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Abstract— Finite-Stage Markov Decision Process (MDP) sup-
plies a general framework for many practical problems when
only the performance in a finite duration is of interest. Dy-
namic programming (DP) supplies a general way to find the
optimal policies but is usually practically infeasible, due to the
exponentially increasing policy space. Approximating the finite-
stage MDP by an infinite-stage MDP reduces the search space
but usually does not find the optimal stationary policy, due to
the approximation error. We develop a method that finds the
optimal stationary policies for the finite-stage MDP. The method
is based on performance potentials, which can be estimated
through sample paths and thus suits practical application.

Index Terms— Performance potentials, policy iteration, sta-
tionary policy, finite-stage Markov Decision Processes.

I. INTRODUCTION

Markov decision process (MDP) and the associated dy-
namic programming (DP) methodology [1]–[3] provide a
general framework for posing and analyzing problems of
sequential decision making under uncertainty. Finite-Stage
MDP provides such general framework for practical systems
when only the performance in a finite time duration is of
interest. There are generally two difficulties to apply DP to
solve finite-stage MDP in practice: large search space and
time-consuming simulation-based performance evaluation.
The first one is known as the curse of dimensionality, because
the size of the policy space increases exponentially fast
when the number of stages and the size of the state space
increase. The second one is associated with the complex
nature of the system. With the development of human society,
many man-made systems arise in our daily life. These
systems not only follow physical laws but also follow man-
made rules. Manufacturing systems, transportation systems,
and communication networks are all such examples. These
systems are called discrete event dynamic systems (DEDS).
The only way to describe the detailed dynamic of DEDS is
through simulation, which is time-consuming in general. This
means the transition probability among states that are used
in DP can only be estimated through simulation. These two
challenges have attracted the interest of many researchers.

As a compromise to the first difficulty, we can focus
on stationary policies only, which dramatically reduce the
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search space. Then an infinite-stage MDP could be used
to approximate the finite-stage MDP, and then we can
use policy iteration and value iteration to find the optimal
stationary policies w.r.t. the infinite-stage criterion. We will
refer to this as the approximation approach. However, this
approach only solves the finite-stage MDP approximately.
Because the finite-stage performance criterion is different
from the infinite-stage performance criterion, the stationary
policy thus obtained is usually not the optimal stationary
policy w.r.t. the original finite-stage MDP. In this paper, we
develop a method to obtain the optimal stationary policy for
the finite-stage MDP. Because we focus on stationary policies
only, this method requires much less memory space than DP.
And because we do not change the performance criterion, the
resulting stationary policy is better than the approximation
approach. A detailed comparison is presented in Section V.

To deal with the second difficulty, approaches that com-
bine the estimation of transition probabilities among states
and policy iteration (or value iteration) are developed. The
well-known results include the reinforcement learning [4],
[5], the neuro-dynamic programming [6], the gradient-based
policy iteration [7]–[11], the adaptive dynamic programming
[12], the evolutionary policy iteration and the model ref-
erence adaptive search [13], just to name a few. Among
these efforts, the potential-based policy iteration [14] can be
applied on-line and estimates the potentials through sample
paths. This is especially important when only the sample
paths are available. However, the potential-based policy
iteration is developed only for infinite-stage MDP. So far
as we know, there are little study on how to extend the
potential-based approach to finite-stage MDP. In this paper,
we define performance potentials for finite-stage MDP, and
establish the connection to potentials in infinite-stage MDP.
The method we developed thus preserves the advantage of
potential-based approaches, i.e., can be applied when only
the simulation model is available.

The rest of this paper is organized as follows. First, we
present the mathematical problem formulation of finite-stage
MDP in Section II. We consider two objective functions
that are frequently used in finite-stage MDP: The expected
discounted reward and the expected total reward. Then in
Section III and IV, we develop the potential-based policy
iteration to optimize the expected discounted reward and
the expected total reward, respectively. The method finds
the globally optimal stationary policy when the actions at
different states can be chosen independently. When actions
at different states are chosen correlatively, we develop the
gradient-based policy iteration. We discuss the relation-
ship among the method developed in this paper, DP, and
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the method that approximates the finite-stage MDP by an
infinite-stage MDP in Section V. We briefly conclude in
Section VI.

