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Abstract— An approach for eigenvalue assignment for sys-
tems of delay differential equations (DDEs), based upon the
Lambert W function, is applied to the problem of robust control
design for perturbed systems of DDEs, and to the problem
of time-domain specifications. The real stability radius, which
measures the ability of a system to preserve its stability under
a certain class of real perturbations, can be computed from
known nominal coefficients of the DDE representing the system.
In this paper, considering the stability radius, the real part of
the eigenvalues is assigned. Also, time-domain specifications for
the transient response of systems of DDEs are improved in a
way similar to systems of ordinary differential equations using
the eigenvalue assignment approach.

I. INTRODUCTION

One of the main concerns for control engineers is to

maintain robust stability and good performance to meet time-

domain specifications [25]. One way to achieve such goals

is to assign the eigenvalues of the original system to some

prescribed values. Much has been done to develop such pole

placement, or eigenvalue assignment, design methods, for

systems of ordinary differential equations (ODEs). However,

systems of delay differential equations (DDEs) have an infi-

nite number of eigenvalues, and it is not practically feasible

to assign all of them. Thus, the usual pole placement design

techniques in ODEs cannot be applied without considerable

modification to systems of DDEs [22].

An approach for eigenvalue assignment for systems of

DDEs was developed by Yi et al. [27], based on the

solution in terms of the Lambert W function [28]. Using that

approach, summarized in Section II of this paper, one can

design a linear feedback controller to place the rightmost

eigenvalues at the desired positions in the complex plane

and, thus, stabilize the system. In that study, instead of

all eigenvalues of systems of DDEs, the critical subset,

which are rightmost and, thus, determine stability of the

system, of the infinite eigenspectrum is assigned. This is

possible because the eigenvalues are expressed in terms of

the parameters of the system and each one is distinguished

by a branch of the Lambert W function. The advantages of

the Lambert W function-based approach over other existing

methods (e.g., Finite Spectrum Assignment [17], Continuous

Pole Placement [20] etc.) have been discussed in [27]. In this

paper, that approach is extended to the problems of robust

stability of systems with uncertain parameters, and to time-

domain specifications.
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When uncertainty exists in the coefficients of the system,

a robust control law, which can guarantee stability, is re-

quired. To realize robust stabilization, calculating allowable

uncertainty (i.e., stability radius by a method presented in

[11]), the rightmost eigenvalues are placed at an appropriate

distance from the imaginary axis in order to guarantee

stability. Usually, the robust control problem for systems

of DDEs has been handled using linear matrix inequalities

(LMI) or the algebraic Riccati equation (ARE) (see, e.g.,

[14], [16], [18], [21] and the references therein). Even though

such approaches can be applied to more general types of

time delay systems (e.g., systems with multiple delays, time-

varying delay), they provide only sufficient conditions and

are substantially conservative because of dependence on the

selection of involved cost functions and their coefficients.

The method developed in [27] also makes it possible

to assign simultaneously the real and imaginary parts of

a critical subset of the eigenspectrum for the first time.

Therefore, similar guidelines to those for systems of ODEs

to improve transient response, can be used for systems of

DDEs via eigenvalue assignment.

II. LAMBERT W FUNCTION-BASED EIGENVALUE

ASSIGNMENT METHOD

This section summarizes the solution and eigenvalue as-

signment for DDEs based on the matrix Lambert W function.

A. Solution in terms of the Lambert W function

Consider a real linear time-invariant (LTI) system of DDEs

with a single constant delay,

ẋ(t) = Ax(t) + Adx(t − h) + Bu(t) t > 0
x(t) = g(t) t ∈ [−h, 0)
x(t) = x0 t = 0

(1)

where x(t) ∈ R
n is a state vector; A ∈ R

n×n, Ad ∈ R
n×n,

B ∈ R
n×r are system matrices; u(t) ∈ R

r×1 is a function

representing the external excitation. A specified preshape

function, g(t) and an initial point, x0 are defined in the

Banach space of continuous mappings [9]. In [28], the

solution, which is expressed in terms of the matrix Lambert

W function, to (1) was developed and given by

x(t) =
∞
∑

k=−∞

eSktCI
k +

∫ t

0

∞
∑

k=−∞

eSk(t−ξ)CN
k Bu(ξ)dξ (2)

