
Design of Discrete-Event Systems Using Templates

LENKO GRIGOROV lenko.grigorov@banica.org

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

JOSÉ EDUARDO RIBEIRO CURY cury@das.ufsc.br

Department of Automation and Systems, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil

KAREN RUDIE karen.rudie@queensu.ca

Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract— A new methodology for the design of DES con-
trol is proposed which allows for the creation of high-level
conceptual designs by using encapsulated low-level elements.
The approach can be used within the standard framework of
modular supervisory control. The notion of DES templates is
introduced, where typical behaviors for both DES modules and
specifications are represented in an abstract way. The control
engineer creates instances of these abstractions and specifies
the way the instances interact. System modeling and the design
of specifications occur simultaneously. Speed and robustness
of the design process are improved since there is no need to
consider details or to reimplement similar parts of a system.
The proposed methodology is applied to a small robotic testbed
to get real-world feedback.

I. INTRODUCTION

In control engineering, the possible behavior of some sys-

tems can be described as a set of sequences of discrete events.

Ramadge and Wonham [10] propose a theoretical framework,

called Supervisory Control Theory, for the modeling and

control of such systems. In this framework, the discrete

events are instantaneous, spontaneous, and certain control

can be exercised by preemptively preventing the occurrence

of some of them. Systems modeled in this framework are

called discrete-event systems (DESs) and the entity exercis-

ing the control is called a supervisor.

Practical implementations of this theory, however, have run

into a number of problems. The most significant problem is

what is called “state-space explosion”. The state complexity

of a system model may grow exponentially with the number

of participating subsystems. Another problem for the use of

the theory in practice is the fact that modeling a system and

verifying the end result are difficult and non-transparent for

the users. Further complications arise from the fact that the

usability of software packages for DES control is generally

unsatisfactory and that generally there is little support for the

use of a computed supervisor in the control of a real system.

While there does not seem to be an easy solution to

this complex set of issues, the use of predefined DES units

by engineers may lead to a much easier application of

supervisory control. In [5], the authors describe an approach

where the controlled behavior of a discrete-event system

is designed using a set of very simple specifications. Each

specification is built from a prototype structure, a template,

and exercises control over a single aspect of the system—

such as the operation of a gripper. All specifications are

executed in parallel and thus, simultaneously, provide control

for the whole system. The benefits pointed out by the

authors include significant reduction of the time needed

to design controllers, lower cost of the project and more

robust handling of failures. However, this approach also has

some disadvantages. It is assumed that almost all system

behavior can be described as the concurrent execution of

simple units without much interaction. This is not suitable

for the definition of global specifications, such as the control

for nonblocking. Furthermore, the methodology is not cast

within the supervisory control framework and it cannot take

advantage of the algorithms therein.

In this work, we propose a new methodology for the design

of DES control. We introduce the notion of DES templates

within the framework of supervisory control. Typical behav-

iors for both DES modules and specifications are represented

in an abstract way. The control engineer creates instances of

these abstractions and then needs only to specify the way

the instances interact. System modeling and the design of

specifications occur simultaneously. Speed and robustness of

the design process are improved since it is not necessary

to deal with details of the system behavior, as well as to

reimplement similar parts of a system. The computation of

the supervisory solution can be automated. The methodology

was implemented in software and support for the generation

of Programmable Logic Controller (PLC) code was added.

Then, we applied the approach to obtain a control solution

for the hardware of a small system.

II. PRELIMINARIES

The basic theory of supervisory control of discrete-event

systems [10] has been extended by researchers in attempts

to resolve some of the problems in its application. The

problem of state-space explosion has been addressed partially

by considering modular or hierarchical supervision and by

dealing with systems incrementally. A discussion of these

topics, relevant to our paper, can be found in [14], [9] and [1],

respectively. Of the methods mentioned, modular supervision

seems to be most mature. The system is modeled as a set of

separate modules or subsystems which may interact. Usually,

control specifications can then be given in a modular fashion

as well—concerning only a subset of all the modules. The

reduction of complexity is a result of being able to compute

separate, smaller, supervisors for each separate specification.

