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Abstract— The purpose of this paper is to present an
algorithm for the combination of a proven nonlinear system
identification technique, the Minimum Model Error estimation
algorithm (MME) with an Analysis of Variance (ANOVA)
correlation routine where a forward stepwise procedure is
implemented. The Analysis of Variance approach to model
identification is well documented primarily in social science
literature but has been sparsely written about for engineering
applications. This paper will show a significant improvement
in nonlinear model identification when used in conjunction
with the MME algorithm.

I. INTRODUCTION

In 1985, Mook and Junkins [1] published, for the first
time, a technique called the Minimum Model Error (MME)
algorithm, that used a post-process batch algorithm to
estimate the states of poorly modeled dynamical systems.
The basis of this algorithm was to take discrete time
measurement data (which may be noisy), assume a model
for the system, and by minimizing a given cost function,
determine the unmodeled system dynamics used to correct
the assumed model. The motivation for their work was
mainly in the aerospace industry, but it has since been
applied in many other areas.

MME is not only a state estimation algorithm. In addition
to the estimated states, a model correction term is deter-
mined that is used to improve the assumed model. Much
of the research since the initial work has been devoted
to model correction. In 1991, Mook and Stry [5], [6]
furthered the previous work by developing a correlation
routine that attempted to relate the unknown time-based
model correction term with nonlinear (or linear) functions
of state. Now that a state-based functional update had been
found the assumed model can consequently be updated to
result in an improved model of the system.

The proposed algorithm is a modified version of a step-
wise regression routine (MSR) that is based on Analysis
of Variance (ANOVA). Stepwise regression is well docu-
mented in social science and some biological modelling,
of which the text Draper and Smith [12] is an excellent
reference. However it is noticeably absent in engineering
literature. A survey paper by Haber and Unbehauen [2]
does make reference to stepwise regression, but only in
an input-output system identification scheme, where the
measurements are perfect and the model only takes the form
of sampled time delays of the input and output. Likewise

papers by Leontaritis and Billings [3], and Kukreja, et al. [4]
again only seek to identify NARMAX type models which
only approximate the nonlinear dynamics, not identify the
true dynamics.

The proposed algorithm seeks to extend the the functional
correlation routine of the MME algorithm by applying a
modified version of the stepwise regression algorithm. The
acceptance criteria for admittance to the model becomes
more problem dependant rather fixed based on the number
of data points.

Section II is a brief outline of the Minimum Model
Error estimation algorithm. Section III shows the theoretical
development of the modified stepwise regression algorithm.
Section IV’s intent is to apply the proposed algorithm to the
Van der Pol benchmark example. Section V concludes this
work and presents some future work.

II. MINIMUM MODEL ERROR ESTIMATION

The Minimum Model Error (MME) estimation algorithm
has been the subject of much research since its original
development by Mook and Junkins in the mid-1980’s. The
problem of formulating an accurate mathematical model
from state observable noisy measurement data has applica-
tions in many engineering disciplines, such as the aerospace
industry, structural identification, and robotics.

The remainder of this section is devoted to the equations
of the MME algorithm. It serves as only a brief review, for
a full theoretical development see either of the papers by
Mook [1], [7]. The present correlation routine, along with
its problems, is also outlined.

A. The Estimation Problem

Define a system whose state vector dynamics are mod-
elled by the following system of equations,

ẋ = f [x(t), u(t), t] + d(t) (1)

where x(t) ≡ n x 1 state vector, f(t) ≡ n x 1 vector of
model equations, u(t) ≡ n x 1 vector of forcing terms, and
d(t) ≡ n x 1 vector of unmodelled system dynamics. Given
a set of discrete, state-observable measurements, modelled
by the system of equations,

ỹ
k

= g
k
[x(tk), tk] + vk k = 1, 2, ..., M (2)
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where ỹ
k
≡ m x 1 measurement vector at tk, g

k
≡ m x

1 measurement model at tk, and vk ≡ gaussian error with
zero mean and known covariance, Rk.

