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Abstract— The controllability of switched bilinear systems
(SBLS) is investigated. First, the structure of accessibility Lie
algebra of SBLS is investigated. Some topological structure
of (weak) controllability sub-manifolds is revealed. Then the
practical controllability and the controllability of SBLS, and
the controllability of state homogeneous SBLS are studied
in sequence. Sets of easily verifiable sufficient conditions are
obtained for each case.

I. INTRODUCTION

In recent years, the switched systems have attracted
considerable attention from the control community [12].
Controllability is one of the key issues. For switched
linear system a necessary and sufficient condition for the
controllable subspace was presented in [15]. [6] investigated
the controllable sub-manifold which is more general than
controllable subspace. Accessibility Lie algebra is essential
for investigating controllability of nonlinear systems (in-
cluding switched linear systems). Chow’s theorem [9], [11]
and generalized Frobinius’ theorem [2] are two fundamental
tools to connect Lie algebra with its integral manifold. They
play essential role in our later approach.

As a particular kind of nonlinear systems, bilinear sys-
tems have special interest in both theoretical and practical
aspects [14]. Many important systems, such as Lotka-
Volterra equation for biological systems etc. [4] are in this
category.

This paper considers a switched bilinear system (SBLS)
on manifold M as

ẋ = Aσ(t)x +
m∑

i=1

(
B

σ(t)
i x + C

σ(t)
i

)
ui, x ∈ M

:= Aσ(t)x + Bσ(t)ux + Cσ(t)u, u ∈ IRm,
(1)

where σ(t) : [0,∞) → Λ is a right continuous measurable
mapping, Λ = {1, 2, · · · , N}, u(t) are piecewise constant
controls.

Assume Cλ
i = 0, ∀λ ∈ Λ and i = 1, · · · ,m, then we

have a state homogeneous switched bilinear system (SH-
SBLS) as

ẋ = Aσ(t)x +
m∑

i=1

uiB
σ(t)
i x

:= Aσ(t)x + Bσ(t)ux, x ∈ M.
(2)
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If, in addition, the drift terms are identically zero for all
switching models, the system becomes

ẋ =
m∑

i=1

uiB
σ(t)
i x := Bσ(t)ux, x ∈ M, (3)

which is called a state-control homogeneous switched bi-
linear system (SCH-SBLS).
Remark 1.1: 1. We assume for system (1) the state space
M = IRn and for system (2) or (3) the state space M =
IRn\{0}, because for (2) or (3) the origin, {0}, is obviously
uncontrollable.

2. For convenience, the matrix product in this paper is
assumed to be semi-tensor product, which is defined and
studied in [5]. A brief convenient reference is [7]. Semi-
tensor product is a generalization of conventional matrix
product. So when the dimensions of factor matrices meet
the requirement of conventional matrix product, the product
is the conventional one.

It is worth noting that for bilinear systems, each switching
model is analytic. So the generalized Frobinius’ theorem as-
sures the existence of integral manifolds for the accessibility
Lie algebra of system (1) ( or (2) or (3) ).

II. ACCESSIBILITY LIE ALGEBRA AND WEAK

CONTROLLABILITY

Definition 2.1: Consider a SBLS. (i) For a given x ∈
IRn, if there exist piecewise constant controls and a selected
switching law σ(t) such that the trajectory of the controlled
switched system can be driven from x to y, then y is said
to be in the reachable set of x, denoted by y ∈ R(x).

(ii) y is said to be weakly reachable from x, denoted as
y ∈ WR(x), if there exist spline-trajectories of the system,
which connect a finite set of points, x := x0, x1, · · · , xs :=
y pairwise in either forward or backward ways. Precisely,
either xk−1 ∈ R(xk) or xk ∈ R(xk−1), k = 1, 2, · · · , s.

(iii) An invariant sub-manifold I is called a controllable
sub-manifold if for any two points x, y ∈ I, x ∈ R(y).

(vi) An invariant sub-manifold I is called a weak con-
trollable sub-manifold if for any two points x, y ∈ I,
x ∈ WR(y).