II. PROBLEM FORMULATION

We consider an MDP [1]–[3] with finite state space S =
{1, 2, . . . M}, finite action space A, and finite stage number
N . Let Xn be the state of the system at stage n. If the system
is at state i, an action can be chosen from the feasible action
set Ai ⊆ A and applied to the system. This action determines
the transition probability matrix P . The system receives an
immediate reward f(i, β), when it is at state i with action β.
A deterministic and stationary policy is a mapping from S to
A, denoted as L : β = L(i). To simplify the discussion, we
assume the system is ergodic under all stationary policies.
Note that the ergodicity here refers to the long-term behavior
of the system when a stationary policy is used, although we
are interested in the finite-stage performance of this system
in this paper. The expected discounted reward under policy L
is defined as ηLNα = (ηLNα(1), ηLNα(2), . . . ηLNα(M))τ , where

ηLNα (i) = (1− α) E

{
N−1∑
n=0

αnf (Xn,L(Xn))|X0 = i

}
,

(1)
α is a discount factor, 0 < α < 1, and τ represents the
transpose. The discount factor describes that the performance
at early stages are of more interest than the performance
at late stages. α has practical meaning, say the interest
rate, especially when the performance is economy related.
The goal of the MDP is to find a stationary policy Li

such that its performance in Equation (1) is the minimum1

among all stationary policies, when the initial state is i. Note
that when the initial state is different, the corresponding
optimal stationary policy may also change, i.e., Li 6= Lj ,
for i 6= j. We hold an assumption as in the standard MDP
formulation that the action can be chosen independently
at each state. This will be called the independent action
assumption in the following discussion. This ensures that
by focusing on the deterministic stationary policies we can
find the aforementioned optimal stationary policy. When this
assumption does not hold, the actions at different states may
be correlated, and then the optimal stationary policy may be
obtained only at random stationary policies.

Another frequently used criterion in finite-stage MDP
is the expected total reward criterion. The performance
measure is ηNT = (ηNT (1), ηNT (2), . . . ηNT (M))τ , where

ηNT (i) = E

{
N−1∑
n=0

f (Xn)|X0 = i

}
, i = 1, 2, . . . M .

III. EXPECTED DISCOUNTED REWARD CRITERION

In the following, we first review the definition of per-
formance potentials gα in infinite-stage MDP. The system
performance measure in the infinite-stage MDP (i.e., the

1Without loss of generality, we consider minimization problems in this
paper. The discussion can be easily applied to maximization problems.

discounted performance criterion2) can be written as a func-
tion of performance potentials [15]. We then develop a re-
lationship between the expected discounted reward criterion
ηNα in the finite-stage MDP and the discounted performance
criterion in the infinite-stage MDP. Then we write ηNα as a
function of gα. After that we can generalize the potential-
based policy iteration in the infinite-stage MDP to the finite-
stage MDP straightforwardly.

To simplify the notation, let fL(i) = f(i,L(i)),fL =
(fL(1), . . . fL(M))τ . When there is no confusion, we omit
the superscript ∗L that denotes the quantities associated with
policy L. For example fL(i) may be written as f(i) in some
places. The discounted Poisson equation is defined as

(I − αP + αeπ) gα = f,

where I is a unit matrix, e = (1, . . . 1)τ is an M -by-1
column vector, π = (π(1), . . . π(M)) is the row vector of
the steady state probabilities, and gα is called the α-potential
(discounted performance potential) [15], [16]. When α = 1,
it is the standard Poisson equation, its solution is simply
called the potential, which is the same as the relative cost
in [1] or the bias in [3]. Since we assume the Markov chain
is ergodic under all stationary policies, I − αP + αeπ is
invertible [15], and we have

gα = (I − αP + αeπ)−1
f. (2)

In particular, when α = 1, the matrix (I − P + eπ)−1 is
called the fundamental matrix in [17]. Since the constant
part of all the potentials can be ignored when 0 < α < 1, it
is also shown that

gα (i) = lim
N→∞

E

{
N−1∑
n=0

αnf (Xn)|X0 = i

}

[18]–[20].
The performance measure in the infinite-stage

MDP is the discounted performance criterion,
ηα = (ηα(1), . . . ηα(M))τ , where

ηα(i) = (1− α) E

{ ∞∑
n=0

αnf (Xn)|X0 = i

}
.