Incremental approaches to DES control usually also rely

on having a modular system model. Then, compositions of

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeA14.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 499

modules are constructed only as needed in order to determine

a given property of the system. In hierarchical control, the

base system is usually abstracted in a specific fashion and

then supervisors can be computed for only the simpler high-

level model of the system. Unfortunately, the research done

on hierarchical supervision is more disparate and a unifying

theme is lacking [7]. Modular control is not without problems

either. When separate supervisors are constructed for each

specification, it is not possible to predict what the net effect

will be of the simultaneous application of all supervisors.

Sometimes, due to some interdependence between the dif-

ferent control policies, the system may block. Thus, after

the separate supervisors are constructed, it is necessary to

check if the simultaneous application of these supervisors

will lead to blocking. For this purpose, all supervisors have

to be composed, which in some sense forfeits the benefit that

is achieved by constructing separate supervisors. However,

since blocking is a global property, in the general case there

is no way to avoid the global check.

During our personal experience with the application of

supervisory control, we noted further complications. First,

control engineers are required to learn about finite-state

automata (FSAs) and the modeling of systems and speci-

fications using FSAs. The process of modeling is quite slow

and requires a lot of attention in order to avoid errors. The

presence of an error in the design is not readily observable.

The design of interaction between different system modules

is achieved through synchronization on common events. The

designer needs to constantly maintain an overview of which

events are used for that purpose. A second complication,

partially a result of the method for synchronization, is that

system models are usually designed on a per-use basis. It

is not trivial to reuse models in other projects. Many times

it is necessary to start modeling from scratch even though

parts of the model have been designed on previous occasions.

Third, currently DES software packages offer little, if any,

support for the implementation of FSA-based supervisors so

that they can be used with real equipment.

III. TEMPLATE DESIGN OF DESS

The template method for DES design is substantiated

greatly by the observations made during a study of how

humans solve DES control problems [8]. When faced with

a new problem, subjects frequently engaged in drawing a

simple diagram of interactions between parts of the system

which needed to be modeled. It appeared that the subjects

liked to isolate different aspects of a system before they

proceeded with the low-level modeling. These observations

led to the proposal for a new methodology for the design

of DESs, where control engineers can focus on assembling

blocks of subsystems and specifications instead of worrying

about every little detail of the system.

A. Framework

Before we proceed with the theoretical aspects of our

work, we will describe a part of the system from Section V.

It will be used to illustrate the steps of the new methodology.

finish*

start*

(a) Modules G∗: rotating table (substitute ‘T ’
for ‘*’), robotic arm (substitute ‘R’) and drill
(substitute ‘D’).

exitA*, exitB*

enterA*, enterB*

(b) Specifications E∗: mutual exclusion between
table and arm (substitute ‘1’ for ‘*’) and mutual
exclusion between table and drill (substitute ‘2’).

Fig. 1. The modules and specifications used to illustrate the template
design methodology.

We will consider three system modules: a rotating table,

a robotic arm and a drill. In this subsystem, there has to

be mutual exclusion between the table and each of the

other components so that the table does not rotate while

another module performs an operation. Thus, we will use two

specifications: one for the table and the arm, and one for the

table and the drill. The system modules and the specifications

are shown in Fig. 1.

The framework for template design is largely based on

the work of Santos et al. [12], [13]. The authors propose a

methodology for conceptual design of DESs using entities

and channels. Entities are the active parts of the system

(e.g., workstations). Channels are passive parts of the system

which facilitate the transfer of matter and energy between

entities (e.g., conveyor belts). This framework is suitable

for the modeling of complex systems since it allows the

simultaneous definition of both structure and functionality.

