆ is used to indicate diagonally symmetric blocks in the

LMIs.

II. PRELIMINARIES

Consider the DTSSD given by

xk+1 = A(α)xk+ Ad(α)xk−d(k)+ B(α)uk (1)

xk = φ(k), k ∈ [−d̄, 0] (2)

where k is the sample time, xk ≡ x(k) ∈ R
n is the state

vector, uk ≡ u(k) ∈ R
ℓ is the control input and φ(k) is

the initial condition, given by the sequence k = −d̄, . . . , 0.

The delay, d(k), is considered time-varying and bounded as

follows

d ≤ d(k) ≤ d̄, (d, d̄) ∈ N
∗ × N

∗ (3)
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with d and d̄ being, respectively, the minimum and maximum

delay value. Observe that, if the delay is uncertainty but time-

invariant, then d = d̄.

The uncertain matrices [A(α)|Ad(α)|B(α)] ≡
[A|Ad|B](α) ∈ R

n×2n+ℓ are time-invariant and belong to

the polytope

P ≡
{

[A|Ad|B](α) : [A|Ad|B](α) =

N
∑

i=1

[A|Ad|B]iαi, α ∈ Ω
}

(4)

Ω ≡
{

α : α ∈ R
N ,

N
∑

i=1

αi = 1, αi ≥ 0
}

(5)

with known vertices [Ai|Adi|Bi] ≡ [A|Ad|B]i, i =
1, . . . , N . It is considered the following control law for

system (1)

u(k) = Kxk + Kdxk−d(k) (6)

where [K|Kd] ∈ R
ℓ×2n are static feedback gains. For system

(1), if the delay d(k) can be obtained at each sample time,

it is possible to use both gains, K and Kd to improve

the closed-loop performance. For instance, this occurs when

some kind of time-stamped is employed for measurements

or state estimatimation [17]. On the other hand, if the delay

d(k) is not available, it is enough to make Kd = 0 in (6).

Using (6) in (1), one gets

xk+1 = Ã(α)xk + Ãd(α)xk−d(k) (7)

where Ã(α) ≡ A(α) + B(α)K and Ãd(α) ≡ Ad(α) +
B(α)Kd are in the polytope

P̃ ≡
{

[Ã|Ãd](α) : [Ã|Ãd](α) =

N
∑

i=1

[Ã|Ãd]iαi, α ∈ Ω
}

(8)

Lemma 1 (Finsler’s Lemma): Let x ∈ R
n, Q(α) =

Q(α)′ ∈ R
n and B(α) ∈ R

m×n be, such that

rank(B(α)) < n. The following statements are equivalent:

i) x′Q(α)x < 0, ∀x : B(α)x = 0, x 6= 0

ii) ∃ X (α) ∈ R
n×m : Q(α) + X (α)B(α) +

B(α)′X (α)′ < 0

The proof follows the directions given in [2].

Definition 1: System (7) subject to (3), (5) and (8) is

called robustly stable if the trivial solution for the corre-

spondent difference equation is globally and asymptotically

stable ∀ α ∈ Ω.

The main objective of this work is to present convex

conditions that can be used to solve the two problems:

Problem 1: Given d and d̄ subject to (3), determine if

system (7) subject to (5) and (8) is robustly stable.

Problem 2: Determine, if possible, a pair of static gains,

[K|Kd] such that (1)-(5), controlled by (6) is robustly stable.

III. MAIN RESULTS

In this section, it is presented the conditions for the robust

stability analysis of (7) and for the design of robust state

feedback gains used in (6).

A. Robust stability analysis

Theorem 1: If there exists matrices Pi = P ′

i > 0, Qi =
Q′

i > 0, Zi = Z ′

i > 0, i = 1, . . . , N , and matrices G0, H0,

S0, F1, G1, H1, M1, N1, R1, F2, G2, H2, M2, N2, R2, with

appropriate dimensions, such that LMIs (9) can be verified,

with β = d̄ − d + 1, d and d̄ known, then the system (7)

subject to (3), (5) and (8) is robustly stable, characterizing a

solution to Problem 1. Besides this,

V (α, k) =

5
∑

v=1

Vv(α, k) > 0 (10)

with

V1(α, k) = x
′

kP (α)xk, (11)

V2(α, k) =

k−1
∑

j=k−d(k)

x
′

jQ(α)xj , (12)