Notice the d(t) term in (1), this is the vector of unmod-
eled disturbances. In other words, this is the nonlinear (or
linear) terms not included in the original model estimate.
The estimation problem is to determine the optimal estimate
for x(tk), during the interval [t0, tM ].

B. The Covariance Constraint

In the MME algorithm the estimate is determined based
on the assumption that the measurement-minus-estimate er-
ror covariance matrix must match the measurement-minus-
truth error covariance matrix. The goal is to estimate the
data to within the same variance as the device taking the
measurement. Mathematically, this condition is defined by
Mook [1] as the Covariance Constraint according to the
following formula:

E{[ỹ(tk)−g(x̂(tk), tk)][ỹ(tk)−g(x̂(tk), tk)]T } = Rk (3)

Therefore, the estimate, g(x̂(tk), tk), must match the actual
measurements, ỹ(tk), with the known covariance, Rk, to be
correct.

As with any optimization problem one must determine a
cost function in which the resulting operation optimizes the
parameters desired. The MME method uses the following
cost function for determining the state estimates, and later
d(t). It can be seen from this cost function that there is a
continuous minimization of d(t) across the interval [t1, tM ]
and the discrete, internal penalty functions based on the
covariance constraint, penalizing the measurement estimate
for varying from the actual measurement.

J =
M∑

k=1

[
ỹ

k
− g

k
[x̂(tk), tk]

]T

R−1
k

[
ỹ

k
− g

k
[x̂(tk), tk]

]

+
∫ tM

t1

d(t)T Wd(t)dt (4)

where, x̂(t) ≡ state vector estimate, W ≡ positive definite
weighing matrix, and M = number of measurements. It
is apparent that the estimate x̂(t) and the optimal d(t) are
required to satisfy the differential equation in (1), thereby
incorporating the assumed model with the unknown model
terms. The first term in (4) is the weighted sum square
of the residuals between the actual measurements and the
estimated measurements, and the second term is a weighted
integral sum square of the unmodelled disturbance.

By adjusting the weighting matrix, W , it is possible
to penalize the model correction term (dT Wd) in this
cost function so that the resulting state estimate will vary
between the assumed model and the measurement data. The
optimum selection of W is chosen based on satisfying the
Covariance Constraint, or when the estimate covariance
equals the measurement covariance.

C. Development of the TPBVP

Consider the cost function J in (4). The problem is to find
a smooth, differentiable, unbounded d(t) which minimizes
this cost function.

An algorithm to deal with an integral in the cost function
with a differential equation constraint and discrete penalty
terms was developed by Geering [8]. It accounted for
internal penalty functions in the Hamilton-Jacobi problem
through the modification of the Pontryagin’s necessary con-
ditions. Mook and Junkins later extended this work to allow
for jump discontinuities, of which a detailed explanation can
be found in [1], [7].

Utilizing the Lagrange multiplier technique, the mini-
mization of the cost function results in the following two-
point boundary value problem (TPBVP), with the λ(t) being
a vector of Lagrange multipliers. Referring again to control
system theory these are usually called the “co-states”. To
summarize, the TPBVP is then set up as follows:

ẋ = f [x(t), u(t), d(t), t] (5)

λ̇ = −
[
∂f

∂x

]T

λ (6)

d = − 1
2W

[
∂f

∂d

]T

λ (7)

with boundary conditions, λ(to) = 0 and λ(tf ) = 0 or,
x(to) = Measured and x(tf ) = Measured.