In our framework we decided to keep all the basic propo-

sitions of [13], however, we decided to cast the whole idea

purely in DES terms. A system model consists of a set

of modules (subsystems), a set of channels (specifications),

and links between the modules and channels. Modules and

channels as we use them here are similar to the subplants

and local specifications in [3]. Finite-state automata (FSAs)

are used for the models. Let I and J be index sets such that

|I|, |J | ∈ N and I ∩ J = ∅. The set of modules is

M = {Gi = (Σi, Qi, δi, q0i, Qmi) | i ∈ I}

and the set of channels is

N = {Gj = (Σj , Qj , δj , q0j , Qmj) | j ∈ J}.

Furthermore, all modules and channels have to be asyn-

chronous, i.e.,

∀i 6= j,Gi, Gj ∈ M : Σi ∩ Σj = ∅

∀i 6= j,Gi, Gj ∈ N : Σi ∩ Σj = ∅

∀Gi ∈ M,Gj ∈ N : Σi ∩ Σj = ∅.

The requirement that modules be asynchronous is not a

stringent restriction as discussed in [3]. The benefit of having

asynchronous modules is mainly in being able to make more

500

uniform assumptions about the system. If some modules are

not asynchronous, they can be composed until there are no

dependencies between modules. The channels have to be

asynchronous because they describe generic specifications.

It is only with the help of links that the specifications

are synchronized with the given system. In our example,

M = {GT , GR, GD} and N = {E1, E2} (see Fig. 1).

In order to relate modules and channels, and determine

what specifications should be enforced on the different

subsystems, one would link the appropriate events. Let

ΣM =
⋃

Gi∈M Σi be the set of all events in the modules and

ΣN =
⋃

Gj∈N Σj be the set of all events in the channels.

Then, the links in the system model will be given by the

function

C : ΣN → ΣM .

In other words, the function defines links between events of

channels and events of modules. The interpretation of the

link C(τ) = σ is that the event τ in the given channel

should be considered equivalent to the event σ of the given

module—thus relating the generic specification to the given

system. Synchronization between the modules and channels

is established, in effect defining the protocols for the transfer

of information between parts of the system. For all Gj ∈ N ,

the restrictions of the function,

C|Gj
: Σj → ΣM ,

have to be injective to ensure the consistency of the model.

The function

C−1 : ΣM → 2ΣN

is the inverse of C and, given Gj ∈ N , the restriction of

C−1 to Gj is

C−1|Gj
: ΣM → Σj ,

where C−1|Gj
(σ) equals the only element of C−1(σ) ∩ Σj

if it exists, and is undefined otherwise.

In our example, we need to link channel E1 to the table,

GT , and the robotic arm, GR. Similarly, we need to link E2

to the table and the drill, GD. The channel events marked

with “A” will be linked to events of the table, while the events

marked with “B” will be linked to the arm (in E1) and the

drill (in E2). Thus, we define the function C as follows:

C(enterA1) = startT ;C(exitA1) = finishT ;

C(enterB1) = startR;C(exitB1) = finishR;

C(enterA2) = startT ;C(exitA2) = finishT ;

C(enterB2) = startD;C(exitB2) = finishD.

As a result, for example, C−1(finishT) = {exitA1, exitA2}
and C−1|E2

(finishT) = exitA2.

After a system is modeled in the proposed framework,

modular control can be applied to obtain supervisors for

the separate specifications. This is possible since, under the

right interpretation, the model is equivalent to that of a

regular modular system. In our work we propose the use

of an optimized version of modular control, namely local

modular control [3]. The precondition for the application of

finishT , finishR

startT , startR

Fig. 2. The synchronized version of E1.

this method is satisfied, i.e., the participating modules are

asynchronous. All modules which are linked to a channel

participate in the subsystem influenced by the specification

determined by the channel. Let G = (Σ, Q, δ, q0, Qm) ∈ N

be a channel. Then define G′ = (Σ′, QE , δ′, q0, Qm) as the

synchronized channel G where all channel events have been

replaced with their corresponding module events, i.e.,

Σ′ = {σ | ∃τ ∈ Σ, C(τ) = σ},

δ′(q, σ) = δ(q, C−1|G(σ)).