where

Sk =
1

h
Wk(AdhQk) + A (3)
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The coefficient CI
k in (2) is a function of A, Ad, h and the

preshape function, g(t) and the initial condition, x0, while

CN
k is a function of A, Ad, h and does not depend on g(t) or

x0. The numerical and analytical methods for computing CI
k

and CN
k were developed in [1], [29]. The following condition

is used to solve for the unknown matrix Qk

Wk(AdhQk)eWk(AdhQk)+Ah = Adh (4)

The matrix Lambert W function, Wk(Hk), which satisfies

the definition [7],

Wk(Hk)eWk(Hk) = Hk (5)

is complex valued, with a complex argument, Hk,

and has an infinite number of branches for k =
−∞, · · · ,−1, 0, 1, · · · ,∞. The principal (k = 0) and other

(k 6= 0) branches of the Lambert W function can be

calculated analytically [7], or using commands already em-

bedded in the various commercial software packages, such

as Matlab, Maple, and Mathematica.

The solution, Qk, for each branch, k, to Eq. (4) is obtained

numerically, for a variety of initial conditions, such as using

the fsolve function in Matlab. Conditions for convergence

of the infinite series in (2) have been studied in [2], [3],

[9], [15]. For example, for a bounded external excitation,

u(t), if the coefficient, Ad, is nonsingular, the infinite series

converges to the solution.

Note that, compared with results by other existing methods

for the series expansion of solution to DDEs, where eigen-

values are obtained from exhaustive numerical computation,

the solution in terms of the Lambert W function has an

analytical form expressed with the parameters of the DDE in

(1), i.e., A, Ad and h. Hence, one can determine how those

parameters are involved in the solution and, furthermore,

how each parameter affects each eigenvalue and the solution.

Also, each eigenvalue is distinguished in terms of k, which

indicates the branch of the Lambert W function. For these

reasons, the Lambert W function-based approaches have

been applied to control problems and extended to other cases

(see, e.g., [4], [5], [6], [10], [12], [24]).

B. Stability by the principal branch

The solution form in equation (2) reveals that the stability

condition for the system of (1) depends on the eigenvalues

of the matrix Sk, and, thus, also on the matrix eSk . A

time delayed system characterized by (1) is asymptotically

stable if and only if all the eigenvalues of Sk, k =
−∞, · · · ,−1, 0, 1, · · · ,∞, have negative real parts. Com-

puting the matrices Sk for an infinite number of branches

is not practically feasible. However, if coefficient matrix Ad

does not have repeated zero eigenvalues, we have observed

that the eigenvalues obtained using the principal branch

(k = 0) are the rightmost ones and determine the stability

of the system [31]. For the scalar case, it is proved that the

root obtained using the principal branch always determines

the stability of the system using monotinicity of the real part

of the Lambert W function with respect to its branch k [24].

Such a proof can readily be extended to systems of DDEs

where A and Ad commute and, thus, are simultaneously

triangularizable. Although such a proof is not available in the

case of general matrix-vector DDEs, we observe the same

behavior in all the examples we have considered. We use

that observation as the basis not only to determine stability

of systems of DDEs, but also to place a subset of the

eigenspectrum at desired locations.

C. Eigenvalue Assignment

The solutions (2) in terms of the matrix Lambert W

function have also been used to develop an approach for

eigenvalue assignment for systems of DDEs by Yi et al.

[27]. In designing a linear feedback controller for a delayed

system, represented by DDEs in (1), because there exists an

infinite number of solution matrices, Sk, and the number of

control parameters is finite, it is not feasible to assign all

of them at once. Just by using the classical pole placement

method for ODEs, placement of a selected finite number

of eigenvalues by may cause other uncontrolled eigenvalues

to move to the right-half plane (RHP) [20]. However, the

subsequent approach for control design using the matrix

Lambert W function provides proper control laws without

such loss of stability.