The performance measure can be written as a function of the
α-potentials [15], [20] as follows

ηα = (1− α) gα + αηe, (3)

where η = πf is the average-cost performance in the infinite-
stage MDP. This is the foundation of the potential-based
policy iteration in the infinite-stage MDP. We find that there
is a strong relationship between ηNα and ηα as shown in
Lemma 1.

Lemma 1: ηNα =
(
I − αNPN

)
ηα.

2The average performance criterion corresponds to the case with the
discount factor α equals to 1 [15].
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Proof: By definition,

ηα (i)

= (1− α) E

{ ∞∑
n=0

αnf (Xn)|X0 = i

}

= (1− α) E

{
N−1∑
n=0

αnf (Xn) +
∞∑

n=N

αnf (Xn)|X0 = i

}

= ηNα (i)

+ (1− α)
M∑

j=1

E

{ ∞∑

n=N

αnf (Xn)|X0 = i,XN = j

}

× P (XN = j|X0 = i)

= ηNα (i) +
M∑

j=1

αNηα (j)PN (i, j). (4)

The first line in Equation (4) is by definition. The second line
follows from the property of expectation. In matrix form, we
have ηα = ηNα +αNPNηα, so ηNα =

(
I − αNPN

)
ηα.

Using Lemma 1 and Equation (3), we can write ηNα as a
function of gα,

ηNα =
(
I − αNPN

)
((1− α) gα + αηe) . (5)

Equation (5) establishes the relationship between the dis-
counted performance criterion in the finite-stage MDP and
the α-potentials in the infinite-stage MDP. The two MDPs
adopt a same stationary policy.

We now analyze how the change from policy L to L′
affects the system performances. Following Equation (5) we
have

ηL
′

Nα − ηLNα =
(
I − αN (PL

′
)N

)(
(1− α) gL

′
α + αηL

′
e
)

− (
I − αN (PL)N

) (
(1− α) gLα + αηLe

)
. (6)

Suppose L is the currently adopted policy, and L′ can be
any other policy candidate. Note that both potentials gLα and
gL

′
α appear in Equation (6). Since in practice we usually

have thousands of hundreds of policy candidates L′, it is
practically infeasible to calculate the potential gL

′
α for each

L′. So, we develop the following Lemma 2 to describe the
difference ηL

′
Nα−ηLNα as a function of only gLα , the potentials

of the currently adopted policy L.
Lemma 2:

ηL
′

Nα − ηLNα =
(
I − αPL

′)−1

(1− α)× (
αQ

(
I − αN (PL)N

)
gLα

+
(
I − αN (PL

′
)N

)
fL

′ − (
I − αN (PL)N

)
fL

)
, (7)

where Q = PL
′ − PL.

Proof: ∀0 < α < 1, for L and L′,

ηα = (1− α)
∞∑

n=0

αnPnf = (1− α)

(
I +

∞∑
n=1

αnPn

)
f

= (1− α) f + αPηα. (8)

By Lemma 1, Equation (8), and the definition of ηLNα and
ηL

′
Nα, we have

ηL
′

Nα − ηLNα

=
(
I − αN (PL

′
)N

)
ηL

′
α − (

I − αN (PL)N
)
ηLα

=
(
I − αN (PL

′
)N

)(
(1− α) fL

′
+ αPL

′
ηL

′
α

)

− (
I − αN (PL)N

) (
(1− α) fL + αPLηLα

)

= α
(
PL

′ (
ηL

′
Nα − ηLNα

)
+

(
PL

′ − PL
)

