
A Platform for Building PIC Applications for
Control and Instrumentation

Brandon Kuczenski, Philip R. LeDuc, and William C. Messner
Department of Mechanical Engineering

Carnegie Mellon University

Abstract— The authors have developed a minimal software
environment for PIC 18F-series microcontrollers that can be
used to rapidly develop mechatronic applications. The envi-
ronment includes initialization of commonly utilized hardware
features such as analog-to-digital conversion, pulse-width mod-
ulation control, serial communication and a programmable
interrupt-driven timing loop that can be used to provide
a sampling interval for a discrete-time control system. The
environment also supports simple mathematical operations,
interfacing with an LCD display, capturing user input and
developing a flexible menu-style user interface. The software
will be publicly available to facilitate rapid development of
PIC-based mechatronic systems.

I. INTRODUCTION

PICmicro R© microprocessors made by Microchip [1],
once called Peripheral Interface Controllers, are increas-
ingly popular for developing inexpensive and reliable
mechatronic systems. Many microcontroller projects make
use of a common set of hardware features, such as serial
communication, A/D conversion and PWM output, which
are provided by PIC products. However, the authors have
found in their research that tools to easily develop high-level
applications to make use of these features are lacking.

In the process of designing a closed-loop control system
for a microfluidics application [2], the authors developed
a software package that can be used as a ‘platform’ for
designing complex mechatronics applications. The platform
makes use of some of Microchip’s most advanced micro-
processors and makes available the primary features that
are most valuable for mechatronic applications and servo
control applications. The platform packages these utilities
within a software environment that provides the engineer
with a variety of tools and utilities, such as input through a
set of push-buttons, output to an LCD screen, a flexible
and extensible menu-driven user interface, and a robust,
interrupt-driven servo timing loop. Finally, devices built
using the platform and related hardware are designed to
‘stand alone,’ operating without requiring a connection to a
computer.

This paper details the functionality of the platform in
different stages. First, hardware features and low-level soft-
ware features are discussed. Then, the paper details more
advanced functionality provided by the software. Finally, an
example program written with the platform is described.

The platform is provided in the form of a ‘template’
program which can be compiled and run on PIC hardware

without any modifications, providing an entry point for
a device designer who is beginning a new project. The
desired functionality can be written within the template’s
framework. The designer can thus make use of the features
provided by the platform while maintaining the flexibility
of writing his or her own code. The code for a simple
example, an implementation of a PID compensator which is
built upon the platform, is provided along with the code for
the platform. The example illustrates how to make use of
the template’s layout to design a custom application, and is
detailed in Section IV below. See Section V for information
on where to acquire the code.

It is the authors’ intention to make the platform and
the template program freely available to the engineering
community under the GNU General Public License [3].
The program may then be freely redistributed and modified,
so that it can be useful to other engineers developing ap-
plications on PIC microcontrollers. Contributions from the
embedded programming community are likely to make the
software package more flexible and valuable. Availability
of the source code is of crucial importance to this effort,
because design choices that are appropriate for one purpose
may not be appropriate in general.

II. FEATURES OF THE PLATFORM

There are two main functional categories of the software
platform’s features: (1) utilization of peripheral hardware
devices available on PIC microcontrollers, and (2) a soft-
ware environment within which an embedded application
can operate. The result of this combination is a program
that initially provides functional hardware features to the
programmer, but can also be easily expanded and modified.
It is written in a modular programming style that facilitates
the development of custom applications. Below is an outline
of first the on-chip peripherals used in the platform, and
second the features provided in software.

A. Hardware Features

The software platform is designed for use on the
PIC18Fxx8 family of devices [4], which are distinguished
from other of Microchip’s devices by the presence of on-
board flash memory and a particular hardware architecture.
All of these chips feature at least 16 kilobytes of program
memory, 768 bytes of RAM, a maximum clock frequency
of 40 MHz and a host of on-board peripherals, making

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrC18.5

5162

them more than adequate for even complex applications.
The platform is written in PIC native assembly language.
See the section below, entitled “Using the Platform with
Higher-Level Languages” for more information.

The features included in this section are built-in to the
hardware of the PIC; the platform simply activates and
configures them for a typical application. Enabled features
include

• polling the on-chip 10 bit Analog-to-Digital converter;
• writing to the 10 bit PWM channel;
• detection and counting of quadrature input using edge-

detecting interrupts;
• transmitting and receiving serial data over the serial

UART;
• initializing RAM from program memory on bootup,

where desired.
The PWM output routine can be configured to use a second
pin as a ‘direction’ flag, in effect producing a signed 10-
bit output. The quadrature counter can detect inputs as fast
as 30 kHz, and possibly faster, though processing time for
other functions would be severely curtailed at this rate.