In order to accommodate the internal penalty terms in
the cost function, the co-state λ(t), and therefore, d(t) may
have jump discontinuities at each discrete time measurement
sample. Therefore, there are two values of λ(tk), where k
is the measurement sampling time. The following equation
is used to update between λ(t−k ) and λ(t+k ):

λ(t+k ) = λ(t−k ) + 2HT
k R−1

k

[
ỹ

k
− g(x(tk), tk)

]
(8)

Where, H is defined as,

H ≡ ∂g

∂x̂

∣∣∣
x̂(tk)

(9)

Many methods have been developed to handle two-point
boundary value problems such as this in connection with
the MME algorithm, including simple shooting [1], multiple
shooting [9], and the Riccati transformation [10]. For the
present work multiple shooting is utilized because of its
improved performance over simple shooting and its ease of
implementation. For a detailed derivation of the multiple
shooting algorithm as it applies to the MME TPBVP see
Mook and Lew [9], Stry [5].

D. Correlation & Least Squares

Once the TPBVP is solved, thereby concluding the MME
algorithm, the result is a smooth estimate of the states, as
well as the correction to the assumed model, d(t). The final
step in the identification process is to interpret the d(t)
vector. Ideally, the goal is to correlate this vector with some

5047



function of the state estimates to get an improvement on the
original model.

The present method of correlating a given set of data with
various functions in order to find a functional relationship
is by developing a library of correlation functions. The
goal is to search the entire library of correlation functions
and choose the one with the highest linear correlation
coefficient.

If the correlated solution is not sufficient, the estimate is
subtracted from the original d(t), leaving a modified d(t).
The correlation algorithm, including the function library, is
then applied to this new error vector to find another accurate
correlation. The newly correlated function is now added
to the old one. The process is repeated until a group of
functional relationships are found that sufficiently represents
the original error vector. The work by Stry [5] outlines this
iterative procedure.

Obviously, if this process is allowed to continue long
enough with a large function library an acceptable func-
tional relationship will probably be found. However, a
large string of functions detracts from the algorithm’s effi-
ciency, and yields model corrections which are typically too
complicated for engineering problems, especially control
applications.

III. THE PROPOSED CORRELATION ROUTINE

The primary purpose of this paper is to extend the
research on the Minimum Model Error algorithm, namely
the correlation routine. The major drawbacks of the present
routine is that it only has the ability to add functions to
determine the model form. As a result, after one or two
functions are added to the model typically only incremental
improvements are made with addition of more functions.

Thus this paper presents an algorithm that will add and
subtract functions according to a proven statistical distribu-
tion. At the conclusion of the algorithm a combination of
functions that best fits the unknown nonlinearity is found.

A. The Modified Stepwise Regression Algorithm

The initial theoretical basis for the algorithm presented
is relatively well documented in scientific literature over
the past 50 years. In his 1990 survey paper, Haber [2]
outlined many nonlinear identification techniques which
utilized input-output data, one of which was the forward-
stepwise regression algorithm.

A detailed outline for the forward-stepwise regression
technique as it applies to statistical data problems has been
written by Draper and Smith [12]. The equations that follow
are based on a collection of text on the subject of regression.
For brevity, the theoretical basis for multiple regression has
been omitted.

1) Phase I: The first step in the algorithm is choosing
an F ∗ threshold for statistical significance. This threshold
is the minimum partial F-ratio allowed for a function to
be admitted to the model. In general, this selection can be
tricky procedure. The selection of F ∗ is based on a chosen

confidence level, the number of degrees of freedom, and the
F-distribution.

In order to properly apply the modified stepwise regres-
sion technique the following equations need to be applied.
The F-ratio for all functions in the current model is:

FM =
MSR

MSE
(10)

Where MSR is the mean square error due to regression
and MSE is the mean square error about the regression,
and are calculated as follows:

MSR =
SSR

dofR
MSE =

SSE

dofE
(11)

The remaining equations (12)-(15) determine the sum of
squares and degrees of freedom for the F-ratio.

SSR =
n∑

k=1

(Ŷk − Y )2 (12)

SSE =
n∑

k=1

(Ỹk − Ŷk)2 (13)

dofR = # of functions in the model (14)

dofE = # of data points - # of functions (15)

where, Ỹk ≡ data point at k, Ŷk ≡ model estimate at k,
and Y ≡ average estimate value = 1

n

∑n
k=1 Ŷk.