V3(α, k) =

1−d
∑

ℓ=2−d̄

k−1
∑

j=k+ℓ−1

x
′

jQ(α)xj , (13)

V4(α, k) =

−1
∑

ℓ=−d̄

k−1
∑

m=k+ℓ

y
′

mZ(α)ym, (14)

V5(α, k) =

k−1
∑

j=k−d(k)

y
′

jZ(α)yj , (15)

P (α) =

N
∑

i=1

αiPi; Q(α) =

N
∑

i=1

αiQi; (16)

Z(α) =

N
∑

i=1

αiZi (17)

with α ∈ Ω, is a Lyapunov-Krasovskii functional for system

(7) and

yj = xj+1 − xj (18)

Proof: The positivity of the functional (10) is clearly

assured by Pi = P ′

i > 0, Qi = Q′

i > 0, Zi = Z ′

i > 0. For

(10) be a Lyapunov-Krasovskii it is also necessary that

∆V (α, k) = V (α, k + 1) − V (α, k) < 0 (19)

∀ [x′

k x′

k−d(k)]
′ 6= 0 e ∀ α ∈ Ω. Hereafter, Vv(α, k), v =

1, . . . , 5, are denoted as Vv(k), v = 1, . . . , 5. Equation (19)

is calculated taking into account the following terms

∆V1(k) = x′

k+1P (α)xk+1 − x′

kP (α)xk (20)

∆V2(k) = x′

kQ(α)xk − x′

k−d(k)Q(α)xk−d(k)

+
k−1
∑

i=k+1−d(k+1)

x′

iQ(α)xi −
k−1
∑

i=k+1−d(k)

x′

iQ(α)xi (21)

∆V2(k) ≤ x′

kQ(α)xk − x′

k−d(k)Q(α)xk−d(k)

+

k−d
∑

i=k+1−d̄

x′

iQ(α)xi (22)

∆V3(k) = (d̄ − d)x′

kQ(α)xk −

k−d
∑

i=k+1−d̄

x′

iQ(α)xi (23)
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Λi ≡























Pi + F ′

1 + F1 − F2 − F ′

2 G′

1 − G′

2 − F1Ãi + F2 H ′

1 − F1Ãdi − H ′

2

⋆

(

G2 + G′

2 − Ã′

iG
′

1 − G1Ãi

+βQi − Pi + G0 + G′

0

)

H ′

0 − G0 − Ã′

iH
′

1 + H ′

2 − G1Ãdi

⋆ ⋆ −(Qi + H1Ãdi + Ã′

diH
′

1 + H0 + H ′

0)
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

F2 + M ′

1 − M ′

2 N ′

1 − N ′

2 R′

1 − R′

2 0

G2 − Ã′

iM
′

1 + M ′

2 N ′

2 − Ã′

iN
′

1 R′

2 − Ã′

iR
′

1 S′

0 − G0

H2 − Ã′

diM
′

1 −Ã′

diN
′

1 −Ã′

diR
′

1 −(S′

0 + H0)
M2 + M ′

2 + (d̄ + 1)Zi N ′

2 R′

2 0
⋆ −Zi 0 0
⋆ ⋆ −Zi 0

⋆ ⋆ 0 −(S′

0 + S0)



















< 0; i = 1, . . . , N. (9)

∆V4(k)(yk)d̄y
′

kZ(α)yk −

−1
∑

j=−d̄

y
′

k+jZ(α)yk+j

≤ d̄y
′

kZ(α)yk − y
′

k−d̄Z(α)yk−d̄ −

k−d
∑

i=k+1−d̄

y
′

iZ(α)yi (24)

∆V5(k) = y′

kZ(α)yk − y′

k−d(k)Z(α)yk−d(k)

+

k−1
∑

i=k+1−d(k+1)

y′

iZ(α)yi −
k−1
∑

i=k+1−d(k)

y′

iZ(α)yi (25)

∆V5 ≤ y′

kZ(α)yk − y′

k−d(k)Z(α)yk−d(k)

+

k−d
∑

i=k+1−d̄

y′

iZ(α)yi (26)