The controllable sub-manifolds are closely related to the
Lie algebra generated by the vector fields extracted from
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the systems. Similar to the non-switched model case, we
define the accessibility Lie algebra for SBLS as

Definition 2.2: For system (1), the accessibility Lie algebra
is defined as

La :=
{

Aλx,Bλ
i x + Cλ

i ,
∣∣ λ ∈ Λ, i = 1, · · · ,m

}
LA

. (4)

The following result about weak controllability is a
mimic of the corresponding result about general control
systems [14], [16].

Proposition 2.3: The system (1) ((2) or (3)) is globally
weakly controllable, if the accessibility Lie algebra has full
rank. That is,

rankLa(x) = n, ∀x ∈ M. (5)

If (5) is satisfied, as for non-switching case, it is said that
the accessibility rank condition is satisfied.

Definition 2.4: Let V be a set of vector fields. V is said
to be k-symmetric, if for any vector field X ∈ V , there is a
vector field Y ∈ V with Y = −kX , k > 0.

Lemma 2.5: Let ∆ be an involutive analytic distribution,
i.e., an involutive distribution generated by analytic vector
fields. Moreover, assume x ∈ WR(y) via spline integral
curves of ∆, then

rank(∆(y)) = rank(∆(x)).

Proposition 2.6: 1. Consider a SBLS. For a given point
x0 ∈ IRn if rank(La(x0)) = k and there exists an open
neighborhood U of x0 such that

N(x) := {x ∈ U | rank(La(x)) = k}
is a k-th dimensional regular sub-manifold of U , then N(x)
is a weak controllability sub-manifold.

2. If a SBLS has (feedback) symmetric drift terms,
{Aλ | λ ∈ Λ}, N(x) is a controllable sub-manifold. Par-
ticularly for SCH-SBLS (3), N(x) is a controllable sub-
manifold.

Certain properties of the accessibility Lie algebra are
investigated in Appendix.

III. PRACTICAL CONTROLLABILITY

Definition 3.1: System (1) ( (2) or (3)) is said to be
practically controllable at x ∈ M if for any y ∈ M and any
given ε > 0, there exist suitable controls and switching law
such that the spline-trajectories of the switched controlled
models can reach the ε neighborhood of y. The system
is said to be practically controllable if it is practically
controllable at every x ∈ M .

The constructive nonlinear decomposition technique has
been used widely for bilinear systems [10]. For this ap-
proach, instead of studying the switched bilinear system
(1), we consider the following set of switched systems:
a linear system without control and 2 switched bilinear
homogeneous control systems as:

ẋ = Aσ(t)x; (6)

ẋ = Bσ(t)ux + Cσ(t)u;
ẋ = − (

Bσ(t)ux + Cσ(t)u
)
.

(7)

Denote by RLH(x0) the reachable set of the spline trajec-
tories of (6) and (7). Then we have the following result,
which is due to [10] for BLS. It can be extended to SBLS
without any difficulties.

Lemma 3.2: [10] Consider system (1) ((2) or (3)). For
every x0 ∈ M , denote the reachable set of x0 by R(x0),
then

RLH(x0) ⊂ cl{R(x0)}. (8)

Here cl denotes the closure of a set. Denote

Vc =
{

(Bλ
i , Cλ

i )
∣∣ λ ∈ Λ, i = 1, · · · ,m

}
LA

,

which is generated by the vectors of input channels.
Using Lemma 3.2, we have the following result immedi-

ately:

Proposition 3.3: Consider system (1), ((2) or (3)). If

rank (Ψ(Vc)(x)) = n, ∀x ∈ M, (9)

then the system is practically controllable.
Here the mapping Ψ was defined in Appendix 7.
To avoid the obstacle of non-symmetry of drift terms, we

consider a class of systems, which, roughly speaking, have
symmetric drift term.

Definition 3.4: The system (1) ((2) or (3)) is said to have
a feedback k-symmetric drift terms, if there exist controls
uλ

0 , λ ∈ Λ, such that for the new drift terms under feedback

Ãλ = Aλ + Bλuλ
0 , λ ∈ Λ (10)

form a k-symmetric set

Ã :=
{

Ãλ|λ ∈ Λ
}

.

Similar to Proposition 3.3, we can prove the following:

Proposition 3.5: Consider system (1) ((2) or (3)). Assume
(i). the system has feedback k-symmetric drift terms;
(ii).

dim{La(x)} = n, ∀x ∈ M.