B. Software Features

In addition to the native hardware features of the PIC, the
platform offers a number of software extensions which are
of general usefulness to the embedded systems programmer.
The structural software features include

• a library of functions for interfacing with the popular
Hitachi HD44780 LCD screen driver chip [5];

• a way of processing user input;
• a math library;
• a programmer’s interface to the serial UART;
• a programmable servo timer loop.

A full listing of software functions is provided in Table I.
Many of these features were designed to be configurable;

that is, the hardware and memory resources they use can be
manipulated by a programmer without affecting the function
of the program. For example, the LCD interface can be
programmed to use any of the device’s available output
pins. Configurable features can be set up by the programmer
to suit a given application, and are then written into the
code when it is compiled. These design choices are said to
comprise compile-time options.

An LCD screen was required to provide a convenient
way to operate devices free of computer control, and to
streamline the debugging process. An ASCII display driven
by the common and easily interfaced Hitachi HD44780
driver chip was chosen for the design. The chip provides a
built-in library of 200 common characters, plus the capacity
for 8 user-defined custom characters. The library includes
the functions for writing single characters or strings of
characters to any location on a screen driven by the Hitachi
chip, as well as writing numeric data in either decimal or
hexadecimal.

The LCD hardware interface requires the use of four pins
as data lines and three pins as control lines, the selection

of which is fully configurable at compile time. Because of
the library’s construction, only one routine—the routine that
drives the external interface—is hardware-dependent; users
who wish to modify the interface, or use a different piece
of hardware, need only modify the interface routine and
otherwise maintain the higher-level functionality of the rest
of the library. There are provisions for including multiple
low-level interface routines, with selection of the desired
one at compile time.

User input is provided through a set of three pushbuttons
and an optical quadrature encoder which can be used to
incrementally adjust numerical values. The pushbuttons are
utilized to implement a ‘cellular phone’-style menu-driven
user interface, the details of whose function are described
in the section “Operating modes and the Extensible User
Interface” below. It is notable that both edge-detecting
interrupts available natively on the PIC microprocessors are
used for managing the quadrature input from the optical
encoder, and device designers may wish to forgo the use
of the encoder as a user interface in favor of using it for
feedback control.

The included math library allows abstracted operation on
16- and 32-bit fixed point integers. Supported operations
include signed and unsigned addition, subtraction, negation,
comparison, sign-extension, multiplication, and bit-shifting
by 4 bits (multiplication and division by 16). Multiplication
of two signed 16-bit fixed-point numbers, or one signed and
one unsigned 16-bit number, to produce a signed 32-bit
result, is supported. The math library also includes routines
to convert 8-bit and 16-bit hexadecimal to packed binary-
coded-decimal for the purposes of displaying internal nu-
merical results in decimal form on the LCD screen. See
Table I for a full list of Math Library functions.

Finally, the platform provides a configurable timer-
interrupt-driven servo loop, which also forms the backbone
of the main operating loop. At compile time, the program-
mer can select the interrupt frequency. When the interrupt
occurs, an Interrupt Service Routine (ISR) is executed,
which is responsible for sending the control signal derived
from the prior period of computation to its output. The ISR
also updates a millisecond-timer used to schedule events.
The millisecond-timer is designed to keep correct time
regardless of servo frequency, provided that the actual servo
frequency is an integer division of 1000 Hz. The operation
of the timer ISR is referred to as ‘Foreground’ operation,
because the occurrence of an interrupt takes precedence over
other operations occurring in the ‘Background.’ The design
of the timer ISR should make it robust to timer overruns,
as described below in the section titled, “Background Loop
Timing.”

III. SOFTWARE DETAILS

The software platform has been designed with the pri-
mary focus on stability, usability and extensibility. Below
the primary structural features of the platform that provide
these characteristics are described.

5163

Fig. 1. The structure of the software’s background operation. The
processor idles until the timer interrupt occurs, then runs through the
background processes sequentially in the Background Loop.