In order to determine the model estimate, Ŷ , simply
perform a least-squares calculation for a model consisting
of all accepted functions plus a constant.

The next step is to add each function not already in
the model individually, least square fitting the expanded
model, and determining if there is a statistical significance
of increasing the size of the model. This is accomplished by
compiling a list of the partial F-ratios of all the functions
not in the model, and selecting the largest one for addition
into the model, assuming that it is above the threshold value.
(16) is the result, where FA denotes the partial F-ratio of
functions to be added that are not currently in the model.

FA =
MSR(Xk|Xk−1, Xk−2, ..., Xk−n−1)
MSE(Xk, Xk−1, Xk−2, ..., Xk−n−1)

(16)

The mean square error, MSE, is easy to calculate according
to (11). MSR is only slightly more difficult to calculate in
that it done by determining the improvement on the model
error by adding the function, Xk.

MSR(Xk|Xk−1, Xk−2, etc.) =

=
SSR(Xk|Xk−1, ..., Xk−n−1)

1
(17)

=
SSR(Xk, ..., Xk−n−1) − SSR(Xk−1, ..., Xk−n−1)

1
(18)

For the more general case, (18) results in,

FA = (dofE)
[

[SSE(Xk−1, ..., Xk−n−1)]
[SSE(Xk, Xk−1, ..., Xk−n−1)]

− 1
]

(19)
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Now that a partial F-ratio has been calculated for each
function not in the model, a determination as to which
function to add must be made. For this procedure the
significance level (α) is chosen. 90%, 95%, and 99% are
commonly tabulated in almost all introductory statistics
books, see Draper [12]. If none of the functions meet this
criteria the algorithm is complete and Phase II begins.
However, if at least one function is able to be included
in the model the algorithm proceeds to the next step, which
is to determine if any functions current in the model should
be removed.

This calculation is performed in exactly the same manner
as (16) except only the functions Xk−1 through Xk−n−1 are
considered. This results in the following equation, FR. Note
that k− 1 is only the first of n− 1 partial F-ratio values to
be calculated.

FR =
MSR(Xk−1|Xk, Xk−2, ..., Xk−n−1)
MSE(Xk−1|Xk, Xk−2, ..., Xk−n−1)

(20)

If it is determined that a function needs to be removed the
function with the smallest partial F-ratio is chosen. At this
point the removal process is repeated to determine whether
another function can be removed.

2) Phase II: Once it is determined that no further
functions should be added to the model and none should
be removed Phase I of the modified stepwise regression
algorithm is complete. Typically, this would signal the end
of the modelling. However, it is found that when attempting
to combine the algorithm with the MME algorithm the
termination of the algorithm became problematic, mainly
because of the increased size of the number of the functions
possibly added to the model. With the combination of the
stepwise regression algorithm and MME, the user-defined
function library could easily be extended to thousands
(or even millions) of functions. It became evident that
functions added to the model (typically at the end of the
model building process) are only added because they passed
a single criteria of having a partial F-ratio greater then
F ∗. There is no mechanism for incorporating the relative
distribution of partial F-ratios of functions currently in the
model. Meaning some functions in the model have partial
F-ratios on the order of > 105 while others were 100.

By maintaining a fixed threshold for statistical signif-
icance, a unique phenomenon is seen. The number of
functions in the model is not based solely on F ∗, but rather
on the number of functions in the function library. The
more functions in the library, the more likely unnecessary
functions are added to the model. A larger function library
with more diversity typically produces a better fit, but at
the expense of a larger model with many superfluous terms
having partial F-ratios only slightly greater than F ∗.

