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Abstract— The application of feedback analysis tools from
engineering control theory to problems in climate dynamics is
discussed through two examples. First, the feedback coupling
between the thermohaline circulation and wind-driven circula-
tion in the North Atlantic Ocean is analyzed with a relatively
simple model, in order to better understand the coupled system
dynamics. The simulation behavior is compared with analysis
using root locus (in the linear regime) and describing functions
(to predict limit cycle amplitude). The second example does
not directly involve feedback, but rather uses simulation-based
identification of low-order dynamics to understand parameter
sensitivity in a model of El Niño/Southern Oscillation dynamics.
The eigenvalue and eigenvector sensitivity can be used both to
better understand physics and to tune more complex models.
Finally, additional applications are discussed where control
tools may be relevant to understand existing feedbacks in the
climate system, or even to introduce new ones.

I. INTRODUCTION

What happens when an aerospace controls engineer asks

whether the tools that he is familiar with are useful for

analyzing feedback in climate systems? While for the most

part (with a few potential exceptions noted in Section 4)

we do not have control over the feedback in these systems,

feedback analysis is certainly relevant for understanding

climate systems. Herein we explore the use of analysis

tools from engineering control theory to problems in meso-

scale climate dynamics through two examples: the coupling

between the thermohaline and wind-driven circulations in the

North Atlantic, and parameter sensitivity in a model of El-

Niño/Southern Oscillation (ENSO). Further details on these

examples can be found in [1,2] respectively; herein we frame

this research for a controls audience. In addition to the direct

benefit of understanding the physics of these two examples,

we hope to motivate further research, and to provide an

example of interdisciplinary research that could stimulate

thought on the broader applicability of controls tools.

The first example explored herein (Section 2) directly

applies feedback analysis tools to understanding the coupling

between the thermohaline circulation (THC) in the North

Atlantic and the wind-driven circulation (WDC). The THC

is the meridionally overturning circulation driven by density

gradients, which are caused by poleward thermal and salinity

gradients. This current transports large amounts of heat pole-

wards and is thus important to the climate system. Simple
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THC models are bi-stable, with a bifurcation at sufficient

values of fresh-water forcing in the North Atlantic [3, 4].

Accurately understanding its dynamics is therefore important

to understanding the effects of anthropogenic climate change

(e.g. due to melting polar ice sheets). The winds in the

North Atlantic also drive a strong clockwise surface ocean

circulation, and of course these two systems are coupled.

One-way coupling has been explored in simple models [5],

while here we look at the two-way feedback coupling. Near

the Hopf bifurcation point, stability can be predicted from

the linearization, and simple root locus analysis is useful for

understanding the influence of the feedback. In the coupled

system, a limit cycle develops beyond the bifurcation, and

describing functions can be used on a reduced-order model

to predict the limit cycle amplitude as a function of feedback

gain. Understanding how feedback changes the dynamics

is important in understanding the behavior both of more

complicated models, and of the real ocean.

The second example explored herein (Section 3) doesn’t

directly involve feedback, but again uses tools familiar to

controls engineers, but not to most climate researchers.

Here, we use system identification to extract low-dimensional

models from a complex simulation of ENSO in order to

understand parameter sensitivity. El-Niño is the largest co-

herent inter-annual signal in the climate, affecting rainfall

and temperature patterns across the globe. It arises from

coupled atmosphere/ocean physics in the tropical Pacific

ocean [4,6,7] with a dominant period between two and seven

years. Eigenvalue variation (or root locus) has been used

to explore ENSO dynamics in simple, analytically tractable

models [4, 8, 9], and some limited information obtained in

more complex models [10]. Here we extract the desired

information from simulations, allowing the eigenvalue and

eigenvector parametric sensitivity to be obtained for more

complex models that more accurately capture the physics

and retain the effects of multiple physical parameters. We

demonstrate this approach on the intermediate complexity

model of Zebiak and Cane [11]. Further details, and the use

of this information to further the understanding of ENSO

physics can be found in [2]. It is hoped that the para-

metric sensitivity will aid in tuning more complex general

circulation models (GCMs) of the entire climate system and

improve their ability to accurately model ENSO.

