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Abstract— This paper investigates the fault tolerant control
(FTC) problem for a class of hybrid nonlinear impulsive
systems. Two kinds of faults are considered: continuous faults
that affect each mode, and discrete faults that affect the
impulsive switching. The FTC strategy is based on the trade-
off between the frequency of switching and the decreasing rate
of Lyapunov functions along the solution of the system, which
maintains the stability of overall hybrid impulsive systems in
spite of these two kinds of faults. A numerical example is given
to illustrate the design procedure.

Index Terms— Hybrid impulsive systems, fault tolerant con-
trol, observer, average dwell time.

I. INTRODUCTION

Hybrid impulsive systems (HIS) represent an important

type of hybrid systems that have gained much attention in

engineering, where the continuous states abruptly change due

to the impulse effect at each switching instant. Examples

of HIS include some biological neural networks, frequency-

modulated signal processes, flying object motions [1]-[3].

However, most of the results about HIS only consider full

state measurements and do not involve the on-line fault

diagnosis (FD) and fault tolerant control (FTC) schemes.

Faults may lead to unacceptable system behaviors. FD is

concerned, while FTC aims at guaranteeing the system goal

to be achieved in spite of faults [4]-[5]. Two main kinds of

faults have been defined for hybrid systems in [6]: continuous

faults corrupt the equality constraints of the related mode,

and discrete faults affect the switching. For the case that only

partial state measurements of hybrid systems are available,

the observer design is also a challenge. Until now, only a

few results have been reported about observer-based FTC

for non-impulsive hybrid systems [7]-[10].

In this paper, we focus on the FTC problem for hy-

brid nonlinear impulsive systems with both continuous and

discrete faults, and without full state measurements. An

observer-based FTC law is designed for each mode, and two

consequent cases are considered. For the case that each mode

is input to state stable (ISS) w.r.t. the estimation error as the

input, an average dwell time (a.d.t.) [11] scheme is proposed

such that the ISS property of the HIS is maintained in spite of

This work is partially supported by National Natural Science Foundation
of China (60574083), National “863” program of China (2006AA12A108),
Aeronautics Science Foundation of China (2007ZC52039) and Graduate
innovation research funding of Jiangsu Province(CX07B-112z).

H. Yang is with College of Automation Engineering (CAE), Nanjing
University of Aeronautics and Astronautics (NUAA), 29 YuDao Street,
Nanjing, 210016, China and LAGIS-CNRS, UMR 8146, Université des
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faults and impulse effects. This makes the continuous states

always bounded. For the case that only partial modes are ISS

under the FTC law, a novel double a.d.t. scheme is developed

to keep the overall system still ISS.

To the best of our knowledge, no ISS analysis has been

reported about HIS with faults. The novelty of our approach

is to stabilize the faulty HIS in the sense of ISS in general

situations:

1) where all modes are individually ISS under the FTC

law.

2) where some modes are ISS, and others may be not due

to the fault. The individual ISS of each mode as in [13]

and [15] is not necessary here.

3) without the restriction on the decay rate of the impulsive

dynamics as in [1], [3], [12].

The rest of this paper is organized as follows: Section II

gives some preliminaries. Section III discusses the FTC for

single mode. In section IV, FTC for overall HIS is intensively

analyzed. An example is given to illustrate the theoretical

results in Section V, followed by some concluding remarks

in Section VI.

II. PRELIMINARIES

Let ℜ denote the field of real numbers, ℜr the r-

dimensional real vector space. |·| the Euclidean norm. ‖·‖[a,b]

the supremum norm of a signal on the time interval [a, b].
Class K is a class of strictly increasing and continuous

functions [0,∞) → [0,∞) which are zero at zero. Class K∞

is the subset of K consisting of all those functions that are

unbounded. β : [0,∞) × [0,∞) → [0,∞) belongs to class

KL if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t)
decreases to 0 as t → ∞ for each fixed s ≥ 0. λmax(·)
and λmin(·) denote the maximal and minimal eigenvalues

respectively. t− denotes the left limit time instant of t. (·)⊤

is the transposition.