ηLNα

)

+ (1− α)
((

I − αN (PL
′
)N

)
fL

′ − (
I − αN (PL)N

)
fL

)
,

(9)

where the first equality follows from Lemma 1, the second
equality follows from Equation (8), and the last equality
follows from the definition of ηLNα and ηL

′
Nα. Combining the

term ηL
′

Nα − ηLNα in the right hand side of Equation (8) to
the left hand side and rearranging the equation, we have

ηL
′

Nα − ηLNα

=
(
I − αPL

′)−1 (
α
(
PL

′ − PL
)
ηLNα

+(1− α)
((

I − αN (PL
′
)N

)
fL

′ − (
I − αN (PL)N

)
fL

))
.

(10)

We also have

α
(
PL

′ − PL
)

ηLNα

= α
(
PL

′ − PL
) (

I − αN (PL)N
)
ηLα

= α
(
PL

′ − PL
) (

I − αN (PL)N
) (

(1− α) gLα + αηLe
)

= α
(
PL

′ − PL
) (

I − αN (PL)N
)
(1− α) gLα , (11)

where the first equality follows from the definition of ηLNα,
the second equality follows from Equation (3), and the last
equality follows from the fact that

(I − αN (PL)N )αηLe = αηL(e− αNe) = αηL(1− αN )e,

and
(PL

′ − PL)e = e− e = 0,

noting that PLe = e, PL
′
e = e, and ηL is a scalar.

Following Equations (12) and (11), we have

ηL
′

Nα − ηLNα

=
(
I − αPL

′)−1

(1− α)
(
αQ

(
I − αN (PL)N

)
gLα

+
(
I − αN (PL

′
)N

)
fL

′ − (
I − αN (PL)N

)
fL

)
. (12)

Using Lemma 2, we can develop a necessary and sufficient
condition for the globally optimal stationary policy for the
finite-stage MDP.

Theorem 1: In a finite-stage MDP with expected dis-
counted reward performance criterion, a policy Li is the
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optimal stationary policy for initial state i if and only if
{

αPL
′ (

I − αN (PL
i

)N
)

gL
i

α +
(
I − αN (PL

′
)N

)
fL

′}
i

≥
{

αPL
i
(
I − αN (PL

i

)N
)

gL
i

α +
(
I − αN (PL

i

)N
)

fL
i
}

i

for all L′ ∈ E , where E : S → A is the set of all stationary
policies, and {a}i is the i-th element of vector a.

Proof: For 0 < α < 1,

lim
N→∞

(
αPL

′)N

= 0.

Hence we have [17]
(
I − αPL

′)−1

= I + αPL
′
+ α2(PL

′
)2 + · · · . (13)

Since the Markov Chain is ergodic and the states are finite,

it is positive recurrent [21] and every item in
(
I − αPL

′
)−1

is positive. Then following from Lemma 2, if the condition
in Theorem 1 is met, no other stationary policy can decrease
ηL

i

Nα(i). Thus the current policy Li is the optimal one. This
proves the sufficient part. If the policy Li is the optimal
one for initial state i, no other policy can decrease ηL

i

Nα(i).
This proves the necessary part. Thus this is a necessary and
sufficient condition for globally optimal stationary policy.

Theorem 1 indicates a way to improve the policy and tells
when to stop the improvement. We now present the potential-
based policy iteration for finite-stage MDP. The iteration
process is as follows. Let Li

k be the policy at the kth iteration.
In the (k + 1)th iteration, we select

Li
k+1 = arg min

L

{
αPL

(
I − αN (PL)N

)
g
Li

k
α

+
(
I − αN (PL)N

)
fL

}
i
. (14)

Since ηNα(i) is decreased at each iteration and both the state
and the action sets are finite, the optimal stationary policy
can be reached in finite iterations.