Then the system is practically controllable.

Example 3.6: Consider a bilinear switched system

ẋ = Aσ(t)x + u
(
Bσ(t)x + Cσ(t)

)
, (11)
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where Λ = {1, 2} and

A1 =

⎛
⎝1 0 1

0 2 0
0 0 3

⎞
⎠ , B1 =

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠ , C1 =

⎛
⎝1

1
1

⎞
⎠ ;

A2 =

⎛
⎝−2 0 −2

0 0 0
0 0 −6

⎞
⎠ , B2 =

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ , C2 =

⎛
⎝0

0
0

⎞
⎠ .

Setting X1 = (A1, 0), Y1 = (B1, C1), Y2 = (B2, 0), Va

can be easily calculated as

Y3 = 〈Y1, Y2〉 =

⎛
⎝

⎛
⎝0 0 0

0 0 −1
0 −1 0

⎞
⎠ ,

⎛
⎝ 0
−1
0

⎞
⎠

⎞
⎠ ;

Y4 = 〈Y1, Y3〉 =

⎛
⎝

⎛
⎝0 0 0

0 −2 0
0 0 2

⎞
⎠ ,

⎛
⎝0

1
0

⎞
⎠

⎞
⎠ ;

Y5 = 〈Y2, Y4〉 =

⎛
⎝0,

⎛
⎝0

1
0

⎞
⎠

⎞
⎠ ;

Y6 = 〈Y3, Y5〉 =

⎛
⎝0,

⎛
⎝ 0

0
−1

⎞
⎠

⎞
⎠ ;

Y7 = 〈X1, Y6〉 =

⎛
⎝0,

⎛
⎝−1

0
−3

⎞
⎠

⎞
⎠ .

Now

Ψ−1(Y5, Y6, Y7) =

⎛
⎝

⎛
⎝0

1
0

⎞
⎠ ,

⎛
⎝ 0

0
−1

⎞
⎠ ,

⎛
⎝−1

0
−3

⎞
⎠

⎞
⎠ .

Therefore, rank (La(x)) = 3, ∀x ∈ IR3. i.e., the accessi-
bility rank condition is satisfied.

In addition, it is obvious that system (11) has feedback
k- symmetric drift terms. According to Proposition 3.5, the
system is practically controllable.

IV. CONTROLLABILITY OF SBLS

This section considers the global controllability. Recall
a result of local controllability for general control systems
first.

Consider a general control system

ẋ = f(x, u), x ∈ IRn, (12)

where f is a C1 mapping. Let x0 be an equilibrium of the
control system with control ue(x). i.e., f(xe, ue(xe)) = 0.
Define

E =
∂f

∂x
(x, ue(x))

∣∣∣∣
x0,ue(x0)

, D =
∂f

∂u
(x, ue(x))

∣∣∣∣
x0,ue(x0)

.

(13)
We have the following sufficient condition for local control-
lability.

Lemma 4.1: [13], [14] Consider system (12). Assume
there exist xe ∈ IRn and control ue(x). such that,

f(xe, ue(xe)) = 0. Moreover, assume (E,D), defined in
(13), is completely controllable. Then (12) is locally con-
trollable at xe. That is, there exists an open neighborhood U
of xe, such that for any x, y ∈ U , x ∈ R(y) and y ∈ R(x).

Using it and the practical controllability investigated in
last section, we deduce some sufficient conditions for global
controllability.

Definition 4.2: Consider a bilinear system

ẋ = Ax + Bux + Cu, x ∈ IRn,u ∈ IRm. (14)

1. A pair (xe, ue) ∈ IRn×IRm is called an equilibrium pair,
if

Axe + Buexe + Cue = 0. (15)

2. An equilibrium pair (xe, ue) is said to be stable if
A+Bue is Hurwitz, it is said to be anti-stable if −(A+Bue)
is Hurwitz.

3. An equilibrium pair (xe, ue) is said to be controllable,
if (A + Bue, B(Im ⊗ xe) + C) is a controllable pair.

Theorem 4.3: Consider system (1). Assume (i) it is
practically controllable;

(ii) there exist λ1 ∈ Λ and an equilibrium pair (eu, uλ1
e ),

such that (eu, uλ1
e ) is anti-stable for the λ1-th switching

model;
(iii) there exist λ2 ∈ Λ (λ2 = λ1 is allowed) and an equi-

librium pairs (eu, uλ2
e ), such that (eu, uλ2

e ) is controllable
for the λ2-th switching model.