The HIS that we consider takes the form
{

ẋ(t) = Aσ(t)x(t) + Gσ(t)(x(t))θσ(t)(t) + Bσ(t)uσ(t)(t)
y(t) = Cσ(t)x(t), t 6= tk, k ∈ {1, 2, ...}

(1)
{

x(t) = fσ(t−),σ(t)

(

x(t−), uσ(t−)(t
−), θd

σ(t−),σ(t)(x(t−))
)

y(t) = Cσ(t)x(t), t = tk, k ∈ {1, 2, ...}
(2)

where x(t) ∈ ℜn is the non measured state which is

continuous between impulses. y(t) ∈ ℜr is the output,

uσ(t) ∈ ℜm is the control. Aσ , Bσ and Cσ are real

constant matrices of appropriate dimensions. (Aσ, Bσ) is

controllable, (Aσ, Cσ) is observable. θσ ∈ ℜj is a bounded

parameter, |θσ| ≤ θ̄σ for θ̄σ > 0. In the fault-free case,
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we have θσ = θHσ with θHσ a known constant vector. The

nonlinear term Gσ(x) is a continuous Lipschitz function, i.e.,

|Gσ(x1)−Gσ(x2)| ≤ Lσ|x1−x2| for Lσ > 0. It is assumed

that Gσ(0) = 0, and |Gσ(x)| ≤ ḡσ for ḡσ > 0.

The continuous fault changes the parameter θσ unexpect-

edly as in [17]. In the faulty case, θσ = θHσ + θfσ , where

θfσ denotes the unknown constant fault vector, |θfσ| ≤ θ̄fσ ,

for θ̄fσ > 0.

Define M = {1, 2, . . . , N}, where N is the number of

modes. σ(t) : [0,∞) → M denotes the piecewise constant

switching function [1]. At the kth switching instant tk, the

system (1) switches from mode i to mode j, where i =
σ(t),∀t ∈ [tk−1, tk) and j = σ(t),∀t ∈ [tk, tk+1).

The impulsive dynamics (2) is activated at each tk.

The discrete fault is considered as an abnormal impulse

effect, which is represented by the unknown function

θd
σ(t−),σ(t)(x(t−)), and does not exist in the fault-free case.

There are quite a few practical systems that can be

described by the HIS model (1)-(2), e.g., the biped walking

robot [16], etc.

The objective of this work is to design the FTC law uσ

and provide a sufficient condition on the switching frequency

of σ such that the state x is always bounded in spite of faults

and impulse effects.

III. FTC FOR SINGLE MODE

In this section, we design the controller uσ(t) such that

mode σ(t) is stabilized in spite of continuous fault θfσ .

A. Observer design

Consider the continuous mode of system (1) with σ(t) = j

for some j ∈ M starting from t = tk.

ẋ(t) = Ajx(t) + Gj(x(t))θj + Bjuj(t) (3)

y(t) = Cjx(t) (4)

The work of observer design for system (3) and (4) is not

only to estimate x, but also to provide the fault estimates for

the fault tolerant controller design as shown later.

Assumption 1 : There exist two constant matrices Ej ,Kj ∈
ℜn×r such that Gj(x) = EjḠj(x) and Cj [sI − (Aj −
KjCj)]

−1Ej is strictly positive real (SPR).

The SPR requirement is equivalent to the following: For

a given matrix Qj ∈ ℜn×n > 0, there exist a matrix Pj ∈
ℜn×n > 0 and scalar Rj such that

(Aj − KjCj)
⊤Pj + Pj(Aj − KjCj) = −Qj

PjEj = C⊤
j Rj

The fault diagnosis observer for mode j is designed as

˙̂x = Aj x̂ + Gj(x̂)θ̂j + Bjuj + Kj(y − ŷ) (5)

ŷ = Cj x̂ (6)

˙̂
θj = ΓjG

⊤
j (x̂)Rj(y − ŷ) (7)

where x̂, θ̂j , ŷ are the estimates of x, θj , y. The weighting

matrix Γj = Γ⊤
j > 0.

Remark 1 : We neither care about when the fault occurs nor

design a so-called detection observer as in [5] and [17] to

detect the fault. This fault diagnosis observer always works

no matter the mode j is faulty or not (i.e., the normal

condition can be treated as a special faulty case where

θj = θHj). ♦

Denote ex = x − x̂, ey = y − ŷ, eθ = θj − θ̂j , we have

the following lemma:

Lemma 1 : Under Assumption 1, the observer described by

(5)-(7) can realize limt→∞ ex = 0 and limt→∞ eθ = 0 if

there exist two positive constants ̺ and t0 such that for all

t, the following persistent excitation condition holds:

∫ t+t0

t

Ḡ⊤
j (x(s))Ḡj(x(s))ds ≥ ̺I (8)

Proof: The proof is similar to [17], which is omitted. 2

Lemma 1 means that the observer (5)-(7) provides both

the continuous state estimates x̂ and the fault estimates θ̂j ,

which will be used for controller design in the next section.