Furthermore, define

C(G) = {Gi | Gi ∈ M,Σi ∩ Σ′ 6= ∅},

the set of modules influenced by G.

In our example, in order to synchronize the channel E1,

the events are replaced as specified by the function C

(see Fig. 2). Channel E2 is synchronized in a similar way.

Furthermore, C(E1) = {GT , GR} and C(E2) = {GT , GD}.

For every channel Gj ∈ N , all the modules influenced by

it are composed via synchronous product.

Gj
sys = (Σj

sys, Q
j
sys, δ

j
sys, q

j
0sys, Q

j
msys) = ‖C(Gj)Gi.

Then all events in the subsystem which do not appear in the

synchronized channel are applied as self-loops to all states in

the synchronized channel, i.e., the channel has no influence

on the occurrence of these events.

Gj
spec = selfloop(G′

j ,Σ
j
sys \ Σ′

j)

Finally, the algorithm from [10] for the construction of

the supremal controllable sublanguage of the synchronized

channel with respect to the relevant subsystem is invoked.

Sj = supcon(Gj
sys, G

j
spec).

As a result, local supervisors for each channel are con-

structed.

In our example, G1
sys = GT ‖GR and G2

sys = GT ‖GD.

All events in each subsystem are linked to the corresponding

channel, e.g., the events in G1
sys are startT , finishT , startR

and finishR—and all of them are used in the synchronized

channel E′

1 (see Fig. 2). Thus, no self-loops are introduced

into the channels, i.e., G1
spec = E′

1 and G2
spec = E′

2. The

supervisor S1 obtained for G1
spec with respect to G1

sys is

shown on Fig. 3. It is easy to see that the simultaneous

operation of the table and the arm is avoided. The supervisor

for G2
spec is analogous.

The last step involves checking whether the supervised

system is nonblocking, as defined in [3]. As long as the

supervisors are nonconflicting, i.e.,

‖Gj
Sj = ‖Gj

Sj ,

501

finishR startT

finishTstartR

Fig. 3. The supervisor for G1
spec

with respect to G1
sys

.

the nonblocking property is satisfied and, furthermore, the

concurrent operation of the modular supervisors is optimal

(i.e., equivalent to a monolithic solution). In our example, the

two supervisors for channels E′

1 and E′

2 are nonconflicting.

B. Templates

The next advantage of our methodology is that it allows

the use of templates. A template is simply a model of some

discrete-event behavior. In the supervisory control setting,

the model would be an FSA. In other words, any FSA can

be a template. The idea behind templates is that if they define

some frequently used behavior, one need not manually create

a separate FSA each time this behavior is needed. Instead,

the software can make a copy of the template, or instantiate

the template.

Let G = (Σ, Q, δ, q0, Qm) be a template. The instance

with index p is defined as Ins(G, p) = (Σp, Q, δp, q0, Qm),
where the events of G are indexed with p. I.e.,

Σp = {σp | σ ∈ Σ},

δp(q, σp) = δ(q, σ).

Thus, for example, creating the DES modules for ten work-

stations would be reduced to instantiating the corresponding

template with ten different indexes. Since the copies can be

made automatically, the process is both faster and less error-

prone. Furthermore, if the templates have been designed by

experts and thoroughly tested, any user can use them with

the same degree of reliability.

Since templates can describe both system behavior (i.e.,

modules) and restrictions on behavior (i.e., channels), the use

of templates within our framework is very natural. Suppose

there is a library of templates Lib = {Gk | k ∈ K}, where

K is an index set such that |K| ∈ N,K ∩ I = ∅ = K ∩ J .

Then, the set of modules, M , participating in a design can be

created by instantiating the required templates, i.e., ∀Gi ∈ M

(where i ∈ I), ∃Gk ∈ Lib : Gi = Ins(Gk, i). Since the

events of every template instance are named in a unique way,

all modules will be asynchronous as required. Similarly, the

set of channels, N , can be created by instantiating templates.