Then the system (1) is globally controllable.
Proof. Since (eu, uλ2

e ) is controllable, by Lemma 4.1 there
exists a neighborhood U of eu such that the λ2-th switching
model is controllable over U .

Next, we show that for any x, y ∈ IRn we can drive the
state from x to y. Since the system is practically controllable
we can first drive x to a point ξ ∈ U . Denote the λ1-th
switching model with control uλ1

e by V , that is,

V =
(
Aλ1 + Bλ1uλ1

e

)
x + Cλ1uλ1

e

=
(
Aλ1 + Bλ1uλ1

e

)
(x − xe).

Since −V is stable, so the integral curve of −V goes from
y to xe asymptotically. Hence there is a T > 0 such that

e−V
T (y) = η ∈ U.

Equivalently,
y = eV

T (η).

To complete the proof we have only to drive the state from
ξ to η. This can be done by choosing λ2-th switching model
and a suitable control uλ2 , because of local controllability
of this model over U .

Example 4.4: Recall Example 3.6. We prove that system
(11) is globally controllable. Using Theorem 4.3, we have
to check conditions (i)-(iii). (i) is proved in Example 3.6.
Now we choose a pair as (xe, ue) = (0, 0). Obviously, it is
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an equilibrium pair. We then show that for the first model
it is anti-stable. In fact,

A1 + B1ue := A1,

which is anti-stable. So (ii) is satisfied. Still use this pair to
the first model. We have

(A1 + B1ue, B1xe + C) := (A1, C1). (16)

It is easy to check that (16) is completely controllable, which
implies (iii). The conclusion follows.

Following the same thought of train as in the proof of
Theorem 4.3, we can have the following result immediately:

Proposition 4.5: Consider system (1). Assume (i) there
exist λ1 ∈ Λ and an equilibrium pair (eu, uλ1

e ), such that
(eu, uλ1

e ) is stable for the λ1-th switching model;
(ii) there exist λ2 ∈ Λ and an equilibrium pair (eu, uλ2

e ),
such that (eu, uλ2

e ) is anti-stable for the λ2-th switching
model;

(iii) there exist λ3 ∈ Λ and an equilibrium pairs (eu, uλ3
e ),

such that (eu, uλ3
e ) is controllable for the λ3-th switching

model.
Then the system (1) is globally controllable.

Remark 4.6: In fact, In Theorem 4.3 eu in condition (ii)
(specified as e2

u to distinguish it from ei in condition (iii))
can be different from the eu (e3

u) in condition (iii). It is
enough that e2

u ∈ R(e3
u). Particularly, since R(e3

u) contains
a controllable open neighborhood, U , of e3

u, so it suffices
that e2

u ∈ U . Similarly, for Proposition 4.5, e3
u ∈ R(e1

u)
and e2

u ∈ R(e3
u) are enough. Particularly, when U is a

controllable open neighborhood of e3
u, and e1

u, e2
u ∈ U is

enough.

V. CONTROLLABILITY OF SH-SBLS

State homogeneous bilinear systems have some special
properties, which are heavily depending on the transfer
matrices. These properties make them different from general
SBLS. So, it is worth discussing them separately. Recall
Remark 1.1, in this section M = IRn\{0}.

We first give the following result.

Theorem 5.1: Consider system (2). Assume
(i) the system has feedback k-symmetric drift terms;
(ii) for the Ãλ in the k-symmetric set, Ãλ is commutative

with Bλ
i , i = 1, · · · ,m;

(iii).

dim{La(x)} = n, ∀x ∈ M.

Then the system is globally controllable.
proof. It is easy to show that

La(x) =

{
Aλx +

m∑
i=1

uiB
λ
i x

∣∣∣∣∣ ui = constant, λ ∈ Λ

}
LA

.