A. Background Loop Structure

Almost all of the program operates in what is called the
‘Background Loop,’ the set of routines that are executed in
between timer interrupts. The CPU sits idle until the timer
interrupt occurs. The timer ISR sets a flag which instructs
the Background Loop to begin as soon as the ISR exits. The
processor then enters the Background Loop, in which all
data collection and computation is performed. The loop runs
through a series of routines in sequence. Each routine sets a
flag when it is complete, but may also return without setting
its completion flag. Only when all flags have been marked
as ‘complete’ does the background loop terminate. All
routines can inspect the flags, allowing complex sequencing
of events. For example, a programmer may wish to delay
computation of the next servo command signal until the
Analog to Digital routine is complete (Figure 1).

The timer ISR was designed to be robust to occasional
dramatic overruns of the timer interrupt by the background
processes, such as the delays that might be caused by
periodic updates to the LCD display. After the background
loop exits, LCD updates are performed, and then the
processor returns to wait for the timer interrupt to occur.
If the timer interrupt has already occured, indicating a
timer overrun, the processor will immediately enter the
next background loop, ensuring that the next timer interrupt
will be performed with the most recent data (Figure 2).
Because all computation and data acquisition is performed

Fig. 2. A schematic depicting the relative durations of the timer interrupt
and background processes. Because the timer interrupt routine is very brief,
interrupt stacking does not occur, and the software is robust to background
processes overrunning the timer interrupt.

during background operation, the timer ISR will always
complete before the next timer interrupt occurs, and so timer
interrupts will not ‘stack,’ and the period between timer
interrupts will remain constant.

B. Operating Modes and the Extensible User Interface

User interactivity is an important feature in certain ap-
plications. The platform includes support for user input
through pushbuttons, and user output through an LCD
display. The software platform includes a programming
scheme for easily implementing a menu-driven user inter-
face, wherein each button corresponds to a menu option, and
pressing that button can execute some function or provide
another menu. The menu structure, the set of button presses
and the function calls that they generate, is fully flexible
and can be easily manipulated by the programmer. This
functionality is described in detail below.

The software platform provides for up to thirty-two user-
definable “Operating Modes,” each of which is mapped to
its own set of function calls to associate with the three
pushbuttons. When a button press is detected, the program
enters a routine which computes an index into a table of
function calls. Depending on the current Operating Mode
and the particular button pressed, one of those functions is
selected and called by means of a jump table. That function
can then perform any task, such as changing the state of
the program to a new Operating Mode. A programmer
must specify only which function should be called for each
situation, and then write the various functions referred to,
when designing the menu structure.

Figure 3 shows the structure of the configuration file and
a simplified model for the operation of the code that makes
this system work. The configuration file takes the form
of a set of macros, which are replaced by the assembler
automatically in the jump table, forming a sequential list of
function calls. The jump table routine takes a numerical
input from 0 to 2, which represents which button was
pushed by the user. When the routine runs, it considers the
current mode number, multiplies that mode by 3 and adds
the numerical input. The resulting value is used as an index

5164

; Configuration of the User Interface
; MODE_X_Y maps a button-press of button ’Y’ in mode ’X’
; to the specified function. The programmer can use
; this structure to generate a "menu" interface. Flow
; through the menu choices can be changed merely by
; changing these labels.
;
; In this example, the named functions ’GoIntoMode1’,
; ’GoIntoMode2’, ’AnotherFunction’, ’ReturnToMode0’,
; and ’DoNothing’ would need to be written by the
; programmer.
#define MODE_0_0 GoIntoMode1
#define MODE_0_1 GoIntoMode2
#define MODE_0_2 AnotherFunction

#define MODE_1_0 GoIntoMode2
#define MODE_1_1 ReturnToMode0
#define MODE_1_2 DoNothing
.
.
.

(a) Menu Interface Configuration

; Jump Table Implementation
; (in simplified PIC pseudo-assembly)
; This code runs every time a button is pressed, and
; does not need to be modified by the programmer.
...
MOVF ModeNumber,W ; mode number into WREG
MULLW 0x3 ; multiply by 3
ADDWF ButtonPress,W ; Which button pressed? (0-2)
ADDWF ProgramCounter ; jump forward by the result

; Jump Table begins here
; when current mode is 0...
BRANCH MODE_0_0 ; button 0 calls MODE_0_0
BRANCH MODE_0_1 ; button 1 calls MODE_0_1
BRANCH MODE_0_2 ; button 2 calls MODE_0_2

; when current mode is 1...
BRANCH MODE_1_0 ; button 0 calls MODE_1_0
BRANCH MODE_1_1 ; button 1 calls MODE_1_1
BRANCH MODE_1_2 ; button 2 calls MODE_1_2

.

.

.