Section 4 describes potential future research problems

involving analysis of feedbacks in climate phenomena at

multiple time-scales, and gives a brief survey on the potential

for controlling elements of Earth’s climate over a range of

scales from weather up to the entire globe.
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Fig. 1. Schematic of the model for coupled wind-driven and thermohaline
circulation, from [5]. The system is forced by differential fresh-water

(salinity) forcing F in the northern and southern (mid-latitude) sections.
The assumed upwelling/downwelling distribution is also shown.
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Fig. 2. Block diagram of feedback interaction; H is the model of [5],
in which the WDC affects the THC. K is the new feedback we introduce,

allowing the WDC Ω to change as function of the SST gradient G.

II. THERMOHALINE CIRCULATION

Stommel [3] modeled the THC with “boxes” representing

the north and south (equatorial) surface ocean, connected

below through the deep ocean, with differential thermal and

fresh-water (FW) or salinity forcing. The latter represents

differential evaporation/precipitation, as well as the freshwa-

ter due to rivers or ice melt in the North Atlantic. For a wide

range of FW forcing, the model exhibits two possible stable

equilibria: a strong poleward flow (the current climate state)

where the thermal effect on density dominates, and a weak

reverse flow dominated by the counteracting density effect

of salinity. For sufficiently large FW forcing, the thermally

dominant branch loses stability and the THC shuts down.

Building on this simple box model, Pasquero and Tziper-

man [5] developed a model that also includes the effect of

the wind-driven circulation: the surface ocean is replaced

by an annulus, with boxes for the deep ocean, as shown in

Fig. 1. The states are the salinity and temperature around

the annulus and in the deep boxes, and the equations are

discretized advection/diffusion. The circulation Q advects

anomalies, and also depends linearly on the state, and the

equations are therefore quadratically nonlinear. The wind

driven circulation (WDC) affects the THC by the advection

of salinity anomalies into deep water formation sites. In this

model, the stable salinity dominant equilibrium disappears,

and the thermal equilibrium loses stability at high FW forcing

F in a Hopf bifurcation to a limit cycle.

However, the thermohaline circulation also affects the

WDC because it affects the meridional atmospheric temper-

ature gradient and therefore the strength of the atmospheric

winds. We model this by including a linear feedback between

the poleward sea surface temperature (SST) gradient G and

the WDC strength Ω as shown in Fig. 2. Aside from the

additional feedback the equations can be found in [5]. For

an equilibrium state x0 corresponding to WDC strength Ω0,
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Fig. 3. THC bifurcation behavior as a function of FW forcing with
and without feedback between THC and WDC. The behavior depends on

the feedback time constant τ . Results are plotted for fixed WDC (solid
line, from [5]), for τ = 0 (‘×’) and τ = τmax (‘◦’). The feedback is
destabilizing for FW forcing below 1.9 m/yr. Beyond the bifurcation point

the limit cycle max/min amplitude are plotted. For F > 2, the system
with feedback converges to a stable steady state. Units for Q are Sverdrup
(106 m3/s). From [1], c© copyright 2006 American Meteorological Society.

we assume that the steady state WDC as a function of SST

gradient G = CGx is given by

Ω∗(x) = Ω0

(

1 + k
CG(x − x0)

CGx0

)

, (1)

with feedback gain k, and we assume the WDC equilibration

has time constant τ so that the perturbation in Ω satisfies

dΩ

dt
=

1

τ
[Ω∗(x) − Ω] , (2)

For this model, the feedback can have a significant effect

on the dynamics of the coupled system. For a reasonable

choice of parameters, the feedback destabilizes the THC

equilibrium for moderate fresh-water forcing, leading to an

earlier bifurcation and correspondingly larger limit cycle

at FW forcing above the bifurcation point. As the forcing

is increased further, the feedback results in a new stable

equilibrium instead of the large amplitude limit cycle that

develops without feedback. These effects are shown through

simulation in Fig. 3.