Therefore, using (20), (22)-(24) and (26), equation (19) can

be bounded as

∆V (k) ≤ x′

k+1P (α)xk+1 + x′

k[βQ(α) − P (α)]xk

− x′

k−d(k)Q(α)xk−d(k) + y′

k(d̄ + 1)Z(α)yk

− y′

k−d̄Z(α)yk−d̄ − y′

k−d(k)Z(α)yk−d(k) < 0 (27)

with β = d̄ − d + 1. By applying Lemma 1 in (27),

with ω = [x′

k+1 x′

k x′

k−d(k) y′

k y′

k−d̄
y′

k−d(k)]
′, Q(α) =

block-diag{P (α), βQ(α)−P (α), −Q(α), (d̄+1)Z(α), −
Z(α), − Z(α)},

B(α) =

[

I −Ã(α) −Ãd(α) 0 0 0

−I I 0 I 0 0

]

and

X (α) =















F1(α) F2(α)
G1(α) G2(α)
H1(α) H2(α)
M1(α) M2(α)
N1(α) N2(α)
R1(α) R2(α)















,

it is possible to write an equivalent condition to (27),

defined by Φ(α) < 0, where Φ(α) = Q(α) + X (α)B(α) +
B(α)′X (α)′ is given in (28). Observe that, if Φ(α) < 0 is

verified then Λ(α) ≡ ω′Φ(α)ω+N (α) < 0 it is also verified

∀ N (α) ≡ 0.

Then, if we choose

N (α) = 2
[

x′

kG0(α) + x′

k−d(k)H0(α) + η′

kS0(α)
]

×
[

xk − xk−d(k) − ηk

]

(29)

where ηk ≡
k−1
∑

j=k−d(k)

yj , with yj defined in (18), P (α), Q(α)

and Z(α) given in (16)-(17), F1(α) = F1, G1(α) = G1,

H1(α) = H1, M1(α) = M1, N1(α) = N1, R1(α) = R1,

F2(α) = F2, G2(α) = G2, H2(α) = H2, M2(α) = M2,

N2(α) = N2, R2(α) = R2, G0(α) = G0, H0(α) = H0

e S0(α) = S0, all the matrices having dimensons n × n,

can be verified that Λ(α) = ω̃′
(
∑N

i=1 Λi

)

ω̃ < 0, with

ω̃ = [ω′, η′

k]′, α ∈ Ω and Λi < 0, with Λi given in (9),

completing the proof.

Note that the addition of the null term, given by (29), does

not introduce any additional dynamics to the system, but the

obtained conditions yields less conservative results. This has

been verified numerically by the authors. Also observe that

LMIs proposed in Theorem 1 contain slack variables which

avoid products between the Lyapunov-Krasovskii matrices

and the system matrices. In the following corollary a QS

condition is obtained from Theorem 1. In this case, the

system matrices can be time-varying.

Corolary 1: If there exist matrices Pi = P ′

i > 0, Qi =
Q′

i > 0, i = 1, . . . , N , and G0, H0, S0, F1, G1, H1, F2,

G2, H2, with appropriate dimensions, such that the LMIs

(30) are verified, with known β = d̄ − d + 1, d and d̄,

then the system (7) subject to (5) and (8) is robustly stable,

independently of the delay value. In this case, the delay can

be time-variant, if |d(k + 1) − d(k)| ≤ β − 1. Besides,

V (α, k) =
∑3

v=1 Vv(α, k) > 0 with Vv , v = 1, . . . , 3, given

in (11)-(13) and matrices P (α) and Q(α) given in (16) with

α ∈ Ω, is a Lyapunov-Krasovskii functional to the system

(7).

It is important to observe that the conditions of Corollary 1

cannot be obtained from (9) by taking the limit d̄ → ∞.

Even being delay-independent, the conditions of Corollary 1

allow a time-varying delay with a maximum variation rate

of d̄ − d. Obviously, if d = d̄, then the delay is taken as

constant. It is also worth noting that the proposed conditions
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Φ(α) ≡























(

F1(α) + F1(α)′

−F2(α) − F2(α)′ + P (α)

) (

G1(α)′ + F2(α)

−G2(α)′ − F1(α)Ã(α)

)

H1(α)′ − H2(α)′ − F1(α)Ãd(α)

⋆

(

βQ(α) − P (α) + G2(α) + G2(α)′

−G1(α)Ã(α) − Ã(α)′G1(α)′

) (

H2(α)′ − Ã(α)′H1(α)′

−Q(α) − G1(α)Ãd(α)