B. Fault tolerant Controller

Definition 1 [18]: A system ẋ = f(x, u) is said to be input-

to-state stable (ISS) w.r.t the input u if there exist functions

β ∈ KL, α, γ ∈ K∞ such that for any initial x(0), we have

α(|x(t)|) ≤ β(|x(0)|, t) + γ(‖u‖[0,t)), ∀t ≥ 0 2

The following property has been proven in [18].

Lemma 2 : If there exist α1, α2, α3, γ1 ∈ K∞, and a smooth

function V : ℜn → ℜ≥0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (9)

V̇ (x) ≤ −α3(|x|) + γ1(|u|) (10)

Then the system ẋ = f(x, u) is ISS w.r.t. u. 2

Recall that (Aj , Bj) is controllable. Let Wj = WT
j > 0

be associated with a given symmetric positive definite matrix

Hj by the Riccati equation

AT
j Hj + HjAj − 2HjBjB

T
j Hj + Wj = 0 (11)

Note that Gj(x) satisfies the Lipschitz condition

|Gj(x)| ≤ Lj |x|. It has been shown in [3] that there exists

a positive number ηj such that

θ⊤HjG
⊤
j (x)Hjx ≤ ηjx

⊤Hjx (12)

The design of the proposed fault-tolerant controller makes

use of the following assumption.

Assumption 2 : rank(Bj , Ej) = rank(Bj), which is equiv-

alent to the existence of B∗
j such that (I − BjB

∗
j )Ej = 0.

The fault-tolerant controller is constructed as

uj(x̂) = −BT
j Hj x̂ − B∗

j EjḠj(x̂)(θ̂j − θHj) (13)

Theorem 1 : Suppose that Assumptions 1-2 are satisfied,

under the feedback controller (13), mode j in (3)-(4) is ISS

w.r.t. ex and eθ, if

−λmin(Wj) + ηj |Hj | < 0 (14)
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Proof (sketch): Applying the control (13) to (3) results in

the closed-loop dynamics

ẋ = (Aj − BjB
T
j Hj)x + BjB

T
j Hjex + G(x)jθHj

+Ej

(

Ḡj(x)θfj − Ḡj(x̂)θ̂fj

)

(15)

where θ̂fj , θ̂j − θHj . Consider a Lyapunov candidate

Vj(x) = xT Hjx, where Hj > 0 is defined by (11). Its

derivative along the system (15) is

V̇j = −x⊤Wjx + 2x⊤HjBjBj
⊤Hjex + 2x⊤HjG(x)jθHj

+2x⊤HjEj(Ḡj(x)θfj − Ḡj(x̂)θ̂fj) (16)

Substituting (12) into (16) yields

V̇j ≤ (−λmin(Wj) + ηj |Hj | + ǫ1 + ǫ2 + ǫ3)|x|
2

+
( |HjBjB

T
j Hj |

2

ǫ1
+

|HjEjLj |
2θ̄2

fj

ǫ2

)

|ex|
2

+
|HjEj |

2ḡ2
j

ǫ3
|eθ|

2 (17)

where ǫ1, ǫ2, ǫ3 > 0, θ̄fj and ḡj denote the norm bounds

of θfj and Gj defined in Section 2. Under the condition

(14), ǫ1, ǫ2, ǫ3 > 0 can be chosen small enough such that Vj

satisfies (9) and (10), from Lemma 2, the result follows. 2

If we could choose Hj and Wj such that (14) is satisfied,

then each single mode is ISS w.r.t ex and eθ in spite of

continuous faults, which, together with Lemma 1, implies

that x converges to zero.

IV. FTC FOR HYBRID IMPULSIVE SYSTEMS

In this section, we first consider that all modes are ISS

w.r.t. ex and eθ, then extend the result to the case that some

modes may be not stabilized in the sense of ISS, because

(14) does not hold. We will show that under some switching

conditions, it is not necessary to design the stabilizing

controller for each faulty mode. The stability of the overall

HIS are still guaranteed.