(b) Jump Table Implementation of the Interface

Fig. 3. A description of the programming design of the flexible user
interface. Figure 3a represents a configuration file; figure 3b shows a
simplified implementation of the jump table that implements the menu.
A programmer may reconfigure the menu simply by changing the macros
defined in the upper portion.

into the sequential list of function calls. The program then
‘jumps’ forward by the amount of the index and lands on the
function call that corresponds to the current mode and the
given button press. Simply changing the macros is sufficient
to modify the menu structure, because it changes which
function calls get loaded into the jump table at compile
time.

The mode switching machinery provides a few other
basic functions. Any mode can be configured to either use
or not use the optical encoder input. If the device is in an
operating mode that is programmed to ignore the optical
encoder, then all encoder counts that are received will be
discarded. Any mode (except for the primary mode, known
as the “Main Mode” or “Mode 0”) can also be configured
as a “Waiting Mode,” during which an absence of user input
after a set amount of time will cause the device to revert to
the Main Mode.

Another supported function of the user interface is to

Fig. 4. The different software interfaces for writing to the LCD display.
Contents of the Memory Buffer that have changed since the last update get
updated once per timer interrupt, after other background processes have
completed. “Display Immediately” commands get sent to the LCD screen
right away.

recognize when the user presses a button and holds it down.
If properly configured, the software can perform one event
upon the pressing of the button, and another event upon the
button’s release.

The sample application described below makes use of this
menu interface in concert with the LCD screen; however,
this behavior is not required in general. The menu interface
can be adapted to use any form of output, or no output.

C. LCD Display Routines

Because the LCD interface requires asynchronous com-
munication with an external device, it can be expensive in
terms of processor time, and prohibitively slow in some
applications. In laboratory tests, the communication time
with the LCD driver was observed to be as much as 10-
50 microseconds per character transmitted, depending on
the clock speed of the LCD driver1 To minimize the time
cost of LCD communication, the software provides a variety
of methods for displaying data. The primary method is a
local buffer of LCD memory space to which user programs
can write only as frequently as output is desired. The LCD
library then transmits only nonempty data in bulk once per
timer interrupt to minimize overhead.

The display software contains three pipelines for writing
to this memory. The first is executed only upon a change
of Operating Mode, and is useful for costly, complete
redisplays of the screen. The second is executed once
every 256 milliseconds, which is convenient for periodically
updating sensor data. The third can be executed at any time,
and is useful for updating display information that does
not change in a predictable fashion, such as responses to
user input. In addition, routines which display immediately,
bypassing the local memory buffer and bulk data transmis-
sion, are provided, an extension that is particularly useful
for debugging. Figure 4 shows these different pathways
schematically.

Finally, the entire display mechanism can be easily
switched on or off during runtime if it is not intended to
be used, or used only during software development. For

1The LCD Driver’s clock speed can be configured in hardware by
changing the external resistance across the HD44780’s internal oscillator.
Please see the driver chip’s documentation [5] for details.

5165

example, an application can be designed in which the LCD
display is disabled until user input is detected, at which
point it is switched on, allowing for interactive operation.

D. Receiving and Responding to commands over the Serial
Port

The hardware functionality of the serial port is merely
to receive and transmit messages over a serial connection
using the RS232 format [6]. Conversion to a standards-
compliant voltage must be done using separate hardware.
Interpretation of the messages is left to the software, but a
basic framework is provided.

The serial port was designed with the intention of pri-
marily receiving commands from a host computer—the
software does not initiate communication except to respond
to a command. At the default baud rate of 38,400 baud
and sampling frequency of 1 kHz, twenty-four bits of data
can be comfortably received and transmitted every timer
interrupt. The size of the command word was designed
to be 16 bits. Data reception is interrupt-driven, with the
interrupt routine capturing each byte of data as it arrives.
If the software receive buffer fills up, the interrupt routine
will set the serial CTS bit2, telling a host computer with
enabled hardware-handshaking to postpone transmission of
further data.

Once two bytes have been received, the serial back-
ground routine processes them as a command. A jump-
table architecture is used, providing an essentially limitless
functionality. Depending on the numerical value of the
command, any function in program memory can be called.
Preprocessing of commands is also possible, to allow some
or all commands to bypass the jump table architecture.

Whereas data reception is interrupt driven, and only one
command is permitted to be received per timer interrupt,
transmission is a background process. Any time the serial
background routine detects that the hardware transmission
buffer is empty and there is data to transmit, it will transmit
the next byte. Because of the repeating nature of the Back-
ground Loop, this approach is highly efficient and causes
minimal idle time when there is data to be transmitted.