In the linear region before bifurcation, the dependence

of stability on feedback parameters can also be rapidly

explored using root locus tools. We linearize about the no-

feedback equilibrium at F = 1.9m/yr, and compute the

transfer function of H from input Ω to output G. Near

the bifurcation, the response is close to a 2nd-order lightly

damped system with phase −30◦ at the peak frequency.

Textbook root locus analysis shows that the departure angle

of the dominant pole should also be −30◦, plus whatever

phase lag is introduced through the feedback K in (2).

Thus, the root locus behavior in Fig. 4 can be approximately

predicted without resorting to simulation. Furthermore, the

shift in bifurcation behavior in Fig. 3 as a function of the

WDC equilibration time constant τ can be understood: if

τ = 0, then K adds no phase lag, and the poles move

rapidly into the right-half plane. We chose τmax = 20 yrs,
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Fig. 4. Root locus of dominant eigenvalue of linearized coupled system
at F = 1.9 for gain 0 ≤ k ≤ 1, for time constant τ = 0 (solid) and

τ = τmax (‘·’). The pole location for varying F is also shown (dashed).
From [1], c© copyright 2006 American Meteorological Society.

slightly less than the time constant of the poles of H, so at

τ = τmax, K adds 35◦ phase lag. The departure angle then

increases to −65◦, resulting in a less rapid destabilization

with increasing k than if τ = 0. Physically this represents

that if the delay between a perturbation and the resulting

feedback is in phase, the feedback is strongly destabilizing,

while if the resulting feedback is 1/4 cycle out of phase, it

has little effect on stability.

While simulation is possible for this simple model, basic

root locus tools are useful for understanding whether added

feedbacks will be relevant, and stabilizing or not, in more

complex models. In addition, it helps understand the dynamic

rather than simply quasi-static effects of feedback.

At higher FW forcing where the model exhibits limit

cycle behavior, describing function analysis [12] can be used

with partial success to predict the dependence of limit cycle

amplitude on feedback parameters. We first use model reduc-

tion for analytical tractability. Basis functions are obtained

using proper orthogonal decomposition (POD) [13], using

the observability Gramian as the inner-product weighting to

guarantee that dynamically-relevant modes are included [14].

Galerkin projection gives the reduced order model

q̇i =

n
∑

j=1

Xijqj +

n
∑

j=1

n
∑

k=1

Yijkqjqk + Zi (3)

where the coefficients Xij, Yijk and Zi are readily obtained

from the original equations as inner products [15]. We seek

solutions for the reduced-model state q(t) ∈ R
n of the form

q(t) = α + β sin ωt + γ cos ωt + δ sin 2ωt + ǫ cos 2ωt, (4)

where the higher harmonics are included because the limit

cycle rapidly becomes non-sinusoidal away from the bi-

furcation point. Substituting into the dynamics (3), non-

zero solutions to the harmonic balance equations correspond

to limit cycles. The approach works reasonably well at

predicting the limit cycle without feedback (Fig. 5), and for

small feedback amplitude. For higher feedback amplitude,

additional harmonics would be required in (4) to accurately

capture the behavior.
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Fig. 5. Describing functions approximation of limit cycle for FW forcing

Fs = 2.0m/yr. Top: without feedback, simulation (solid) and approximation
(dashed). Bottom: Trend in limit cycle amplitude with feedback gain for
simulation (solid) and describing function analysis (dashed).

III. EL-NIÑO/SOUTHERN OSCILLATION

ENSO dynamics arise from feedback coupling between

atmosphere and ocean physics in the tropical Pacific [4,6,7],

but the impact of ENSO extends over much of the planet.