A. All ISS modes

Consider the hybrid impulsive system (1), since all modes

are ISS, it can be obtained from Theorem 1 that there exist

continuously differentiable functions Vk : ℜn → ℜ≥0, k ∈
M and γ̄1(·), γ̄2(·) ∈ K∞, such that ∀p ∈ M

ᾱ1|x|
2 ≤ Vp(x) ≤ ᾱ2|x|

2 (18)

V̇p(x) ≤ −λ0Vp(x) + γ̄1(|ex|) + γ̄2(|eθ|) (19)

where constants ᾱ1, ᾱ2, λ0 > 0.

Assumption 3 : There exist two known numbers ξ1, ξ2 ≥ 0
such that the impulsive dynamic of (1) with discrete faults

satisfies

|x(tk)| ≤ ξ1|x(t−k )| + ξ2|ex(t−k )|, k ∈ {1, 2, ...} (20)

Remark 2 : Assumption 3 is a mild condition due to the

following aspects: 1) Since the impulsive dynamics includes

x and x̂, the discrete fault is also a function of x, the form

of (20) appears naturally for the norm bound of x(tk). 2)

The magnitudes of ξ1 and ξ2 are not restricted, and can be

taken arbitrarily large. 3) Inequality (20) does not restrict the

decay rate of the impulsive dynamics as in [1], [12], and has

no relation with the continuous dynamics. ♦

Definition 2 [11]: Let Nσ(T, t) denote the number of switch-

ings of σ over the interval (t, T ), if there exists a positive

number τa such that

Nσ(T, t) ≤ N0 +
T − t

τa

, ∀T ≥ t ≥ 0 (21)

where N0 > 0 denotes the chattering bound, then the positive

constant τa is called average dwell time(a.d.t.) of σ over

(t, T ). 2

Definition 2 means that there may exist some switchings

separated by less than τa, but the average dwell period among

switchings is not less than τa.

The observer-based method in Section 3 is modified for

the overall system as follows:

S1: The fault diagnosis observer (5)-(6) and the controller

(13) are switched according to the current mode at each

switching instant tk.

S2: The initial observer state of the current mode is chosen

as the previous value x̂(t−k ). The parameter estimates

θ̂σ(tk) are set to θHσ(tk) at switching instant tk.

We also impose another assumption:

Assumption 4 : ex(tk) is bounded at each tk, k ∈ {1, 2, ...}.

Assumption 4 is not hard to be satisfied, since Lemma 1

ensures the asymptotical stability of ex in mode σ(tk) with

any initial ex(tk). Also, the impulse effect is bounded.

The following theorem provides an a.d.t. scheme such that

the HIS is ISS in spite of faults.

Theorem 2 : Consider the HIS (1)-(2) that satisfies Assump-

tion 3, and all modes are ISS w.r.t. ex(t), eθ(t). The HIS

is ISS w.r.t. ex(t), eθ(t) in spite of any fault and any large

impulse effect if the switching function σ has an a.d.t. τa

such that

τa >
ln̟

λ0
(22)

where ̟ ,
2ᾱ2ξ2

1

ᾱ1
and ̟ ≥ 1.

Proof (sketch): We adopt the notations similar to that in

[15]. Define Gb
a(λ) =

∫ b

a
eλsΦds, where Φ , γ̄1(|(ex|) +

γ̄2(|(eθ|). Let T > 0 be an arbitrary time, denote by

t1, . . . , tNσ(T,0) the switching instants on the interval (0, T ),
where Nσ(T, 0) is defined in (21). Consider the function

W (s) , eλ0sVσ(s)(x(s)) (23)

Since σ(s) is constant on each interval s ∈ [tk, tk+1), from

(19), we have Ẇ (s) ≤ eλ0sΦ,∀s ∈ [tk, tk+1). Integrating

both sides of the foregoing inequality from tk to t−k+1, we

obtain

W (t−k+1) ≤ W (tk) + G
t
−

k+1

tk
(λ0) (24)

Suppose σ(t) = j, t ∈ [tk, tk+1), and σ(t) = i, t ∈
[tk−1, tk), we have

W (tk) = eλ0tkVj(x(tk))

W (t−k ) = eλ0tkVi(x(t−k ))
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From (18) and (20), it follows that