E. Code Modularity

The software’s source code is divided into three groups of
files: ‘core’ files, which are invariant from project to project,
‘project’ files, which are modified or written entirely by
the project programmer, and ‘header’ files, which contain
compile-time options that the programmer can adjust. By
selectively including or omitting certain blocks of code, the
programmer can select which ‘modules’ should be used in
the application. A complete description of the process of
application programming that is facilitated by this platform
is beyond the scope of this paper, and is included instead as
part of the documentation that accompanies the published
code (see Section V).

2See the TIA-232 standard [6]

IV. A SAMPLE APPLICATION

This section describes an application that was developed
using this platform. The program implements PID com-
pensation of a system whose feedback is read through an
analog sensor. The application allows the programmer to
calibrate the sensor, setting both its ‘zero’ value and a
proportionality constant that scales A/D counts to real-world
units. The user can also select the reference to be one of
three sources: another analog input, an internal reference
that can be adjusted by the user, or a command received
over the serial communication interface. Finally, the user
can set the gains for the proportional, integral, and backward
difference components of the compensator.

The device is meant to be operated interactively and
independently of a computer, unless the serial communi-
cations interface is to be used as the reference source. In
order to fully realize this device, therefore, a certain set
of hardware devices, including an LCD screen driven by
the Hitachi HD44780 chip or equivalent, and a directional
motor amplifier such as an H-Bridge, must be used. Tested,
functional schematics and a parts list for such a device are
available from the authors.

The following description demonstrates the features of
the software platform from the perspective of the user
interface. A reading of the code for this sample application
(see Section V) will show how the user interface and the
platform’s features are connected.

Figure 5 illustrates the structure of the menu interface
used in this design. The left side of the figure is the code
listing for the macros that define the menu jump table, as
discussed in Figure 3. The right side shows a block diagram
representing the nine different Operating Modes. At the
bottom of each box are three labels which correspond to the
functions of the three pushbuttons in that particular mode.
Mode 0, the “MainMode”, is a branching off point into
one of three modes: the first pushbutton, labeled “Config”,
allows the user to enter a mode to configure device op-
eration; the second pushbutton, “Gains”, enables the user
to tweak the compensation design; and the third button,
“Run”, operates the device. In the code listing to the left, the
entries for Mode 0 are listed as “EnterConfig,” “EnterCtrl,”
and “EnterRun,” and button presses trigger execution of
functions bearing those names.

In the “Config” mode, the user can choose to select the
reference source, calibrate the sensor, or surrender control
of the device to the serial communication port. The press
of the first button takes the user into the “Reference” mode,
where he or she can select an internal reference, an external
reference from an analog input, or a reference received
over the serial port. In the “Cal” mode, the user calibrates
the sensor, a process which has two stages, a zero stage
and a gain stage. In the zero stage, the sensor should
be placed into a zero-input state. When ready, the user
presses the button labeled “Gain” and the controller reads
the current sensor value to subtract from future readings

5166

Fig. 5. The menu structure for a sample application produced with the platform. The application is a PID compensator which uses an analog to digital
converter to read sensor input and PWM to generate control output. The user can adjust the compensator gains, as well as select the source of the
reference signal at runtime. The menu interface configuration file is shown at left; a schematic of the menu structure is shown at right.

before entering the gain phase of calibration. In this stage,
the user should supply a known input to the sensor and
adjust the controller’s internal numerical gain using the
optical encoder until the displayed value matches the actual
value. Should the user enter the “Comm” mode, the device
will idle until it receives a command over the serial port or
until the user cancels.

In the “Gains” mode, the user can use the optical encoder
to adjust the proportional, integral, and backward-difference
gains of the internal PID compensator. In this mode, the first
button allows the user to cycle through the three gains, and
the second button toggles selection of the less-significant
byte and the more-significant byte of the gains’ values. As
long as the user is in this mode, rotation of the optical
encoder will cause an adjustment to the selected byte of
the selected gain. The third button exits.

In the “Run” mode, the user can use the first two buttons
to output a fixed PWM signal with the chosen direction
pin outputting a ‘positive’ or ‘negative’ sense. This enables
the user to slew the motor forward and backward in order
to prepare the device being controlled. The third button
enters the “Regulate” mode, in which the device reads from
the sensor, compares the value to the selected reference,
performs PID compensation on the error signal and outputs

the signed result to the PWM pin to run a motor, the sign
being interpreted to set the sense of the direction pin. In
this mode, if the user has selected the internal reference,
then he or she can step its value up or down by a fixed
value, and the optical encoder adjusts the reference in a
more continuous fashion. The third button exits.