The example we used in Section III-A is an ample

illustration of this idea. All system modules—rotating table,

robotic arm and drill—share the same basic behavior, as

shown in Fig. 1(a). The mutual exclusion specifications also

share the same behavior (see Fig. 1(b)). Thus, if templates

are used, the system modules can be instantiations of a

generic “workstation” template, while the channels can be

instantiations of a generic “mutual exclusion” template. If

one looks again at the caption of Fig. 1, something very

similar is described verbally.

C. Parametrization

A further improvement to the template design method-

ology can be made by considering parametrization of the

template behavior. For example, if one would like to create

templates for buffers, a separate template has to be con-

structed for all buffer capacities that need to be considered

(e.g., buffer with two slots, buffer with three slots, etc.)

However, it can be easily seen that the basic workings

of a buffer are the same regardless of capacity. It would

be much more convenient if there were a single “buffer”

template which is parametrized in terms of capacity—and

then at instantiation one would be able to choose the specific

capacity to be used.

One possible approach to the parametrization of FSAs is

described in [2]. There, a regular FSA is augmented with

a data collection. The data collection is a vector of scalars

which can range over some set. A vector of unary functions

is associated with each transition in the FSA. For example, a

buffer can be modeled as a single state with two self-looped

transitions, “insert” and “remove”, and a single integer in the

data collection to keep track of the number of items in the

buffer. Then, the functions “+1” and “−1” will be applied to

the integer when “insert” and “remove”, respectively, occur.

In such a system, control can be based on predicates about

the current state of the system and on the current value

of the data collection. The authors propose a method to

compute the supremal controllable sublanguage of a system

by incrementally backtracking with the predicates until the

control decisions do not attempt control of uncontrollable

events. Unfortunately, the use of this model may easily result

in non-regular behaviors and specifications. This is the reason

why the model cannot be readily applied in the template

framework proposed in this work. A potential solution would

be to restrict the type of data collections that can be used. For

example, each scalar in a data collection could be restricted

to belong to a closed integer interval. However, even in this

case it is necessary to find an efficient transformation from

the parametrized model into a “simple” FSA.

IV. SOFTWARE PACKAGE FOR TEMPLATE DESIGN

The theoretical foundation of template design does not

require any graphical representations. However, as it has

been discovered in practice [6], [8], the lack of graphical

representation may significantly influence the usability of a

software package. Thus, one of the principles we decided

to follow in designing our software was to use a graphical

interface. A screenshot of the interface is shown in Fig. 4. We

decided to use boxes to represent instances of modules and

circles to represent instances of channels. The links between

modules and channels are represented as lines connecting the

boxes and circles. The user of the software can create and

manipulate the graphical elements using the mouse cursor.

Template design is just a high-level interpretation of

modular supervisory control. Finite-state automata underlie

all elements of the design and regular DES operations are

applied at the low level to produce the supervisors. Thus, any

software which supports template design has to be able to

502

Fig. 4. The template design software interface.

perform all functions of a regular DES tool as well. Instead

of writing a completely new software package, we decided

to extend the IDES software developed at Rudie’s research

laboratory, [11]. Its architecture supports the addition of

extensions, it offers an advanced graphical interface infras-

tructure, and it can be used on all major computer platforms

since it is developed in Java.

Since the purpose of template design is to make the

application of DES theory easier, we decided to try to stream-

line the complete process of application: from modeling to

control of the real hardware. In many cases the real system

is controlled by a PLC unit; this is the case in our example

system as well. Thus, we focused on the generation of PLC

code from the template design. There are many ways how

to convert FSAs into code, however, the method proposed

in [4] seems to be most suitable for two reasons: it converts

FSAs directly into PLC code, and it is designed with modular

control in mind. Since this approach is generic, the users

still need to make manual modifications to insert hardware-

specific instructions. In our software, for each event in the

template design the user can specify a snippet of PLC

code. Then, during PLC code generation, this code will be

incorporated into the automatically produced code.