Vj(x(tk)) ≤ ᾱ2|x(tk)|2 ≤ 2ᾱ2ξ
2
1 |x(t−k )|2 + 2ᾱ2ξ

2
2 |ex(t−k )|2

≤ ̟Vi(x(t−k )) + 2ᾱ2ξ
2
2 |ex(t−k )|2 (25)

Define χk , 2eλ0tk ᾱ2ξ
2
2 |ex(t−k )|2. Substituting (25) into

(24), together with (23) leads to

W (T−) ≤ ̟NσW (0) +

Nσ
∑

i=1

(

̟Nσ−iχi

)

+

Nσ
∑

j=0

(

̟Nσ−jG
t
−

j+1

tj
(λ0)

)

(26)

where t0 = 0, tNσ(T,0)+1 = T , and Nσ , Nσ(T, 0). Pick

λ ∈ (0, λ0−
ln ̟
τa

), we have τa ≥ ln ̟
(λ0−λ) . Based on (21), we

have

̟Nσ−j ≤ ̟N0+
T
τa

−j+1−1

≤ ̟1+N0e(λ0−λ)(T−tj+1) (27)

and

G
t
−

j+1

tj
(λ0) =

∫ t
−

j+1

tj

eλ0sΦds ≤ e(λ0−λ)tj+1G
t
−

j+1

tj
(λ) (28)

Substituting (27), (28) into (26) yields

W (T−) ≤ ̟1+N0e−λT
(

eλ0T W (0) +

Nσ(T,0)
∑

j=0

eλ0T G
t
−

j+1

tj
(λ)

)

+

Nσ
∑

i=1

(

2eλ0T ᾱ2ξ
2
2̟N0 |ex(t−i )|2

)

Note that there exists a function γ̄3 ∈ K∞ such that

γ̄3(‖ex(t−i )‖[t1,tNσ ]) =

Nσ
∑

i=1

(

2ᾱ2ξ
2
2̟N0 |ex(t−i )|2

)

It follows that

ᾱ1|x(T )|2 ≤ ̟1+N0e−λT (ᾱ2|x(0)|2 + GT
0 (λ))

+γ̄3(‖ex(t−i )‖[t1,tNσ ])

≤ βa(|x(0)|, t) + γex(‖ex‖[0,T )) + γeθ(‖eθ‖[0,T ))

where βa ∈ KL, γex, γeθ ∈ K∞. 2

Roughly speaking, Theorem 2 shows that, under a low

switching frequency, the overall HIS is ISS w.r.t. ex, eθ. This

result, together with S1-S2 and Assumption 4, guarantees the

global boundness of x in spite of faults and impulse effects.

Remark 3 : The global convergence of x to zero can be

achieved if the estimation errors also converge to zero

globally, which is satisfied under more restrict conditions.

Some related work can be seen in [10]. ♦
Remark 4 : The discrete fault is hard to be detected since

it appears and vanishes instantly, unless the impulsive dy-

namics satisfies some special structures such that the fault

can be detected rapidly from outputs as in [9]. Theorem 2

shows that the discrete fault detection and diagnosis is not

necessary to keep the HIS stable. ♦

Remark 5 : Note that if ̟ ≤ 1, i.e., the impulsive dynamics

decreases the norm bound of x, then the HIS can switch

at any time without affecting the ISS, due to the fact that

Nσ → ∞ ⇒ ̟N
σ → 0. This property is unavailable for

general non-impulsive hybrid systems [15]. ♦

B. Partial ISS modes

Now consider the case that some modes are ISS while

others may be not. Define two subsets of M as M = Ms ∪
Mus, where Ms (Mus) denotes the set of modes that are

(not) ISS.

The following two inequalities are considered instead of

inequality (19)
{

V̇p(x) ≤ −λ0Vp(x) + γ̄1(|ex|) + γ̄2(|eθ|) ∀p ∈ Ms

V̇q(x) ≤ λ1Vq(x) + γ̄1(|ex|) + γ̄2(|eθ|) ∀p ∈ Mus

(29)

where 0 < λ1 , maxj∈Mus
{−λmin(Wj) + ηj |Hj |}. In this

case, the continuous flow in mode p ∈ Mus can potentially

destroy ISS.