Note that the potential-based policy iteration in finite-stage
MDP finds the optimal stationary policy w.r.t. ηNα. The
potential-based policy iteration in infinite-stage MDP finds
the optimal stationary policy w.r.t. ηα. When the number of
stages is infinite, the two methods find the same stationary
policy, because lim

N→∞
ηNα = ηα. But when the number of

stages is small, the potential-based policy iteration in infinite-
stage MDP usually finds unsatisfactory policies, due to the
difference between ηNα and ηα. Thus the policy iteration
developed above always finds better stationary policy w.r.t.
ηNα.

In above discussion, we use the independent action as-
sumption. However, in some systems this assumption does
not hold. In the rest of this section, we consider the case
when actions at different states may be correlated. First
we develop a formula to calculate the gradient of system
performance w.r.t. perturbations in policies. This formula
only utilizes the information of the currently adopted policy,
so it can be applied even when the actions at different states
are correlated. Then we develop the gradient-based policy
iteration for finite-stage MDP.

Suppose that PL changes to P (δ) = PL + δQ = δPL
′
+

(1−δ)PL, and fL changes to f(δ) = fL+δh with δ ∈ [0, 1],
where h = fL

′ − fL. This corresponds to a randomized
policy which applies policy L′ with probability δ and policy
L with probability 1 − δ. The performance will change to
ηNα(δ). The derivative of ηNα in the direction of Q is
denoted as dηNα

dδ . Then we can write dηNα

dδ as a function
of gLα .

Lemma 3: Assume ηLNα is analytical for all δ ∈ [0, 1],
then we have
dηNα

dδ
=

(
I − αPL

)−1
(1− α)

(
αQ

(
I − αN (PL)N

)
gLα

−αN
(
(PL)N−1Q + (PL)N−2QPL + · · ·+ Q(PL)N−1

)
fL

+
(
I − αN (PL)N

)
h
)
.

Proof: Just note that

dηNα

dδ
= lim

δ→0

ηNα(δ)− ηNα

δ
.

The rest follows from Equation (12).
Lemma 3 only requires the information of the currently

adopted policy and the difference Q and h to calculate dηNα

dδ .
If we select

Li
k+1 = arg min

L

{
αQ

(
I − αN (PL

i
k)N

)
g
Li

k
α

−αN
(
(PL

i
k)N−1Q + (PL

i
k)N−2QPL

i
k + · · ·

+Q(PL
i
k)N−1

)
fL

i
k +

(
I − αN (PL

i
k)N

)
h
}

, (15)

where the minimum is taken over all feasible policies w.r.t.
the correlation constraint among the actions at different
states, this is the gradient-based policy iteration for finite-
stage MDP. Unfortunately, even if dηNα

dδ < 0, we may not
have ηL

′
Nα < ηLNα, due to the difference between the gradient

and the difference. Furthermore, in MDP with correlated
actions, the optimal system performance may be obtained
only at random stationary policies. So the stochastic approx-
imation may be used together with gradient-based policy
iteration. In infinite-stage MDP with expected discounted re-
ward criterion, the combination of stochastic approximation
and gradient estimation techniques can find the local optimal
policy with probability 1 [9]. For both finite-stage MDP and
infinite-stage MDP there are many open problems in this
direction.

IV. EXPECTED TOTAL REWARD CRITERION

In this section, we first establish the relationship between
the expected total reward criterion ηNT and the expected
discounted reward criterion ηNα. Then we develop formulas
to describe the performance difference ηL

′
NT − ηLNT and

performance derivative dηNT

dδ as a function of performance
potentials gLα . Similar to Section III, under the independent
action assumption, we develop the necessary and sufficient
condition for the globally optimal stationary policy w.r.t. the
expected total reward criterion. The potential-based policy
iteration can then be developed to find the globally optimal
stationary policy. For problems with correlated actions, we
develop the gradient-based policy iteration.
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First, we present a relationship between ηNT and ηNα.
Unfortunately we cannot optimize ηNT directly from ηNα,
as shown in Lemma 4.

Lemma 4: lim
α→1−

ηNα = 0.

Proof: Lemma 4 is a direct result of Lemma 1 and
Equation (8). Just note that [20]

(I − αP )−1 = (I − αP + αeπ)−1 +
α

1− α
eπ.