Some models have predicted an increase in ENSO variability

as a result of forecast anthropogenic climate changes, others

are more ambiguous [16]. In large part, the uncertainty

reflects the difficulties in accurately capturing ENSO using

General Circulation Models (GCMs) designed to simulate the

entire climate [17]. Understanding ENSO dynamics and in

particular what parameters determine its period is thus crucial

for tuning complex models, and ultimately understanding the

effects of climate change on ENSO dynamics.

From a dynamics perspective, ENSO involves primarily a

single oscillatory mode [4, 10, 18]. The dynamics are prob-

ably stable and damped, driven by weather “noise” external

to the system [10, 18, 19], though possibly unstable, with

the observed irregular period resulting from self-sustained

chaotic oscillations [20]. The results herein do not depend on

knowing which explanation is correct, as we are interested in

the underlying linear behavior. In either regime, parameter-

dependent shifts in the period or damping of the dominant

eigenvalues of the linearization give corresponding shifts

in the observed spectrum (although this is not rigourously

provable in the chaotic case). Previous researchers have ex-

plored ENSO eigenvalue variation, but only in simple models

[4,8,9], or with a limited set of parameters in more complex

models [10]. Here, we extract eigenvalue and eigenvector

dependence for many parameters, from a higher-dimensional

model. In contrast to the THC example previously, this

application does not directly involve feedback analysis, but

does use system identification concepts familiar to a controls

researcher, but not familiar to a typical climate researcher.

The fundamental elements of the physics are well under-

stood ( [6] is written for a reader with a non-climatology

background). A hierarchy of modeling tools have been

applied, including numerical fitting of the observed time-

sequence [18], inverse modeling [21], very low-order

physically-motivated oscillator models [22,23], intermediate-
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complexity coupled atmosphere/ocean models [11] and mod-

ified general circulation models (GCMs) [24].

The oscillation is amplified by positive Bjerknes feedback

[25] between the ocean and atmosphere: increased East-West

SST gradient leads to increased atmospheric convection,

a strengthened Walker circulation, and increased westward

equatorial surface winds that drive the ocean currents and

in turn the SST and thermocline slope. The atmospheric

adjustment time is rapid, hence this feedback is nearly

in phase with a perturbation, and primarily influences the

stability, not the period of oscillation. The period is strongly

influenced by lags in the dynamic response of the ocean,

including both wave dynamics and SST-adjustment time (e.g.

[9]).

A single ENSO cycle proceeds as follows. A positive

perturbation in the east Pacific SST (for example) decreases

the atmospheric winds as described above. The changed wind

stress leads to an eastward-propagating equatorial ocean

Kelvin wave that deepens the thermocline, and a westward-

propagating off-equatorial Rossby wave that shallows the

thermocline depth. The Kelvin wave amplifies the original

SST perturbation by changing the temperature of upwelling

in the eastern Pacific, and the original anomaly thus grows.

Meanwhile, the more slowly traveling Rossby waves reflect

off the western Pacific boundary as Kelvin waves. Once

these reach the eastern Pacific, they begin to cancel the

anomaly there, although it can take some time to accumulate

a sufficient cancelling signal, depending on the relative

amplitude between the eastern anomaly and the opposite sign

returning wave [2,26,27].

We use the Zebiak and Cane (ZC) [11] intermediate-

complexity atmosphere/ocean anomaly model. This has been

successfully used for prediction of ENSO [28], and has been

the basis for substantial research. Plausible time series and

predictions can be obtained either with parameters chosen so

that the system exhibits self-sustained chaotic oscillations,

or for which the system is stable and forced by stochastic

noise. A shallow-water model is used for the ocean and

atmosphere, with an embedded ocean-surface mixed-layer,

parameterized atmospheric heating due to SST-dependent

evaporation and convergence, and parameterized subsurface

ocean temperature. The model coarsely discretizes these

coupled partial differential equations over the tropical Pacific

ocean, leading to ∼33000 state variables. However, the

ENSO oscillation itself is a low-dimensional phenomena

involving only a few degrees of freedom. Simpler models

[22,23] have the advantage of fewer degrees of freedom, and

thus improved analytical tractability. These simpler models,

however, do not capture the independent effects of multiple

parameters. The sensitivity analysis described below uses a

simulation-based approach to identify and extract relevant

low-dimension information (eigenvalues and eigenvectors)

about the system linearization without explicitly constructing

the linearization.