The sample program is designed to work with a pressure
sensor, and so on-screen displays refer to input values in
PSI, indicating the units of Pounds per Square Inch. The
software is fully functional and used extensively in the
authors’ research.

V. CODE AVAILABILITY

The code is available under the Gnu General
Public License on an author’s home page on the
World Wide Web at Carnegie Mellon University, and
on the open-source clearinghouse, Sourceforge, at
http://sourceforge.net/, under the project name
“TyPIC.”

VI. CONCLUSION

The flexibility of writing one’s own operating software
for a given mechatronic application often far outweighs the
simplicity of using pre-packaged tools. The authors have

5167

TABLE I

A FULL LIST OF SOFTWARE FUNCTIONS.

Background Processes
AtoD Poll A/D converter to read analog inputs in succession
InputProc Read user input and change Modes
SerialProc Process commands received over the serial port
DataProc Compute new servo command; log data
DisplayRefresh Interface with the LCD Memory Buffer
LCD Library Functions 544 bytes = 272 code words
LCDSetup Utility – Initialize the LCD screen and display a short message
HexToAscii Utility – Convert numeric data to ASCII format
LCDClearBuffer Buffer – Zero the contents of the Memory Buffer
LCDWriteChar Buffer – Write a character to a specified location
LCDHexToBuffer Buffer – Write a number to the buffer in ASCII format
LCDPutWord Buffer – Write a string of characters to the memory buffer
LCDClearHome Display-Immediately – Clear the screen and home the cursor
LCDWriteHex Display-Immediately – Write the current hex value to the screen for debugging
LCDPutCharNow Display-Immediately – Write the specified character to the screen for debugging
LCDRefresh Utility – Copy non-zero entries in the Memory Buffer to the LCD screen
Math Library Functions 802 bytes = 401 code words
Compare16U 16-bit unsigned compare
Compare16S 16-bit signed compare
Add16 Add two 16-bit numbers – signed or unsigned
Add16C Add two 16-bit numbers and retain addends
Add16Sat Add two signed 16-bit numbers with saturation
Add32Sat Add two signed 32-bit numbers with saturation
SignExtend8 Sign-extend an 8-bit number to 16 bits
Subtract16 Subtract one 16-bit value from another – Signed or Unsigned
Subtract16C Subtract two 16-bit numbers and retain subtractands
Neg2Comp16 Twos-complement negation of 16-bit number
Neg2Comp32 Twos-complement negation of 32-bit number
Abs16 Absolute Value of 16-bit number
Abs32 Absolute Value of 32-bit number
LShift16 Left-shift 16-bit number by 4 bits
RShift16 Right-shift 16-bit number by 4 bits
RShift24 Right-shift 24-bit number by 4 bits
LShift32 Left-shift 32-bit number by 4 bits
RShift32 Right-shift 32-bit number by 4 bits
HexToDec8 Convert 8-bit number to 3-place decimal
HexToDec16 Convert signed 16-bit number to signed 5-place decimal
Multiply16S_un Multiply a 16-bit signed and 16-bit unsigned number to produce 32-bit signed result
Multiply16S Multiply two signed 16-bit numbers

attempted to create a software package that strikes a balance
between ease of use and availability of the full functionality
of the processor. The resulting software platform has been
demonstrated to be a valuable tool for rapid development of
complex applications involving the PIC microcontroller, and
may provide utility to other researchers who use embedded
controllers in research.

REFERENCES

[1] (2004) The microchip website. [Online]. Available: http://www.
microchip.com/

[2] B. Kuczenski, W. C. Messner, and P. R. LeDuc, “An automated system
for controlling the laminar flow interface in a microfluidic system,”
IMECE Congress, November 2004.

[3] (1991, June) The GNU general public license. Free Software
Foundation, Inc. Boston, MA. [Online]. Available: http://www.fsf.
org/licenses/gpl.html

[4] 28/40 pin Enhanced FLASH Microcontrollers (PIC18Fxx8), Microchip
Technology, Inc., 2003, doc. no. DS41159C.

[5] Dot Matrix Liquid Crystal Display Controller/Driver (HD44780U),
Hitachi, 1999.

[6] Interface between Data Terminal Equipment and Data Circuit-
Terminating Equipment Employing Serial Binary Data Interchange,
TIA Std. ANSI/TIA-232-F-1997, September 1997.

5168

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