To relate ηNT to ηNα, we introduce ηNTα =
(ηNTα(1), . . . ηNTα(M))τ , where

ηNTα(i) = E

{
N−1∑
n=0

αnf (Xn) |X0 = i

}
, i = 1, 2, . . .M.

By definition, ηNTα = ηNα

1−α . And we also have
Lemma 5: lim

α→1−
ηNTα = ηNT .

So we first describe ηL
′

NTα − ηLNTα as a function of gLα , and
then use Lemma 5 to describe ηL

′
NT − ηLNT as a function of

gLα .
Lemma 6:

ηL
′

NTα − ηLNTα =
(
I − αPL

′)−1 (
αQ

(
I − αN (PL)N

)
gLα

+αN
((

I − αN (PL
′
)N

)
fL

′ − (
I − αN (PL)N

)
fL

))
.

Lemma 7:

ηL
′

NT − ηLNT = lim
α→1−

(
ηL

′
NTα − ηLNTα

)

= −eπL
′ (

Q
(
I − (N + 1) (PL)N

− (
I − (PL)N

) (
I − PL + eπL

)−1 (
eπL − PL

))
gL1

+N
((

I − 2(PL
′
)N

)
fL

′ − (
I − 2(PL)N

)
fL

))
,

where gL1 =
(
I − PL + eπL

)−1
fL.

Based on Lemma 7 and the independent action assumption,
we develop the necessary and sufficient condition for glob-
ally optimal stationary policy w.r.t. the expected total reward
criterion.

Theorem 2: Under the independent action assumption, in
finite-stage MDP with expected total reward performance
criterion, a policy Li is the optimal stationary policy for
initial state i if and only if
{

PL
′ (

I − (N + 1) (PL
i

)N

−
(
I − (PL

i

)N
)(

I − PL
i

+ eπL
i
)−1 (

eπL
i − PL

i
))

gL
i

1

+N
(
I − 2(PL

′
)N

)
fL

′}
i
≤

{
PL

i
(
I − (N + 1) (PL

i

)N

−
(
I − (PL

i

)N
)(

I − PL
i

+ eπL
i
)−1 (

eπL
i − PL

i
))

gL
i

1

+N
(
I − 2(PL

i

)N
)

fL
i
}

i
,

for all L′ ∈ E .

TABLE I
THE COMPARISON OF COMPUTATIONAL COMPLEXITY PER ITERATION

FOR IS AND FS AND TOTAL FOR DP.

DP IS FS
PI VI

time O(N |A||S|2) O(|S|3) O(|A||S|2) O(|S|3)
space O(N |S|) O(|S|) O(|S|) O(|S|)
|E| |A|N|S| |A||S| |A||S| |A||S|

The proof of Theorem 2 is similar to the proof of Theorem
1. Theorem 2 indicates a way to do potential-based policy
iteration: In the (k + 1)th iteration, we select

Li
k+1 = arg max

L

{
PL

(
I − (N + 1) (PL

i
k)N

−
(
I − (PL

i
k)N

)(
I − PL

i
k + eπL

i
k

)−1

×
(
eπL

i
k − PL

i
k

))
g
Li

k
1 + N

(
I − 2(PL)N

)
fL

}
,

(16)

where the maximum is taken componentwisely. When ac-
tions at different states are correlated, we have

Lemma 8: Assume ηNTα is analytical for all δ ∈ [0, 1],
then we have

dηNTα

dδ
=

(
I − αPL

)−1 (
αQ

(
I − αN (PL)N

)
gLα

−αN
(
(PL)N−1Q + (PL)N−2QPL + . . .

+Q(PL)N−1
)
fL +

(
I − αN (PL)N

)
h
)
.

Lemma 9: Assume ηNTα is analytical for all δ ∈ [0, 1],
then we have
dηNT

dδ
= −eπL

(
Q

(
I − (N + 1) (PL)N − (

I − (PL)N
)

× (
I − PL + eπL

)−1 (
eπL − PL

))
gL1

−N
(
(PL)N−1Q + . . . + Q(PL)N−1

)
fL

−NαN−1(PL)Nh
)
.