V. EXAMPLE APPLICATION

In order to test the applicability of template design of

DESs, the methodology was used to design a controller

for a robotic testbed at the Department of Automation and

Systems, Federal University of Santa Catarina, Brazil. The

functionality of the system, shown in Fig. 5, is to retrieve

parts from an input buffer, perform operations on the parts

and test if the operations were successful. Depending on the

outcome of the test, the given part is output into one of a

number of buffers (such as “accepted”, “reprocess”, etc.) The

system is controlled via a Siemens S7-200 series PLC unit.

The part of the system we used included four modules:

the input buffer for new parts, the arm with a grabber, the

rotating table which moves a part to the different worksta-

tions and one of the workstations, the drill. The arm with

the grabber was simplified to perform only one (high-level)

activity: retrieve a part from the input buffer and place it

on the table. The specifications applied to the system were

as follows. First, there has to be mutual exclusion between

the table and the arm and between the table and the drill. In

other words, the table should not turn while one of the other

units is in the middle of completing an operation. Second,

there has to be underflow control for the input buffer, i.e.,

the arm should not retrieve a part if there are no parts in the

buffer. Third, there has to be control over the sequence of

operations: after a part is placed on the table, the table has

to turn before the drill operates on the part.

At the start of the modeling, it was assumed that the

template library contains all relevant templates (such as the

ones in Fig. 1). Then, the modules and channels were created

by instantiating the templates and linking the relevant events.

The supervisory control algorithms were performed to obtain

modular supervisors, to check the local modularity property

and to generate the corresponding PLC code. The code was

downloaded onto the PLC unit and the testbed was started.

VI. DISCUSSION AND CONCLUSIONS

The template design of DESs is based on theoretical work,

however, the main motivation for its conception was mak-

ing the application of DES control simpler. The following

improvements were envisioned.

• Faster design of systems. The use of pre-built templates

not only reduces the time to mechanically input new

FSAs but also the time to mentally consider low-level

details of FSA implementations.

• More robust designs. Fewer errors can be made during

the design since it is not necessary to manually copy

FSAs and to keep track of the names of events in

different modules and specifications.

Fig. 5. The robotic testbed where template design was applied.

503

• Easier design. Instead of considering the FSAs which

underly every template, the designer can focus their

creative effort only on the important task of determining

which modules and channels are to be used and how

to link them. The creation of supervisors is completely

automated.

The application of the template design methodology to a

real project, even though very small, brought some inter-

esting insights from the participating engineering students.

Surprisingly, the biggest advantage of the design method-

ology does not seem to be the ability to use templates

per se. According to the feedback from the users of the

software, the biggest benefit of the proposed methodology

comes from the fact that the template design environment

makes it very easy to model and remodel systems, i.e., to

create prototypes in the initial stages of system design. It is

simple to replace modules and channels and then generate the

corresponding supervisors to see what happens. The users no

longer have to keep track of event name consistency between

modules and between specifications. Synchronization is not

achieved by naming events consistently but rather by visually

linking them. Then, it is easy to try different synchronization

strategies and it is possible to use a single template instance

in a number of ways without having to always rename

events. This property seemed to be especially liberating since

renaming events is laborious and error-prone. In our project

it was necessary to go through a large number of iterations

where the system was simplified with different approaches.

This rapid prototyping would not have been feasible if all

operations had to be called manually and if event names had

to be changed for every new approach.

From the observations made during the application of the

template design methodology, it becomes clear that future

work should focus on the usefulness for rapid prototyping.

For example, it is desirable to allow the creation of concep-

tual designs without having to instantiate specific templates,

i.e., by creating “placeholder” modules and channels. The

user will be able to delay the assignment of templates to

these placeholders until more of the overall design is ready.

