
Reactive Robot Navigation Using Optimal Timing
Control

Henrik Axelsson, Magnus Egerstedt, and Yorai Wardi
{henrik,magnus,ywardi}@ece.gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332, USA

Abstract— In this paper a solution is presented for the
problem of avoiding obstacles while progressing towards a
goal for a single robot. In particular, an optimal solution
is obtained by allowing the robot to switch between a fixed
number of behaviors and optimizing over what behaviors to
use and when to switch between them. We moreover show
that the structure of the switch law only depends on the
distance between the obstacle and the goal. Hence, once initial
simulations are done, the structure of the guard is known to
the robot and, given that the robot knows the distance between
the obstacle and the goal, it knows when to switch to obtain the
optimal solution. Therefore the solution lends itself to real-time
implementations. The feasibility of the approach is verified in
real robotics experiments.

I. INTRODUCTION

In the literature on robot navigation, two distinctly
different approaches have emerged. The first approach that
we will denote by the reactive approach (following the
terminology in [1]) consists of designing a collection of
behaviors, or modes of operations, such as avoid-obstacle
or approach goal. These different behaviors are defined
through a particular control law, dedicated to performing
a specific task, and the robot switches between different
behaviors as obstacles, landmarks, etc. are encountered in
the environment. This way of structuring the navigation
system has the major advantage that it simplifies the design
task. Each controller is designed with only a limited set
of objectives under consideration and no elaborate world
maps are needed. Unfortunately, very little can be said
analytically about such systems, and we contrast them with
the second approach under consideration here, namely the
deliberative approach. Here the motion is carefully planned
out in advance and care can be taken as to minimize
energy consumption and so on. This plan-based approach
has proved very useful in structured environments, e.g. in
industrial settings, while unstructured environments pose a
challenge. This is due to the fact that there is normally a
hefty computational burden associated with path planning
and optimal control. And, even if one is willing to pay this
cost once, as soon as unmodeled obstacles are encountered,
the cost will be incurred again.

In this paper we stay within the reactive navigation

architecture but argue that optimality might still be
relevant. Assuming that a number of control modes, or
behaviors, have been designed, the question remains as
to when to switch between them. This problem can be
referred to as the guard design problem for hybrid systems,
where a guard enables the transition between different
modes of operation. Our approach is thus similar in
spirit to the program developed in [2] where the guards
were derived based on game theory to ensure safety in a
multi-aircraft scenario. Formally, the state of the system
evolves in mode i as ẋ = fi(x) until Gij(x) = TRUE,
at which point the mode changes from i to j, as seen in
Figure 1. The particular problem that we will investigate in
this paper is the problem of switching between go-to-goal
and avoid-obstacle in an optimal manner. Previously
proposed guards typically involve a safety distance ∆ so
that ẋ = fg(x) (subscript g denotes go-to-goal) as long as
||x − xob|| > ∆, where xob is the location of the obstacle
([3], [4], [5], [6]). If ||x − xob|| ≤ ∆ then ẋ = fo(x)
(subscript o denotes avoid-obstacle) and hence the guard is
defined through a circle centered at xob with radius ∆. One
can thus view the optimal control problem as a problem of
determining the optimal ∆, or more generally, to optimize
a parameterized surface gα(x) = 0 with respect to α. (See
[7], [8] for a discussion of this topic). Unfortunately, no
guarantee can be given that this is the optimal surface
class and in this paper we take an alternate route and
view the optimization problem as a free timing control
problem. Subject to certain regularity conditions on the
dynamics and the cost, we will show how to obtain the
optimal surface by varying the initial conditions. Once
such a surface has been obtained, in a potentially costly
simulation, it can be implemented as a guard in a real-time
reactive navigation system.

The outline of this paper is as follows: In Section 2
we formalize the problem under consideration and we
devote Section 3 to its solution. Section 4 is concerned with
the development of guards, suitable for implementation,
and we conclude the paper with a real robotics example in
Section 5.

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrC11.6

4929

ẋ = f1(x)

ẋ = f2(x)

ẋ = f3(x)

G12(x) = TRUE G23(x) = TRUE

G31(x) = TRUE

Fig. 1. Mode transition occur as the guard predicates become true.

II. OBSTACLE-AVOIDANCE

Since we are not interested in optimal control for energy
minimization, but rather for path-based properties, we
simply let the dynamics of the robot be given by an
integrator, ẋ = u ∈ R

2. Moreover, denote by xob the
position of the obstacle and by xg the position of the
goal. The general optimal control problem for solving the
obstacle avoidance problem thus becomes

P1: min
u

J(u) =

∫ T

0

L(x(t))dt

s.t. ẋ = u,

where T is the time span we are concerned with.