Consider the system in (1) and a generalized feedback

containing current and delayed states

u(t) = Kx(t) + Kdx(t − h) (6)

Then, the closed-loop system becomes

ẋ(t) = {A + BK}x(t) + {Ad + BKd}x(t − h) (7)

The controllability of such system, using the solution form of

(2) was studied in [32]. The gains, K and Kd are determined

as follows. First, select desired eigenvalues, λi,desired for i =
1, · · · , n, and set an equation so that the selected eigenvalues

become those of the matrix S0 as

λi(S0) = λi,desired (8)

for i = 1, · · · , n, where, λi(S0) is ith eigenvalue of the

matrix S0. Second apply the new two coefficient matrices

A′ ≡ A + BK and A′

d ≡ Ad + BKd, as Eq. (7) to Eq.

(4) and solve numerically to obtain the matrix Q0 for the

principal branch (k = 0). Note that K and Kd are unknown

matrices with all unknown elements, and the matrix Q0 is

a function of the unknown K and Kd. For the third step,

substitute the matrix Q0 from Eq. (4) into Eq. (3) to obtain

S0 and its eigenvalues as the function of the unknown matrix

K and Kd. Finally, Eq. (8) with the matrix, S0, is solved for

the unknown K and Kd using numerical methods, such as

fsolve in Matlab. Depending on the structure or parameters

of a given system, there exists limitations on the rightmost

eigenvalues and some values are not permissible. In that

case, the above approach does not yield any solution for

K and Kd. To resolve the problem, one may try again with

fewer desired eigenvalues, or different values of the desired

rightmost eigenvalues. Then, the solution, K and Kd, is

obtained numerically for a variety of initial conditions by

an empirical trial and error procedure [27].
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III. STABILITY RADIUS

The real stability radius, the norm of the minimum destabi-

lizing perturbations, was obtained for linear systems of ODEs

and a computable formula for the exact real stability radius

was presented by Qiu et al. [26]. The real stability radius

measures the ability of a system to preserve its stability

under a certain class of real perturbations. The formula was

extended to perturbed linear systems of DDEs in [11].

Assume that the perturbed system (1) can be written in

the form

ẋ(t) = {A + δA}x(t) + {Ad + δAd}x(t − h)
= {A + E∆1F1}x(t) + {Ad + E∆2F2}x(t − h)

(9)

where E ∈ R
n×m, Fi ∈ R

li×n, and ∆i ∈ R
m×li denotes the

perturbation matrix. Provided that the unperturbed system (1)

is stable, the real structured stability radius of (9) is defined

as [11]

rR = inf{σ1(∆) : system is unstable} (10)

where ∆ = [∆1 ∆2] and σ1(∆) denotes the largest singular

value of ∆. The largest singular value, σ1(∆) is equal to

the operator norm of ∆, which measures the size of ∆ by

how much it lengthens vectors in the worst case. Thus, the

stability radius in (10) represents the size of the smallest

perturbations in parameters, which can cause instability of a

system. And the real stability radius problem concerns the

computation of the real stability radius when the nominal

system is known. The stability radius is computed from [11]

rR =
{

sup
ω

inf
γ∈(0,1]

σ2

([

ℜ(Ω(jω)) −γℑ(Ω(jω))
γ−1ℑ(Ω(jω)) ℜ(Ω(jω))

])}

(11)

where

Ω(s) =

[

F1

F2e
−hs

]

(sI − A − Ad)
−1E (12)

In (11), it is not practically feasible to compute the supremum

value for the whole range of ω ∈ (−∞,∞). However, for

the value ω∗, which satisfies

ω∗ < σ̄(A) + σ̄(Ad) + σ̄(E)σ[W(0)]σ̄([F1F2]) (13)

where

W(0) =

[

F1

F2

]

(−A − Ad)
−1E (14)

Then,

restab(ω∗) ≤ restab(ω) (15)

where

restab(ω) =
{

infγ∈(0,1] σ2

([

ℜ(Ω(jω)) −γℑ(Ω(jω))
γ−1ℑ(Ω(jω)) ℜ(Ω(jω))

])}

(16)

Therefore, one has only to check ω ∈ [0, ω∗] to obtain the

supremum value in (11).