Define Ts (Tus) the dwell period of ISS (non-ISS) modes

in [t, T ). Then we define the double a.d.t. as follows, which

generalizes Definition 2 and provides two a.d.t. scales for the

HIS with both ISS and non-ISS modes.

Definition 3 : Let Ns
σ(T, t) (Nus

σ (T, t)) denote the number

of switchings of σ during the period Ts (Tus), if there exists

two positive numbers τs and τus such that

Ns
σ(T, t) ≤ N0+

Ts

τs

, Nus
σ (T, t) ≤ N0+

Tus

τus

, ∀T ≥ t ≥ 0

(30)

where N0 > 0, then τs and τus are called double a.d.t. of σ

over (t, T ). 2

Definition 3 generalizes Definition 2 and provides two

a.d.t. scales for the HIS with both ISS and non-ISS modes.

Consider the time interval [0, T ) for T > 0, for the sake

of simplicity, in the following, we divide [0, T ) = [0, T−
c )∪

[Tc, T ) and focus on two cases: Case 1, Tus = Tc, Ts =
(T −Tc), i.e., non-ISS modes work in [0, T−

c ) and ISS ones

work in [Tc, T ). Case 2, Ts = Tc, Tus = T − Tc, i.e., ISS

modes work in [0, T−
c ) and non-ISS ones work in [Tc, T ).

The results can be extended to the more general case. It is

still assumed that ̟ ≥ 1.

Theorem 3 : Consider the HIS (1)-(2) that satisfies Assump-

tion 3, the ISS and non-ISS modes work respectively in

[0, T−
c ) and [Tc, T ). The HIS is ISS w.r.t. ex(t), eθ(t) in

spite of any fault and any large impulse effect if the switching

function σ has the double a.d.t. τs, τus such that

λ0τs > ln̟, Tus = Tc, Ts = (T − Tc) > 0 (31)

λ0τs > max
{

ln̟, ln̟
Tus

τus

+ λ1Tus

}

Ts = Tc > 0, Tus = T − Tc (32)

where T > 0 is an arbitrary time.

Before proving Theorem 3, we provide some insight into

the condition (31)-(32): If the HIS is ended at the ISS mode,

then (31) is equivalent to (22) in Theorem 1. If the HIS is

ended at the non-ISS mode, then
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• The larger (smaller) λ1 is, the longer (shorter) a.d.t. of

ISS modes is needed.

• The larger (smaller) λ0 is, the shorter (longer) a.d.t. of

ISS modes is needed.

• With the frequent switching of non-ISS modes, long

a.d.t. of ISS modes is needed.

• With the long dwell period of non-ISS modes, long a.d.t.

of ISS modes is needed.

Proof of Theorem 3 (sketch): Modify the function W (s)
as

W (s) =

{

eλ0sVσ(s)(x(s)) ∀σ(s) ∈ Ms

e−λ1sVσ(s)(x(s)) ∀σ(s) ∈ Mus
(33)

Then we have Ẇ (s) ≤ eλ0sΦ,∀s ∈ Ts, and Ẇ (s) ≤
e−λ1sΦ,∀s ∈ Tus. Denote by tus

1 , . . . , tus
Nus

σ
, and ts1, . . . , t

s
Ns

σ

the switching instants on the interval Tus and Ts respectively.

Case 1 : Tus = [0, T−
c ), Ts = [Tc, T ).

We first consider the time interval [Tc, T ), following the

results of Theorem 2 and (33), one has

W (T−) ≤ ̟Ns
σe(λ1+λ0)T

−

c W (T−
c ) +

Ns
σ

∑

i=1

(

̟Ns
σ−iχs

i

)

+

Ns
σ

∑

j=1

(

̟Ns
σ−jG

t
s−
j+1

ts
j

(λ0)
)

(34)

where χs
k , 2eλ0ts

k ᾱ2ξ
2
2 |ex(ts−k )|2, tsNσ+1 = T . We further

obtain

W (T−
c ) ≤ ̟Nus

σ W (0) +

Nus
σ

∑

i=1

(

̟Nus
σ −iχus

i

)

+

Nus
σ

∑

j=0

(

̟Nus
σ −jG

t
−

j+1

tj
(−λ1)

)

(35)

where χus
k , 2e−λ1tus

k ᾱ2ξ
2
2 |ex(tus−

k )|2, Combining (34) and

(35) leads to

W (T−) ≤ ̟Ns
σ+Nus

σ e(λ1+λ0)T
−

c W (0)