The idea of the modified stepwise-regression algorithm
is simple. It is developed as a means to filter away the
extra terms that are added to the model because they are
“statistically significant”, but not necessary. Essentially, the
algorithm employs a floating threshold. The process of

adding and removing functions from the model is exactly
the same as the original algorithm with hypothesis tests
based on partial F-ratio calculations. However, the threshold
is moved to one order of magnitude below the function
with the largest partial F-ratio. This typically causes at least
one function (usually more) in the model to be below the
threshold. The lowest function that violates the “new” F ∗ is
removed, as before, with new partial F-ratios calculated for
each function remaining in the model, as well as those out
of the model. In addition, this re-calculation of the partial
F-ratios of the functions in the model results in another
“new” F ∗.

The process continues until no functions can be removed
from the model. At this time the function library is re-
checked for possible additions to the model, except now
the possibility for admittance to the model is significantly
more strict due to the elevated threshold. It is witnessed that
by removing these functions a more concise model form is
found. It is shown, by considering the ignorance assumed
model Van der Pol osciallator from the previous section, that
the modified stepwise regression algorithm outperforms the
original model determination algorithm.

IV. THE COMPLETE SYSTEM

IDENTIFICATION ALGORITHM

Now that a improved model determination algorithm is
available it is advantageous to present the complete system
identification algorithm. Figure 1 illustrates the Minimum
Model Error estimation with Modified Stepwise Regres-
sion algorithm. (MME/MSR). By studying the ignorance
assumed model Van der Pol oscillator the overt advantages
are seen.

MME

Assumed Model

Measurement
Data

with known 
Variance

Modified
Stepwise

Regression
Algorithm

Estimated
States

Unmodeled
Dynamics

d(t)

Model
Correction

Fig. 1. The Proposed System Identification Algorithm.

A. Van der Pol Example

For this illustrative example, the Van der Pol oscillator is
used:

ẍ + α(x2 − 1)ẋ + x = 0 (21)

where the dots represent the 1st and 2nd time-based deriva-
tives, subject to an initial condition input with only noisy
State #1 measurements of known variance σ2

M = 0.01. This
means that the unmodeled dynamics term contains all three
functions, d(t) = αx2ẋ − αẋ + x.

The following conditions are applied: α = 1.0, noisy
State #1 measurements, simulated at 40Hz, with an initial
condition input, x0 = [1 0]T . The measurement data and
assumed model are shown in Figure 2, and with W set to
five the state estimate is also included.
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Func. # Func. Func. # Func.
1-6 xi

1 13-16 |xi
1|

7-12 xi
2 17-20 |xi

2|−3 ≤ i ≤ 3 −3 ≤ i ≤ 3
i �= 0 i �= 0 i �= even

TABLE I

FUNCTION LIBRARY - VAN DER POL EXAMPLE.

The estimate is excellent in satisfying the covariance
constraint σ2

meas−est = 0.0122 ≈ σ2
M . In addition an

estimate minus truth variance of σ2
truth−est = 0.001814

for State #1, and σ2
truth−est = 0.0141 for the unmeasured

State #2 is noted.

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

S
ta

te
s 

 1
 &

 2

State 1 (est−truth)= 0.0011814,   State 2 (est−truth) = 0.0141

Time − (sec)

Data
Truth
EST

Fig. 2. Estimated States 1 & 2. σ2
M = 0.01. W=5.2, Ignorance

Assumed Model.

With the results from MME, the modified regression
algorithm is now applied. The first task is to compile a
function library the results of which are shown in Table I.
Even in this modest function library the number of possible
model functions is 145. The resulting unmodeled dynamics,
d(t), for the ignorance assumed model are shown in (22)
and represent the final to be determined model of the
modified stepwise regression algorithm:

dtruth(t) = −x1 + x2 − x2
1x2 (22)

≡ (4) (10) (71)

The resulting model fit after the 29th, and final, iteration
is also plotted with the data and estimate in Figure 3. The
model fit is very good with a truth minus model variance
of σ2

truth−model = 0.08114. While this model fit is a
significant improvement over the original correlation routine
model, the most impressive result is that the truth model is
found.