The obtained stability radius from (11) provides a basis

for assigning eigenvalues for robust stability of systems of

DDEs with uncertain parameters.

IV. DESIGN OF ROBUST FEEDBACK CONTROLLER

In this section, an algorithm is presented for the calculation

of feedback gains to maintain stability for uncertain systems

of DDEs. The approach to eigenvalue assignment using the

Lambert W function is used to design robust linear feedback

control laws, combined with the stability radius concept. The

feedback controller can be designed to stabilize the nominal

delayed system (1) using the method outlined in Section

II-C [27]. However, if the system has uncertainties in the

coefficients, which can be introduced by static perturbations

of the parameters or can arise in estimating the parameters,

the designed controller cannot guarantee stability. Therefore,

a robust feedback controller is required when uncertainty

exists in the parameters. Such a controller can be realized

by providing sufficient margins in assigning the rightmost

eigenvalues of the delayed system. However, conservative

margins over those required can raise problems, such as

cost of control. The stability radius, outlined in Section III,

provides a reasonable measurement of how large the margin

should be.

The basic idea of the proposed algorithm is to shift the

rightmost eigenvalue to the left by computing the gains in

the linear feedback controller [27] and increase the stability

radius until it becomes larger than the uncertainty of the

coefficients. Then, one can obtain a robust controller to

guarantee stability of the system with uncertainty.

Algorithm 1: Designing a robust feedback controller for

systems of DDEs with uncertainty.

Step 1. Compute the radius, r1, from actual uncertainties

in parameters of given delayed system, (i.e., r1 =
σ1(∆)).

Step 2. Using the eigenvalue assignment method presented

in Section II, compute K and Kd, to stabilize the

system.

Step 3. Then, compute the theoretical stability radius of

the stabilized system, r2 from Eq. (11).

Step 4. If r1 > r2, then, the system can be destabilized

by the uncertainties. Therefore, go to Step 2 and

increase the margin (compute K and Kd to move

the rightmost eigenvalues more to the left).

Example 1: From [27], consider a system

ẋ(t) =

[

0 0
0 1

]

x(t)+

[

−1 −1
0 −0.9

]

x(t−0.1)+

[

0
1

]

u(t)

(17)

Without feedback control, the system in (17) has one un-

stable eigenvalue 0.1098. Using feedback control as in (6),

designed by the method presented in [27], if the desired

rightmost eigenvalue is −1.0000, the computed gains are

K = [−0.1391 − 1.8982] and Kd = [−0.1236 − 1.8128],
and the stability radius in (10) is 0.6255. However, if the
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system (17) has uncertainties in the parameter

ẋ(t) =

{[

0 0
0 1

]

+ δA

}

x(t)

+

{[

−1 −1
0 −0.9

]

+ δAd

}

x(t − 0.1) +

[

0
1

]

u(t)

(18)

and σ(δA+δAd) = 0.7, the system can become unstable due

to uncertainty. To ensure stability, set the desired rightmost

eigenvalue to be −2.0000, then the computed gains are

K = [−0.1687 − 3.6111] and Kd = [1.6231 − 0.9291],
and the stability radius in (10) increases to 0.8832. There-

fore, the system can remain stable despite the uncertainty

(σ(δA + δAd) = 0.7). Table I shows the gains, K and Kd,

corresponding to the several subsets of eigenvalues of S0.
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Fig. 1. As the eigenvalue moves left, then the stability radius increases
consistently, which means, improved robustness.

The computed stability radii versus the rightmost eigen-

values, moving from −0.5 to −4 are shown in Figure 1.

As seen in the figure, for the system (18), as the eigenvalue

moves left, the stability radius increases monotonically. Note

that, in general, an explicit relationship between the stability

radius and the rightmost eigenvalues is not available, and

moving the rightmost eigenvalues further to the left does

not always lead to an increase of stability radius [20].