Further work should also focus on providing support for

real-time interaction between model and running system. The

current implementation of the software supports only one-

way interaction with the real system—PLC code is generated

from the abstract description of the DES supervisors and

it is downloaded to the PLC controller. However, it is not

possible to receive any feedback from the real system when

it runs. Feedback which is not real-time, such as a log of

the executed events and how much time they took, may

be used for analysis of the performance of the controlled

system. It would be much more interesting, however, to

be able to connect the software with the system controller

(such as a PLC) in order to obtain real-time feedback. This

could be used in many ways: from animating on the screen

the execution of the system to providing high-level control

from within the software, if the PLC code is equipped to

delegate the control of some events to the software. By

incorporating real-time feedback, a designer could swap

control specifications during the system runtime and thus

immediately observe the effect of such changes.

VII. ACKNOWLEDGMENTS

We would like to thank the following people whose help

and support were crucial for the completion of this work:

Max de Queiroz, Francisco da Silva, Guilherme Lise and

Luis Marques from Federal University of Santa Catarina,

Brazil and Steffi Klinge from Otto-von-Guericke University,

Germany. The project was supported through grants from

NSERC and Queen’s University, Canada, and CNPq, Brazil.

REFERENCES

[1] B. A. Brandin, R. Malik, and P. Malik. Incremental verification and
synthesis of discrete-event systems guided by counter examples. IEEE
Transactions on Control Systems Technology, 12(3):387–401, May
2004.

[2] C. de Oliveira, J. E. R. Cury, and C. A. A. Kaestner. Discrete event
systems with guards. In Proceedings of the 11th IFAC Symposium
on Information Control Problems in Manufacturing, volume 1, pages
90–95, Salvador, Brazil, 2004.

[3] M. H. de Queiroz and J. E. R. Cury. Modular control of composed
systems. In Proceedings of the 2000 American Control Conference,
volume 6, pages 4051–4055, June 2000.

[4] M. H. de Queiroz and J. E. R. Cury. Synthesis and implementation
of local modular supervisory control for a manufacturing cell. In
Proceedings of the 6th International Workshop on Discrete Event
Systems (WODES’02), pages 377–382, Zaragoza, Spain, October 2002.

[5] G. Ekberg and B. H. Krogh. Programming discrete control systems
using state machine templates. In Proceedings of the 8th International
Workshop on Discrete Event Systems, pages 194–200, Ann Arbor, MI,
USA, July 2006.

[6] C. M. Enright and M. Barbeau. An evaluation of the TCT tool for
the synthesis of controllers of discrete event systems. In Canadian
Conference on Electrical and Computer Engineering, volume 1, pages
241–244, Vancouver, BC, Canada, September 1993.

[7] L. Grigorov. Hierarchical control of discrete-event systems. Survey
paper, School of Computing, Queen’s University, Canada, 2005.
Available at http://www.cs.queensu.ca/˜grigorov/.

[8] L. Grigorov and K. Rudie. Problem solving in control of discrete-
event systems. In Proceedings of the European Control Conference
2007, pages 5500–5507, Kos, Greece, July 2007.

[9] R. J. Leduc. Hierarchical Interface-based Supervisory Control. PhD
thesis, Department of Electrical and Computer Engineering, University
of Toronto, 2002.

[10] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM Journal on Control and Optimization,
25(1):206–230, 1987.

[11] K. Rudie. The integrated discrete-event systems tool. In Proceedings
of the 8th International Workshop on Discrete Event Systems, pages
394–395, Ann Arbor, MI, USA, July 2006.

[12] E. A. P. Santos, J. E. R. Cury, and V. J. D. Negri. Modelagem das
especificações operacionais de sistemas de manipulação e montagem
automatizados. In Sı́mposio Brasileiro de Automação Inteligente,
pages 144–149, Bauru, São Paulo, Brazil, 2003.

[13] E. A. P. Santos, V. J. D. Negri, and J. E. R. Cury. A computational
model for supporting conceptual design of automatic systems. In
Proceedings of 13th International Conference on Engineering Design,
pages 517–524, Glasgow, UK, August 2001.

[14] W. M. Wonham and P. J. Ramadge. Modular supervisory control of
discrete-event systems. Mathematics of Control, Signals, and Systems,
1:13–30, 1988.

504