+e(λ1+λ0)T
−

c

Nus
σ

∑

i=1

(

̟Nus
σ +Ns

σ−iχus
i

)

+e(λ1+λ0)T
−

c

Nus
σ

∑

j=0

(

̟Nus
σ +Ns

σ−jG
t
us−
j+1

tus
j

(−λ1)
)

+

Ns
σ

∑

i=1

(

̟Ns
σ−iχs

i

)

+

Ns
σ

∑

j=1

(

̟Ns
σ−jG

t
s−
j+1

ts
j

(λ0)
)

(36)

From the condition (31), choose a number λ < λ0 − ln ̟
τs

,

one has the following inequalities

̟Ns
σ+Nus

σ e(λ1+λ0)T
−

c ≤ ̟2N0e(λ0−λ)T eln ̟
Tc

τus
+(λ1+λ0)Tc

≤ ̟2N0∆(τus, Tc)e
(λ0−λ)T (37)

where ∆(τus, Tc) , eln ̟
Tc

τus
+(λ1+λ0)Tc is a positive num-

ber.

e(λ1+λ0)T
−

c ̟Nus
σ +Ns

σ−iχus
i

≤ 2̟2N0∆(τus, Tc)ᾱ2ξ
2
2 |ex(t−i )|2eλ0T (38)

e(λ1+λ0)T
−

c ̟Nus
σ +Ns

σ−jG
t
us−
j+1

tus
j

(−λ1)

≤ ̟2N0∆(τus, Tc)e
(λ0−λ)T G

t
us−
j+1

tus
j

(λ) (39)

Substituting (37)-(39) into (36), together with the results of

Theorem 1, yields

ᾱ1|x(T )|2 ≤ ̟2N0∆(τus, Tc)e
−λT (ᾱ2|x(0)|2 + GT

0 (λ))

+γ̄4(‖ex(t−i )‖[t1,tNσ ] (40)

where the function γ̄4 ∈ K∞. The ISS result can be obtained

straight from Theorem 1.

Case 2 : Ts = [0, T−
c ), Tus = [Tc, T ).

Similar to (34),(35), we can obtain

W (T−) ≤ ̟Ns
σ+Nus

σ e−(λ1+λ0)T
−

c W (0)

+e−(λ1+λ0)T
−

c

Ns
σ

∑

i=1

(

̟Nus
σ +Ns

σ−iχi

)

+e(λ1+λ0)T
−

c

Ns
σ

∑

j=0

(

̟Nus
σ +Ns

σ−jG
t
s−
j+1

ts
j

(−λ1)
)

+

Nus
σ

∑

i=1

(

̟Nus
σ −iχus

i

)

+

Nus
σ

∑

j=1

(

̟Nus
σ −jG

t
us−
j+1

tus
j

(λ0)
)

(41)

From the condition (32), choose a number λ satisfying

λ < min
{

λ0 −
ln̟

τs

, λ0 − ln̟
Tus

τus · τs

−
λ1Tus

τs

}

The following inequalities can be obtained

̟Ns
σ+Nus

σ e−(λ1+λ0)T
−

c ≤ ̟2N0+1e−λ1T e−λτs (42)

Since λ > 0, there exists a λ∗ > 0 such that λ∗T = λτs.

e−(λ1+λ0)T
−

c ̟Nus
σ −iχus

i

≤ 2̟2N0 ᾱ2ξ
2
2 |ex(t−i )|2eλ0τse−λ1T (43)

e−(λ1+λ0)T
−

c ̟Nus
σ −jG

t
us−
j+1

tus
j

(−λ1)

≤ ̟2N0eλ0τse−λ∗T e−λ1T G
t
us−
j+1

tus
j

(λ) (44)

Substituting (42)-(44) into (41), together with the results of

Theorem 1 and Case 1, yields

ᾱ1|x(T )|2 ≤ ̟2N0+1e−λ∗T ᾱ2|x(0)|2

+γ̄5(‖ex‖[0,T )) + γ̄6(‖eθ‖[0,T )) (45)

where the function γ̄5, γ̄6 ∈ K∞. 2

Theorem 3 relaxes the condition that all modes are re-

quired to be made ISS, the overall HIS in the presence of

faults can still be ISS with partial ISS modes. This result is

very useful for stabilization of HIS and non-impulsive hybrid

sytems with unstable modes due to faults.