However, as shown above, by comparing the stability radius

and uncertainty for a given system, Algorithm 1 can be used

to achieve robust stability of TDS with uncertainty.

Michiels et al., [19] developed an algorithm to maximize

the stability radius by calculating its sensitivity with respect

to the feedback gain of a type of TDS. However, in maximiz-

ing it, the rightmost eigenvalues can be moved to undesired

positions and one can lose control of the system response.

If the system has relatively small uncertainty, instead of

maximizing the stability radius, one can focus more on the

position of eigenvalues to improve the transient response

of the system, which will be discussed in the subsequent

section.

V. TIME-DOMAIN SPECIFICATIONS

To meet design specifications in the time-domain, PID-

based controllers have been combined with a graphical

approach [23], LQG method using ARE [25], or Smith

predictors [13]. These methods are available for systems with

control delays. For systems with state delays, linear matrix

inequality approaches have been used (see, e.g., [18] and the

references therein). In this section, the Lambert W function-

based approach, presented in Section II, is applied to achieve

time-domain specifications via eigenvalue assignment. Un-

like other existing methods (e.g., Continuous Pole Placement

in [20]), for the first time the Lambert W function-based

approach can be used to assign the imaginary parts of system

eigenvalues as well as their real parts for a critical subset of

the infinite eigenspectrum. It is not practically feasible to

assign the entire eigenspectrum; however, just by assigning

some finite, but rightmost, eigenvalues the transient response

of systems of DDEs can be improved to meet time-domain

specifications for desired performance.

Example 2: Consider the system in (17). Table II shows

the gains, K and Kd, corresponding to the several subsets of

eigenvalues of S0, which have a real part, −0.2, and different

imaginary parts, ±0.2i,±0.5i, and ±1.0i.

The eigenvalue is written as λ = σ ± jωd = −ζωn ±
jωn

√

1 − ζ2, the requirements for a step response are ex-

pressed in terms of the quantities, such as the rise time, tr,

the settling time, ts, the overshoot, Mp, and the peak time,

tp. In case of ODEs, if the system is 2nd order without zeros,

the quantities have exact representations:

tr =
1.8

ωn
, ts =

4.6

σ
, Mp = e−πζ/

√
1−ζ2

, tp =
π

ωd
(19)

For all other systems, however, these provide rough approxi-

mations, and can only provide a starting point for the design

iteration [8]. Figure 2 shows the responses corresponding

to the rightmost eigenvalues considered in Table II. Not

surprisingly, the approximate values from (19) in Table III

are not exactly same as the results from the responses from

Figure 2. But, for this example, the guidelines for ODEs still

work well in the case of DDEs.

Figure 3 shows two responses corresponding to the several

subsets of eigenvalues of S0, which have different real parts

(−0.2 and −1.0) with the same imaginary part (±1.0). As

seen in the figure, the settling time, the rise time, and

overshoot decrease, but the peak time remain almost the

same, and, for this example, the guidelines for ODEs still

work well in case of DDEs. The approach presented in this

section is straightforward for systems of ODEs. However, it

represents the first approach to assign the real and imaginary

parts of the eigenvalues simultaneously to meet time-domain

specifications for time delay systems.

In this approach, we assign the real and imaginary parts

of only the rightmost (i.e., for k = 0) eigenvalues. Even

though DDEs have an infinite number of eigenvalues, as

seen in the above examples, just by controlling the rightmost

ones, one can achieve time-domain specifications with linear

feedback controllers. The approach presented follows the
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TABLE I

THE GAINS, K AND KD , OF THE LINEAR FEEDBACK CONTROLLER IN (6) CORRESPONDING TO EACH RIGHTMOST EIGENVALUES. COMPUTED BY

USING THE APPROACH FOR EIGENVALUE ASSIGNMENT PRESENTED IN [27].