Without loss of generality we can assume Aλ, λ ∈ Λ
are k-symmetric and each one is commutative with its
corresponding Bλ

i , i = 1, · · · ,m.
By condition (iii) and the Chow’s Theorem, for any two

points x, y ∈ M there exit X1, · · · ,Xs, where Xi are vector

fields of the form Aλx +
m∑

i=1

uiB
λ
i x, such that (when the

negative time is allowed)

y = eXs
ts

· · · eX1
t1 (x). (17)

Now in (17) assume ti = −d < 0 and the corresponding
vector field is

Xi = Aλx + Bux.

Then we replace this segment of integral curve by the
following spline integral curves:

eXi
ti

= exp
[−d

(
Aλ + Bλu

)]
= exp

[
d

(−Aλ − Bλu
)]

= exp
[−2dAλ

]
exp

[
d

(
Aλ − Bλu

)]
= exp

[
2d
k (−Akλ)

]
exp

[
d

(
Aλ − Bλu

)]
.

The above deduction is legal because of the commutativity.
According to the k-symmetric property, it is easily seen that
the last row in the above equation is physically realizable.
The conclusion follows.

Using the same argument about the partition of the
controllable sub-manifolds as in Section 2, we have the
following:

Corollary 5.2: Consider system (2). If the assumption
(i) and (ii) of Theorem 5.1 hold, then for any x0 ∈ M
the reachable set of x0 is the largest integral manifold of
La, passing through x0. Moreover, the controllable sub-
manifolds are composed of all the largest integral sub-
manifolds of La.

Example 5.3: Consider the following switched system

ẋ = Aσ(t) + uBσ(t)x, (18)

where Λ = 2 and

A1 =

⎛
⎝1 0 0

0 1 2
0 −2 1

⎞
⎠ , A2 =

⎛
⎝−1 0 0

0 −1 0
0 0 3

⎞
⎠ ;

B1 =

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠ , B2 =

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ .

Using u1
0 = −2 and u2

0 = −4, we have

Ã1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , Ã2 =

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ .
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Now it is easy to check that the conditions (i) and (ii)
of Theorem 5.1 are satisfied. Through a straightforward
computation, a basis of La is obtained as⎛

⎝1 0 0
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0

0 0 0
0 1 0

⎞
⎠ ,

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ .

A normal routing verification shows that there are
five controllable sub-manifolds: two one-dimensional sub-
manifolds:

{x ∈ IR3
∣∣ x1 > 0, x2 = x3 = 0},

{x ∈ IR3
∣∣ x1 < 0, x2 = x3 = 0};

one two-dimensional sub-manifold:{
x ∈ IR3

∣∣x1 = 0, (x2, x3) ∈ IR2\{0}}
;

and two three-dimensional sub-manifolds:

{x ∈ IR3
∣∣x1 > 0, (x2, x3) ∈ IR2\{0}},

{x ∈ IR3
∣∣x1 < 0, (x2, x3) ∈ IR2\{0}}.

�
Next, we deduce another set of sufficient conditions,

which are based on the transitive properties of GL(n, IR).
First we consider a single SH bilinear system

ẋ = Ax + Bux, x ∈ M, u ∈ IRm. (19)

We still use La for the Lie algebra generated by {A,Bi, i =
1, · · · ,m}. Denote by G the Lie group generated by La,
(precisely, the smallest connected Lie group with La as its
Lie algebra). That is,

G =

{
k∏

i=1

eXi

∣∣∣∣∣ Xi ∈ La, k < ∞
}

. (20)

An auxiliary system over GL(n, IR) is constructed as

Θ̇ = AΘ + BuΘ, Θ ∈ GL(n, IR),u ∈ IRm. (21)

Denote the reachable set of (21) with initial state In by
R(I). Using this auxiliary system, we can, instead of Lie
algebra approach, use Lie group approach to investigate
the controllability problem. The following result is due to
Elliott and Tarn [3]:

Lemma 5.4: System (2) is globally controllable, iff for
the system (21) the reachable set of the identity, R(I), is
transitive on M .

Using this, we have

Theorem 5.5: Consider system (2). Assume
(i) the system has feedback k-symmetric drift terms;
(ii) for each Ãλ in the k-symmetric set: Ãλ is commuta-

tive with Bλ
i , i = 1, · · · ,m;

(iii). The Lie group G, generated by La, is transitive on
M .