Observe the iteration history of the modified regression
algorithm as shown in Figure 4, and consider the threshold
of admittance and removal from the model during Phase I.
F ∗ is chosen to be ten at the beginning of the algorithm and
remains constant until no additional functions can be added

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

d(
t)

Model−Truth Variance = 0.081141

Truth
MME
Model

Fig. 3. Unmodeled Dynamics, d(t) - Truth, Estimate - σ2
truth−est =

0.1878, And MSR Model - σ2
truth−model = 0.08114 - Van der Pol

Example With Ignorance Assumed Model.

0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

10
3

10
4

Stepwise Iterations

P
ar

tia
l F

−
ra

tio

Model
Thresh
Funcs

#88

#4

#109

#10

#113 #83

#71

Begin MSR 

Main
Function
Removal

Fig. 4. Modified Stepwise Regression Iteration History - Van der Pol
Example With Ignorance Assumed Model.

or removed (through Iteration #20). During this time a
great deal of additions and removals take place. Specifically,
follow the first function added to the model, Function #88.
It is admitted to the model because it contains the highest
partial F-ratio of any function not in the model at the
1st iteration. However, by the 5th iteration four additional
functions are added to the model and it is shown that
Function #88 no longer contributes enough to the model,
and is removed. This is an outstanding result! The original
correlation routine concludes with this iteration with only
the newly added Function #4 being correct.

Throughout the fixed threshold portion of the algorithm
four functions are removed from the model because they
are deemed to not contribute to the model. An interesting
aside that occurs in this example is in Iteration #14. Two
functions drop below the threshold during this iteration due
to the inclusion of Function #71, a truth function. With only
one function allowed to be removed per iteration, the partial
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F-ratio of the other function rises enough to no longer be
in violation of the threshold.

Coefficient of Determination 0.9607
Multiple Corr. Coefficient 0.9802
Variance of Estimate 0.1226
STD Error of Estimate 0.3502
Intercept -0.0155

Source of Variation dof SS MS F-ratio
Due to Regression 3 1188.1 396.0 3230.0
Deviation About Regr 396 48.6 0.123
Total 399 1236.7

Functions In The Model Functions Not In The Model
Function Coeff. Partial F-ratio Function Partial F-ratio

4 -0.9874 5688.1 124 128.0
10 0.8125 1895.2 114 109.3
71 -0.8292 3537.6 12 87.8
0 -0.0155 52 46.3

TABLE II

29th ITERATION - 399 DP - FINAL MODEL ANOVA TABLE - VAN

DER POL EXAMPLE WITH IGNORANCE ASSUMED MODEL.

At Iteration #20, the standard stepwise regression ends,
with 11 functions in the model! (Had F ∗ = 2.6 which
corresponds with theory for a three term model with 401
data points. A standard stepwise regression with a modest
145 term function library would have added 17 functions to
the model!) From a practical standpoint this is far too many
for a simple second-order system. The modified regression
algorithm is developed for exactly this purpose. Phase II
occurs from Iteration #20 through Iteration #28 where the
eleven function model is reduced to a three function model,
all of which are part of the truth model from (22). Notice
that from Iteration #22 through Iteration #26 only one
function is not in violation of the modified F ∗ threshold,
Function #4. As the lower partial F-ratio functions are
removed, however, the partial F-ratios of the truth functions
rise. At the 29th, and final, iteration only the truth remains.
Table II is the final model ANOVA table for this example.
Notice that functions not currently in the model have partial
F-ratios greater than the original threshold for significance,
but yet do not appear in the model. It is clear, however,
that the functions in the model are much more significant,
comparatively, than those out of the model. Also notice
that the model F-ratio begins to increase slightly during
Phase II indicating that the three function model is a better
representation of d(t) than the eleven term model.

V. CONCLUSIONS & RECOMMENDATIONS

The main purpose of this paper is to extend the current
state of the art in model determination. Future work is
planned to study the composition of the function library, as
well as to study the moving F ∗ threshold. A relationship be-
tween sample rate, system dynamics, and the partial F-ratio
calculation would have a lasting effect on the application
of this system identification algorithm.
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