)

⋆ ⋆ −(H1(α)Ãd(α) + Ãd(α)′H1(α)′)
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

F2(α) + M1(α)′ − M2(α)′ N1(α)′ − N2(α)′ R1(α)′ − R2(α)′

G2(α) + M2(α)′ − Ã(α)′M1(α)′ N2(α)′ − Ã(α)′N1(α)′ R2(α)′ − Ã(α)′R1(α)′

H2(α) − Ãd(α)′M1(α)′ −Ãd(α)′N1(α)′ −Ãd(α)′R1(α)′

(d̄ + 1)Z(α) + M2(α) + M2(α)′ N2(α)′ R2(α)′

⋆ −Z(α) 0
⋆ ⋆ −Z(α)















(28)

Θi ≡





















(

Pi + F ′

1 + F1

−F2 − F ′

2

)

G′

1 − G′

2 − F1Ãi + F2 H ′

1 − F1Ãdi − H ′

2 0

⋆

(

G2 + G′

2 − Ã′

iG
′

1 − G1Ãi

+βQi − Pi + G0 + G′

0

) (

H ′

0 − G0 − Ã′

iH
′

1

+H ′

2 − G1Ãdi

)

S′

0 − G0

⋆ ⋆ −

(

Qi + H1Ãdi

+Ã′

diH
′

1 + H0 + H ′

0

)

−(S′

0 + H0)

⋆ ⋆ ⋆ −(S′

0 + S0)





















< 0,

i = 1, . . . , N (30)

in both Theorem 1 and Corollary 1 can be used to verify

the robust stability of the dual system, that is, for the

system (7) replacing Ã(α) and Ãd(α) by Ã(α)′ and Ãd(α)′,
respectively.

B. Robust Feedback Gain Design

The robust analysis conditions given in Theorem 1 can

be exploited to obtain a convex condition for robust feed-

back gain design yielding a solution to Problem 2. This is

presented in the following theorem.

Theorem 2: If there are matrices Pi = P ′

i > 0, Qi =
Q′

i > 0, Zi = Z ′

i > 0, i = 1, . . . , N , and G0, H0, S0,

F2, G2, H2, M2, N2, R2, F , W , Wd, with compatible

dimensions such that the LMIs (32) can be verified with

β = d̄ − d + 1, d and d̄ known, then the closed-loop of

system (1) subject to (3)-(5) and control law given by (6)

with

K = W ′(F ′)−1 and Kd = W ′

d(F
′)−1 (31)

is robustly stable and is a solution to Problem 2. Besides,

(10)-(18) is a Lyapunov-Krasovskii functional that assures

the robust stability of the closed-loop system.

Proof: The proof can be obtained from Theorem 1

defining F1 = F , G1 = H1 = M1 = N1 = R1 = 0,

replacing Ãi and Ãdi by (Ai + BiK)′ and (Adi + BiKd)
′,

respectively, and defining FK ′ = W and FK ′

d = Wd.

For the synthesis, it is also possible to present a delay-

independent condition that allows a delay variation |∆dk| ≤
d̄ − d, ∆dk = d(k + 1) − d(k).

Corolary 2: If there exist matrices Pi = P ′

i > 0, Qi =
Q′

i > 0, i = 1, . . . , N , and G0, H0, S0, F , F2, G2, H2, W

and Wd, with compatible dimensions, such that the LMIs

(33) can be verified, with known β = d̄ − d + 1, d and

d̄, then the system (7) subject to (5) and (8) is robustly

stabilizable, for any value of the delay d(k), by static robust

feedback gains K and Kd given in (31). In this case, the

delay can be time-variant, if |∆dk| ≤ β − 1. Besides,

V (α, k) =
∑3

v=1 Vv(α, k) > 0 with Vv , v = 1, . . . , 3, given

in (11)-(13) and matrices P (α) and Q(α) given in (16) with

α ∈ Ω, is a Lyapunov-Krasovskii functional to the system

(7).

Remark 1: An important aspect of the presented pro-

posal is that the results can be used to deal with de-

centralized control by imposing block-diagonal structure

to matrices F = FD = block-diag{F 1, . . . , Fκ}, W =
WD = block-diag{W 1, . . . ,Wκ}, Wd = WdD =
block-diag{W 1

d , . . . ,Wκ
d } where κ denote the number of

subsystems defined. In this case, one gets the robust block-

diagonal state feedback gains KD = W ′

D(F ′

D)−1 and

KdD = W ′

dD(F ′

D)−1. In this case, the matrices of the

Lyapunov-Krasovskii functional, P (α), Q(α) and Z(α), do

not have any restrictions in their structures, which results in

a design less conservative.