K Kd

-0.5 & -6 [-0.6971 -1.6893] [-0.7098 -1.5381]

-1.0 & -6 [-0.1391 -1.8982] [-0.1236 -1.8128]

-1.5 & -6 [-0.3799 -1.6949] [1.0838 -2.3932]

-2.0 & -6 [0.8805 -2.1095] [0.9136 -2.3932]

-2.5 & -6 [1.8716 -2.1103] [0.8229 -2.5904]

-3.0 & -6 [2.5777 -1.7440] [0.7022 -2.9078]

-3.5 & -6 [2.8765 -1.6818] [0.9721 -3.1311]

-4.0 & -6 [3.1144 -1.5816] [1.1724 -3.3304]

TABLE II

GAINS, K AND KD , AND PARAMETERS CORRESPONDING TO THE SEVERAL SUBSETS OF EIGENVALUES OF S0 .

Rightmost Eigenvalues −0.2 ± 0.2i −0.2 ± 0.5i −0.2 ± 1.0i −0.5 ± 1.0i

σ -0.2 -0.2 -0.2 -0.5

ωd 0.2 0.5 1.0 1.0

ωn 0.2828 0.5385 1.0198 1.1180

ζ = −σ/ωn 0.7 0.3714 0.1961 0.4472

K [0.0584 -1.7867] [0.1405 -1.7998] [0.4311 -1.8152] [0.2380 -2.1656]

Kd [0.6789 2.3413] [0.7802 2.3204] [1.1421 2.2124] [0.9027 1.9451]

TABLE III

COMPARISON OF THE ACTUAL RESULTS FOR AND THE APPROXIMATIONS USING EQ. (19) OF TIME-DOMAIN SPECIFICATIONS FOR FIGURE 2.

tr ts Mp tp

Rightmost Eigenvalues approximate (Eq. (19)) actual approximate actual approximate actual approximate actual

−0.2 ± 0.2i 6.3640 6.9 23 23 4.60 6 15.7080 14.6

−0.2 ± 0.5i 3.3425 2.5 23 23 28.46 31 6.2832 6.0

−0.2 ± 1.0i 1.7650 0.8 23 27 53.35 75 3.1416 2.4
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Fig. 2. Responses of the system in (17) with the feedback (6) corresponding
to the rightmost eigenvalues in Table II with different imaginary parts of
the rightmost eigenvalues.
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Fig. 3. Responses of the system in (17) with the feedback (6) corresponding
to the rightmost eigenvalues in Table II with different real parts of the
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simple design guidelines for ODEs, and provides an effective

rule of thumb to improve the transient response of systems

of DDEs.

VI. CONCLUSIONS AND FUTURE WORK

We have applied the eigenvalue assignment method based

on the Lambert W function to design linear robust feed-

back controllers and to meet time-domain specifications of

LTI systems of DDEs with a single delay. An algorithm

for design of feedback controllers to maintain stability for

uncertain systems of DDEs is presented. With the algorithm,

considering the size of the uncertainty in the coefficients of

systems of DDEs via the stability radius, one can find appro-

priate gains of the linear feedback controller by assigning the

rightmost eigenvalues. The procedure presented in this paper

can be applied to uncertain systems, where uncertainty in the

system parameters cannot be ignored.

To improve the transient response of time delay systems,

the design guideline for systems of ODEs has been used

via the Lambert W function-based eigenvalue assignment.

The presented approach is quite standard in case of ODEs.

However, it has not been previously possible to use such

methods for systems of DDEs. Because, unlike ODEs, DDEs

have an infinite number of eigenvalues, controlling them has

not been feasible due to the lack of analytical solution form.

Using the approach based upon the solution form in terms of

the matrix Lambert W function, the analysis for robustness

and transient response can be extended from ODEs to DDEs

as presented in this paper. The presented method, which is

directly related to the position of the rightmost eigenvalues,

provides an accurate and effective approach to analyze stabil-

ity robustness and transient response of DDEs. Even though

it is not feasible to assign all of the infinite eigenvalues of

TDS, just by assigning the rightmost eigenvalues, one can

control systems of DDEs in a way similar to systems of

ODEs. This is the advantage of the Lambert W function-

based approach over other existing methods.
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