Remark 6 : Consider the worst case that no mode is ISS.

Three alterative methods could be applied: 1) Redesign the

continuous controller uσ guaranteeing that each mode is ISS;

2) Impose some conditions on the decay rate of impulsive

dynamics; 3) Apply the so-called impulsive controller at each

switching instants. ♦
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V. AN EXAMPLE

An example borrowed from [1] is given to illustrate the

theoretical results. Consider a HIS with two modes as

mode 1:







ẋ1 = 1
8x1 − x2

ẋ2 = x1 + 1
8x2 + (sin2 x1 + sinx1)θ1 + u1

y = x1 − x2

mode 2:







ẋ1 = −4x1 + x2

ẋ2 = x1 − 3x2 + (sin2 x1)θ2 + u2

y = x1 − x2

f1,2 :

{

x1 = 2
3x1 + θd

1,2(x)
x2 = 1

3x1 + 2
3x2

, f2,1 :

{

ẋ1 = x1 + θd
2,1(x)

ẋ2 = 1
2x1 + x2

where θH1 = 1
8 , θH2 = 1, the bound of faulty parameters

are assumed θ̄f1 = 1
8 , θ̄f2 = 1, and θ̄1 = 1

4 , θ̄2 = 2. It can

be seen that E1 = E2 = [0 1]⊤, L1 = 3, L2 = 2, ḡ1 = 2,

ḡ2 = 1.

As for mode 1, the matrix K1 and Q1 are chosen as

K1 =

[

−1
−5

]

, Q1 =

[

0.9993 −0.5788
−0.5788 1.9412

]

, we can

obtain R1 = −0.3376 and P1 =

[

1.3564 −0.3376
−0.3376 0.3376

]

.

Note that Assumption 1 holds, which implies that the fault

diagnosis observer works well.

On the other hand, by choosing W1 = I2×2, we obtain

the matrix H1 from (11) as H1 =

[

2.0048 −0.5003
−0.5003 1.0646

]

.

Simple calculation leads to that η1 = 0.6366 in (12), it can be

checked that −λmin(W1) + η1|H1| = 0.5136, which means

mode 1 is not ISS.

As for mode 2, K2 and Q2 are chosen as K2 =

[

−1
−5

]

,

Q2 =

[

10.8180 −0.7843
−0.7843 1.0912

]

, one has R2 = −0.0341 and

P2 =

[

1.7348 −0.0341
−0.0341 0.0682

]

. Assumption 1 also holds.

By choosing W2 = I2×2, we obtain H2 =
[

0.1350 0.0417
0.0417 0.1708

]

, and η2 = 2.8497, it follows that

−λmin(W2) + η2|H1| = −0.3572, which implies mode 2

is ISS w.r.t. ex, eθ.

From above calculations, we get ᾱ1 = 0.1076, ᾱ2 =
2.2212 in (18), λ0 = 0.3572, λ1 = 0.5136 in (29).

Now consider the impulsive dynamics, assume θd
1,2 =

1
3x1, θd

2,1 = x1, we have ξ1 = 1.8028 in (20), it follows

that ln̟ = 4.8992.

Now we illustrate the results of Theorem 3, we consider

two cases: the HIS is initialized at mode 1 then switches to

mode 2, and the converse. For the former case, the HIS is

ended at ISS mode 2, from the condition (31), if the dwell

time of mode 2 is larger than ln ̟
λ0

= 13.6876s, then HIS

is ISS w.r.t. ex, eθ. For the latter case, the HIS is ended at

non-ISS mode 1, provided that the dwell time of mode 1 is

10s, i.e., Tus = 10s, from the condition (32), if the dwell

time of mode 2 is larger than 28.0751s, then HIS is still ISS

w.r.t. ex, eθ.

VI. CONCLUSION

In this paper, an observer-FTC method for HIS is pro-

posed, which is based on a.d.t and guarantees that the HIS

is ISS w.r.t the convergent estimation error of observer, no

matter whether all modes are ISS or only partial modes are

ISS. This result is useful for stabilization of HIS and non-

impulsive hybrid systems with unstable submodes.

Future work will be focused on the extension of the a.d.t

and double a.d.t schemes to other kind of impulsive systems

with some real applications.
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