Remark 2: Quadratic stability conditions can be obtained

from all conditions proposed here by imposing Pi = P ,

Qi = Q and Zi = Z, i = 1, . . . , N . In this case, the system

matrices can be time-varying encompassing systems subject

to actuators faults.

Remark 3: The numerical complexity of the proposed con-

ditions depend on the number of variables, K, and on the

number of rows in the LMIs, L. Using the LMI Control

Toolbox, the number of floating point operations neces-

sary in the solution of the LMIs problems has an order
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Ψi ≡



















Pi + F ′ + F − (F2 + F2)
′ F2 − G′

2 − FA′

i − WB′

i −(FA′

di + WdB′

i + H ′

2)
⋆ G2 + G′

2 + βQi − Pi + G0 + G′

0 H ′

0 − G0 + H ′

2

⋆ ⋆ −(Qi + H0 + H ′

0)
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

F2 − M ′

2 −N ′

2 −R′

2 0

G2 + M ′

2 N ′

2 R′

2 S′

0 − G0

H2 0 0 −(S′

0 + H0)
M2 + M ′

2 + (d̄ + 1)Zi N ′

2 R′

2 0
⋆ −Zi 0 0
⋆ ⋆ −Zi 0

⋆ ⋆ ⋆ −(S′

0 + S0)



















< 0, i = 1 . . . , N (32)

Ξi ≡







Pi + F ′ + F − F2 − F ′

2 −G′

2 − FA′

i − WB′

i + F2 −FA′

di − WdB′

i − H ′

2 0

⋆ G2 + G′

2 + βQi − Pi + G0 + G′

0 H ′

0 − G0 + H ′

2 S′

0 − G0

⋆ ⋆ −Qi − H0 − H ′

0 −S′

0 − H0

⋆ ⋆ ⋆ −S′

0 − S0






< 0, i = 1, . . . , N

(33)

given by K3L [5]. Using the program SeDuMi [18], the

number of floating point operations performed to the same

problems has an order given by K2L5/2 + L7/2. Then,

the conditions present here have KT1 = 3n[n(10+N)+N ]
2 ,

KT2 = n2(3N+20)+n(3N+ℓ)
2 , KC1 = n[n(9 + N) + N ],

KC2 = n2(N + 7) + n(N + ℓ) scalars variables and LT1 =
LT2 = 9Nn and LC1 = LC2 = 6Nn rows.

IV. NUMERIC EXAMPLES

In all examples it has been used an Intel Core 2 Duo

T7600, 2.33 GHz processor with 2 Gb of RAM and the

LMI Control Toolbox [5]. The results achieved are compared

with other obtained by conditions available in the literature.
Example 1: Consider the discrete-time system with delay,

given by (7), presented in [9] where the polytope vertices P̃
are given by

[Ã|Ãd]1 =

[

−0.545 −0.43 0.24 0.07
0.185 −0.61 −0.12 0.09

]

(34)

[Ã|Ãd]2 =

[

−0.455 −0.37 0.36 0.13
0.215 −0.59 −0.08 0.11

]

(35)

In [9], the delay-independent robust stability is assured for

a constant delay. By using conditions of Corollary 1, it is

possible to verify that this system has a delay-independent

robust stability for a time-varying satisfying |d(k + 1) −
d(k)| ≤ 15.

Example 2: Consider the precisely known discrete-time

system with delayed states studied in [10], that is described

by (7) with
[

Ã|Ãd

]

=

[

0.6 0 0.1 0
0.35 0.7 0.2 0.1

]

(36)

In [10] this system is identified as stable for 2 ≤ d(k) ≤ 13.

By using conditions of Theorem 1 it is verified that this

system is robustly stable for 2 ≤ d(k) ≤ 14. This shows that

Theorem 1 can yield less conservative results.