Then the system (2) is globally controllable.
Proof. Note that [A,B] = 0 is equivalent to eAeB = eBeA.
Then using same technique as in the proof of Theorem 5.1
we can prove that for the corresponding auxiliary switching
system

Θ̇ = Aσ(t)Θ+Bσ(t)uΘ, Θ ∈ GL(n, IR),u ∈ IRm, (22)

the reachable set R(I) is transitive. The conclusion follows
immediately.

Example 5.6: Consider the following switched system

ẋ = Aσ(t)x + uBσ(t)x, x ∈ IR3\{0}, u ∈ IR, (23)

where Λ = {1, 2} and

A1 = I3, A2 = −I3;

B1 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ , B2 =

⎛
⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎠ .

Conditions (i) and (ii) of Theorem 5.5 are obviously true.
Moreover, it is easy to calculate that

La = o(3, IR) ⊕ {rI | r ∈ IR}.
Then the connected Lie group of this Lie algebra is

G = SO(3, IR) ⊕ {erI| r ∈ IR}.
Where o(3, IR) is the 3 dimensional linear orthogonal
algebra, SO(3, IR) is the 3 dimensional linear orthogonal
Lie group, and ⊕ is a direct sum.

It is easy to see that G is transitive. So system (23) is
completely controllable.

A detailed transitive group approach and a list of tran-
sitive matrix algebras can be found in [1].

VI. CONCLUSION

In this paper the controllability of switched bilinear
control systems was considered. First, the accessibility Lie
algebra of switched bilinear systems was defined and used
to investigate the weak controllability and weak controllable
sub-manifolds. Then the practical controllability, the con-
trollability of general SBLS, and the controllability of SH-
SBLS were investigated in detail separately. For each case
several easily verifiable sufficient conditions were provided.
Some properties of accessibility Lie algebra were studied
in Appendix.

It was shown in the paper that switched bilinear systems
have rich algebraic structure and can be manipulated easily.

VII. APPENDIX

In this appendix, we explore structure and some proper-
ties of the accessibility Lie algebra La of the SBLS (1).

Consider a space Vn := Mn×n ⊕ IRn, where Mn×n is
the set of n × n matrices, ⊕ is a direct sum of two vector
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spaces. Define the addition and scalar multiplication in
conventional way as: for (A, ξ), (B, η) ∈ Vn,{

(A, ξ) ± (B, η) := (A ± B, ξ ± η);
r(A, ξ) := (rA, rξ), r ∈ IR.

(24)

Then Vn becomes a vector space. Define a product 〈, 〉 on
Vn as

〈(A, ξ), (B, η)〉 := [A,B] + Aη − Bξ, (25)

where [A,B] := AB −BA is the conventional Lie bracket
on gl(n, IR).

In this way we produced a Lie algebra.

Proposition 7.1: The vector space Vn with the product 〈, 〉
is a Lie algebra.

Now consider the set of analytic vector fields on IRn,
denoted by V ω(IRn). Define its linear subset as

L(IRn) := {X = Ax + C|A ∈ Mn×n,C ∈ IRn} ⊂ Vω(IRn);

and its homogeneous linear subset as

LH(IRn) := {X = Ax|A ∈ Mn×n} ⊂ L(IRn).

The following two propositions are straightforward veri-
fiable.

Proposition 7.2: 1. Both LH(IRn) and L(IRn) are Lie
sub-algebra of V ω(IRn);

2. Both LH(IRn) and L(IRn) are invariant under a linear
coordinate transformation. Precisely, under a linear coor-
dinate transformation the new LH and L are Lie algebra
isomorphic to their predecessors respectively.

Proposition 7.3: Define a mapping Ψ : L(IRn) → Vn as:

Ψ(Ax + C) = −(A,C)

Then Ψ is a Lie algebra isomorphism.
Define by Va ⊂ Vn the Lie sub-algebra generated by the

vector fields produced by system (1) with constant controls.
That is,

Va =
{

(Aλ, 0), (Bλ
i , Cλ

i )
∣∣ λ ∈ Λ, i = 1, · · · ,m

}
LA

.
(26)

Then the following is obvious.

Corollary 7.4: 1.

La = Ψ−1 (Va) . (27)

2.
dim(La) ≤ n(n + 1). (28)

This paper is closely related to the paper [8], which
contains some details, while in this paper we emphasized
on the algebraic structure of the bilinear systems.
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