The seasonal cycle results in a time-periodic model

xk+1 = f(xk, j) where j = mod(k, 12) is the month and x

the state vector. The annual model xk = g(xk−12) is time-
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?

�
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No Yes

Fig. 6. Schematic of algorithm. The original simulation code (“ZC Model”)
is used with only minor modification. The outer loop of code chooses
appropriate inputs for the simulation to estimate linear model parameters

and exits based on a convergence test.

invariant (using Floquet analysis as in [10, 29]). An auto-

regressive (AR)-model

yk =

N
∑

i=1

aiyk−12i (5)

can be fit to the model output time series y from an unforced

simulation from an initial condition close to the dominant

eigenvector. (Note that all the data are still used, as the eigen-

values and hence coefficients ai do not depend on the month

j.) We use y as the scalar Niño-3 index (average SST over a

region of eastern Pacific) since the relevant mode will clearly

be observable in this output. A recursive stochastic (Kalman

filter) formulation to estimate AR-parameters â allows small

bursts of simulations to be used and convergence monitored.

To extract the linearized behavior from the simulation, one

code modification is required to scale the state vector at

each time step, so xk+1 = αf(xk, j). The only effect of

this on the linearization is to add or subtract damping. This

allows the damping of the dominant eigenvalue pair to be

chosen to be stable but lightly damped, thereby maximizing

the quality of system identification on the output time series.

The eigenvalues λ of the linearization of the modified system

are related to those of the original system by the scale factor;

λ

(

∂(αf)

∂x

)

= α · λ

(

∂f

∂x

)

(6)

An outer loop can then be written that chooses the sim-

ulation initial conditions and scale factor, uses a short burst

of simulation to update AR model estimates â, and iterates

until convergence is reached; this is shown schematically in

Fig. 6. This approach allows legacy code to be used as a

black box.

The eigenvectors corresponding to the dominant complex

eigenvalue pair can also be extracted, since in the linearized

regime, the response after sufficient time is dominated by

this complex eigenvector pair. Given several cycles of state-

vector history xk then

v =
1

m

m
∑

k=1

λ−kxk (7)

is a good estimate of the eigenvector. The change in eigen-

vector as parameters change is also useful to understanding

the relevant physics and feedback processes involved.
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Fig. 7. Eigenvalue sensitivity near nominal ZC parameters, illustrating
dependence on ocean/atmosphere coupling (R∗), atmospheric heating pa-
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at periods of 3 and 4 years.

Fig 7 shows a typical root locus output for nominal

(unstable) parameters in the discrete-time ZC model. Lines

of constant radii correspond to equal growth rate, while lines

of constant phase correspond to equal period or frequency.

Thus the model period is most sensitive to ca, Heq, WBRC,

and hbar with the latter two parameters strongly affecting the

damping as well. Together with the shift in the eigenvector,

this information leads to insights into the model physics,

described more fully in [2]. The parameters ca and Heq

affect the Rossby radius of deformation for the atmosphere

and ocean respectively, and their ratio affects which ocean

Rossby modes are excited [27,30]. Since higher-order modes

travel more slowly, this affects the average wave propagation

speed and therefore the delay before cancelling effects reach

the eastern Pacific. The other two parameters noted above,

WBRC and hbar don’t affect the wave propagation speed, but

change the relative amplitude between the growing anomaly

in the eastern Pacific, and the strength of the returning re-

flected wave of the opposite sign. If the anomaly grows more

rapidly, then it takes a greater accumulation of returning

waves to cancel the perturbation and begin the next cycle

of oscillation.