Example 3: Suppose that the system investigated in Ex-

ample 2 is affected by an uncertain parameter which leads

to a 2 vertex polytopic representation. The first polytope is

defined by (36) and the other one is given by 1.1[Ã|Ãd].
Using the conditions of Theorem 1 it is possibly to verify

the robust stability for 2 ≤ d(k) ≤ 5. Note that, due the

presence of the uncertain parameter, some recent results in

the literature, such as [10] and [1] cannot be applied in this

case.
Example 4: This example use the system studied in [12]

which is associated to a combined production and marketing
process modeled as xk+1 = A(α)xk + Ad(α)xk−d(k) +
B(α)uk + Bd(α)uk−d(k). In [12] the system matrices are
given by

[A|Ad]n =







0.7 0 0 0 0 0.2 0 0
0 0.5 0 0 0.1 0 0 0

−0.7 0 1 0 0 −0.2 0 0
0 −0.5 0 1 −0.1 0 0 0







[B|Bd] = θ







0 0 8 0 0 0 0 2
0 0 0 7 0 0 3 0
1 0 −8 0 0 0 0 −2
0 1 0 −7 0 0 −3 0







and θ is assumed to be 0.5 or 1, characterizing a switched
system with an uncertain but constant delay. Here, this
system is considered as uncertain with 0.5 ≤ θ ≤ 1, and
[A|Ad](ρ) = ρ[A|Ad]n, with 0.5 ≤ ρ ≤ 1 and having
a time-varying delay. The uncertain parameters θ and ρ
define a polytope with 4 vertices given by the combination
of their extremum values. Note that the additional term
Bd(α)uk−d(k) can be taken into account by the conditions
presented here replacing Bi by Bdi in the entries (1, 3) and
(3, 1) of the LMIs (32) and (33). Three different conditions
are investigated for this system. In the first one, a linear
search is performed on d̄ to find the maximum value of
this bound such that the system is stabilizable by a full
gain K, i.e., with Kd = 0. The maximum value achieved
by conditions of Theorem 2 is 1 ≤ d(k) ≤ 31. In the
second condition investigated, a pair of robust state feedback
gains K and Kd are design while a linear search on d̄ is
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performed. In this case it has been determined the bounds
1 ≤ d(k) ≤ 96. The last investigated condition consists in to
find the maximum delay bound d̄ such that the considered
system is robustly stabilizable with K and Kd, both block-
diagonal with two 2 × 2 blocks. In this case, it is found
1 ≤ d(k) ≤ 6, with robust state feedback gains

K =

block-diag

{[

168
661

−19
8538

−19
74149

2939
12736

]

,

[

55
5498

2
170423

6
206279

157
21368

]}

(37)

Kd = block-diag

{

[

0 0
0 0

]

,

[

14
29705

−3
597601

−1
159868

62
59317

]}

(38)

These robust state feedback gains are used to simulated

the considered uncertain systems with initial conditions,

equation (2), given by φ(k) = [1, −1, −1, 1]′, −6 ≤ k ≤ 0.

In Figure 1 it is shown the behaviors of the 4 states of

the system, that has been simulated for 4 combinations of

α randomly generated and for of α taken at each vertex

of the polytope. Figure 2 shows the time varying delay

1 ≤ d(k) ≤ 6 used in all simulations.

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

0 10 20 30 40 50 60 70 80
−4

−2

0

2

0 10 20 30 40 50 60 70 80
−1

0

1

2

x1(k)

x2(k)

x3(k)

x4(k)

k

Fig. 1. The behaviors of the states x1(k) (top) to x4(k) (bottom), with
1 ≤ d(k) ≤ 6 (see Figure 2), with gains given by (37)-(38) and initial
conditions φ(k) = [1, − 1, − 1, 1]′, k ∈ [−6, 0].

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

k

d(k)

Fig. 2. Time-varying delay used in simulation of Example 4.

V. CONCLUSIONS

Delay-dependent and delay-independent convex condi-

tions for both, robust stability and robust stabilizability

of uncertain discrete-time systems with time-varying delay

were given. The uncertainties are considered in a poly-

topic description and affecting all system matrices. The

proposed conditions employ parameter dependent Lyapunov-

Krasovskii functionals and extra-variables yielding less con-

servative results than other conditions available in the lit-

erature. All conditions in this paper encompass quadratic

stability based ones as a special cases. It has been shown

that robust stabilizability conditions can be easily used to

design decentralized state feedback gains, since the design

equations are convex. Time simulations are included.
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