Note that Lemma 9 only requires the information of the
currently adopted policy and the difference Q and h to
calculate dηNT

dδ . If we select

Lk+1 = arg max
L

{
PL

(
I − (N + 1) (PLk)N − (

I − (PLk)N
)

× (
I − PLk + eπLk

)−1 (
eπLk − PLk

))
gLk
1

−N
(
(PLk)N−1Q + . . . + Q(PLk)N−1

)
fLk

−NαN−1(PLk)Nh
}

, (17)

where the maximum is also taken componentwisely. This is
the gradient-based policy iteration for expected total reward
criterion in finite-stage MDP.

V. DISCUSSIONS

As mentioned in Section I, there are usually three methods
for finite-stage MDP, namely DP, approximating the finite-
stage MDP by an infinite-stage MDP (IS for short), and
the method developed in this paper (FS for short). We first
compare the computational complexity of the three methods,
as shown in Table I.
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In Table I, PI and VI are short for policy iteration and
value iteration, which are well-known methods for infinite-
stage MDP. DP explores all the stationary and non-stationary
policies. All the other methods only explore the stationary
policies. The computational complexity of DP, PI, and VI are
well-known results [3]. For the method developed in this pa-
per, we use Eq. (14) as an example. Suppose g

Li
k

α is obtained
by solving the Poisson equation using matrix inversion. Note
that the minimization in Eq. (14) is taken over all policies.
In practice, we can replace this by m randomly sampled
policies, where m is a predetermined value. A small m may
lead to a large number of iterations before the iterations
stops. Then Eq. (14) has a time complexity of O(|S|3) and
space complexity of O(|S|).3 So in each iteration, FS has a
time complexity similar to PI. Since it is difficult to quantify
the number of iterations thus needed in PI, VI, and FS, we do
not know which method has the minimal time complexity in
total. The space complexity of PI, VI, and FS is independent
from N , and thus much smaller than DP when N is large.

We then compare the performance of the resulting policies
of these methods. DP finds the optimal policy w.r.t. ηNα. PI
and VI find the optimal stationary policy w.r.t. ηα. And FS
finds the optimal stationary policy w.r.t. ηNα. So, we have
ηLDP

Nα ≤ ηLFS
Nα ≤ ηLIS

Nα. So, the method developed in this paper
has a computational complexity similar to policy iteration but
finds better stationary policies for finite-stage MDP. It should
be considered when the computational complexity (say the
space complexity) of DP is not affordable in an application.

VI. CONCLUSION

In this paper, we generalize the potential-based method
[15] to find the optimal stationary policies for the finite-
stage MDP. By focusing on stationary policies, the method
can be applied when DP is practically infeasible due to
large search space and simulation-based performance evalu-
ation. Two most frequently used criteria are considered: The
expected discounted reward and the expected total reward.
Under the independent action assumption the necessary and
sufficient condition (Theorem 1 and 2) for globally optimal
stationary policy is developed, together with the potential-
based policy iteration (Equation (14) and (16)). The proposed
method always finds better policies than directly applying the
potential-based policy iteration for infinite-stage MDP [15],
since the impact of the finite stage objective functions is
considered in our method. When the actions at different states
are correlated, we develop the gradient-based policy iteration
(Equation (15) and (17)). Note that since the performance
potential gα used in this paper is exactly the same as the po-
tential defined in infinite-stage MDP [15], all the algorithms
to estimate potentials in infinite-stage MDP through sample
path [22] can be applied here.

As the further research directions, we can try to extend the
method developed in this paper to Borel case (i.e., the state

3Note that this is for calculating the optimal stationary policy of one
initial state. If we want to calculate the optimal stationary policies for each
initial state, the time and space complexity of Eq. (14) should be O(|S|4)
and O(|S|2), respectively.

space and the action space are Borel spaces) [23]. Another
direction is to develop the potential-based policy iteration to
find the optimal non-stationary policy in finite-stage MDP.
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