The understanding obtained herein regarding which pa-

rameters are relevant in determining ENSO’s period, and

why, is useful in tuning more complex models. This, in turn,

will improve the prediction of the effect on ENSO due to

future changes in the climate system.

IV. CONCLUSIONS AND FUTURE WORK

The two examples described herein illustrate different

opportunities for the application of ideas and tools from

engineering control theory to research problems in climate

dynamics. The first category of opportunities is thus to ex-

plore feedbacks within the climate system, while the second

category is the use of modeling and model reduction tools.

Both of the problems discussed herein have clear and

useful extensions. The THC and WDC coupling can be

considered in more complex models to understand whether

similar behavior still exists. Additional tools can also be

applied to the understanding of ENSO. Formal model re-

duction tools to extract the dynamically relevant states could

be useful [14], both for this and for more complex models.

Controllability and observability analysis would be useful for

understanding the spatial and temporal sensitivity of ENSO

to forcing, and the relevant spatial and temporal information

to sense in order to better estimate future evolution.

In addition to THC and ENSO, there are other dynamic

phenomena relevant to understanding the climate. Variability

occurs on a wide range of time scales, due to the complex

nonlinear interactions between the oceans, atmosphere, sea

ice, land ice sheets, as well as the land and ocean bio-

spheres. Examples include Dansgaard-Oeschger oscillations

(1500 yrs) [31], Heinrich events (7000 yrs) [32] and global

glacial cycles (100,000yrs) [33]. Despite the tremendous

complexity and richness of temporal and spatial scales,

in almost all of these examples, the relevant dynamics

may be explained in terms of a simple mechanism, often

surprisingly well represented by simple idealized models,

e.g. [34, 35]. While progress has been made in understand-

ing these subsystems in isolation, feedback analysis tools

could be broadly useful in understanding the dynamics of

the interaction between phenomena at multiple time scales.

Understanding the characteristics of feedback is also relevant

to understanding the probability distribution of global climate

change prediction [36].

In addition to the analysis problems described herein, there

are several potential areas where human engineering has been

suggested to intentionally modify the climate system. The

concept of such control has a long history; the initial invest-

ment by the U.S. Office of Naval Reseach in the development

of numerical weather prediction was substantially motivated

by the hope of weather control [37]. Control of weather

generally [38] and hurricane track or strength [39, 40] have

been suggested. However, the dynamics are both chaotic and

high dimensional. The former is in principle an advantage, as

it leads to high sensitivity, however the inherent uncertainty

may make robust control strategies challenging! The studies

to date have demonstrated the possibility of control in the

absence of model uncertainty, and much more work would

need to be done in both controllability analysis and robust

feedback design.

Also relevant in any discussion of control is energy input.

In this context, it has been shown that a significant shift of

human power generation to wind energy would result in a

measurable effect on atmospheric winds and in turn on the

climate [41]. Thus, contrary to popular wisdom, this scale

of energy extraction does have the potential to influence

the climate, because the energy mediated through heat and

moisture transport is much larger than the direct change in

kinetic energy, and thus provides some leverage.

Control of chaotic ENSO dynamics has been described
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[42] although the primary goal here was the demonstration of

chaos-control techniques. Nonetheless, ENSO may provide

an interesting example for exploring feedback control within

climate systems, in part because the important dynamics

are relatively low order, making them at least theoretically

amenable to modification because predictability is relatively

good [28]. This is essential for robustness of any model-

based feedback algorithm.

On a larger scale, geoengineering has been suggested as

a possible element of a climate change strategy [43, 44]

(see also the editorial section of Climatic Change, Vol. 77,

Aug. 2006, pp. 211–248); while most of the current research

has focused on the actuation and the environmental risk, there

are certainly control aspects to this problem.

Nonetheless, despite the fascination with control of the

climate, we expect the most significant benefit to arise from

communication between control and climate researchers to

be in the analysis of existing feedbacks within the climate

system, not in the creation of new feedbacks.
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