In order for the robot not to collide with any obstacles
while moving towards the goal, the cost-function
L(·) : R

2 → R+ ∪ {0} should include a term that
penalizes the robot for being far away from the goal and
one term that incurs a cost whenever the robot is close to
an obstacle. The goal-attraction term used in this paper
is given by g(x) = ρ||xg − x||2 and the avoid-obstacle

term is given by h(x) = α exp(− ||xob−x||2

β
), for some

positive constants ρ, α and β. Note that h(·) is a decreasing
function in ||xob − x||. Different cost-functions can be
imagined but as the main focus of the paper is to show that
feasible robotic controllers can be provided in real-time
without giving up on optimality, we do not elaborate on
that here. To summarize, we have

L(x(t)) = ρ||xg − x(t)||2 + αe−
||xob−x(t)||2

β , (1)

where ρ is the gain of the goal attraction term, α is the
gain of the obstacle avoidance term, and β decides the
range of the obstacle avoidance term. Solving problem P1
is in general a hard problem. Hence, in order to solve the
obstacle avoidance problem and still be able to have the
robot perform in real-time, some simplifications must be
made. First, instead of controlling the robot through the
control variable u, we assume that the robot is controlled
by choosing among a set of desired modes/behaviors. We
then get that ẋ = fi(x) for some i ∈ I , where I defines the
set of behaviors. We consider using the following three be-
haviors: go-to-goal, go-around-obstacle-clockwise, and go-
around-obstacle-counterclockwise. The respective behaviors

are denoted fg , f� and f�, and are given by

fg(x) = c(xg − x), f�(x) = v

(
0 −1
1 0

)
xob−x

||xob−x|| ,

f�(x) = v

(
0 1

−1 0

)
xob−x

||xob−x|| ,

where c and v are positive scalars and f�(x) and f�(x)
correspond to the robot moving in a circle around the
obstacle in the given direction. Throughout the paper, c and
v will be set to unity when not mentioned otherwise. It
should be pointed out that we are interested in finding the
general shape of the guard and that additional tuning of the
parameters discussed above might be necessary depending
on the application. Problem P1 is now reduced to the
problem of deciding what behaviors to use and when to
switch between them. To this end, we denote the set of all
finite length sequences of the three behaviors fg, f�, f� by
Σ and let B be an element of Σ. The time at which we
switch between the different behaviors in B is denoted by
τ , e.g. if B = (fg, f�, fg) then τ = (τ0, τ1, τ2, τ3), where
τ1 is the time when we switch between fg and f�, τ2 is
the time when we switch between f� and fg , τ0 = 0 is the
initial time, and τ3 = T is the final time. The simplified
version of problem P1 that we propose to solve becomes

P2 : min
B,τ

J =

∫ T

0

L(x(t))dt

s.t. ẋ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(1)(x), 0 ≤ t < τ1,
B(2)(x), τ1 ≤ t < τ2,

...
...

B(N)(x), τN−1 ≤ t < T,

0 ≤ τ1 ≤ . . . ≤ τN−1 ≤ T,

where the dimension of τ is induced by B, B ∈ Σ and x
belongs to some compact set X such that xob /∈ X (note
that at x = xob, f� and f� are not differentiable).

III. OPTIMAL CONTROL DERIVATION

In order to obtain a locally optimal solution to problem
P2 we start by considering the following two subproblems

1) Given a sequence of functions B, find the optimal τ .

2) Given a sequence of functions B with the
corresponding optimal τ , find if it is beneficial
to insert fg , f� or f� for a short interval of time at
some time t ∈ (0, T).

It should be clear that if we can solve subproblems 1 and
2 we can obtain a locally optimal solution to problem
P2 by first solving subproblem 1 and then search to
see if it is beneficial to insert a new function by solving
subproblem 2. Repeating this process will give a locally
optimal solution to P2. In fact, a more general version of

4930

these problems was recently solved in [9] by the authors,
and, for the sake of completeness, we recall the major
results in the following paragraphs.

Subproblem 1 is solved by deriving an expression for the
gradient of the cost with respect to the switching vector,
∇J(τ), and applying a gradient descent algorithm to find
the optimal switching vector. An expression for ∇J(τ)
was derived in [9], where continuous differentiability
of all behaviors and of the cost function L(x) were
assumed for x ∈ X . Assuming B consists of a string of
N behaviors and relabel the elements of B by defining
fi = B(i), i = 1, . . . , N , and setting B = (f1, . . . , fN),
the following assertion characterizes the derivatives dJ

dτi
,

and hence the gradient ∇J(τ) = (dJ
dτ1

, . . . , dJ
dτN

) :

Proposition 3: [9] For every i ∈ (1, . . . , N − 1) the
following equation is in force,

dJ

dτi

= p(τi)
T
(
fi(x(τi)) − fi+1(x(τi))

)
, (2)

where the costate is given by the following backwards
differential equation

ṗ(t) = −

(
dfi

dx
(x(t))

)T

p(t) −

(
dL

dx
(x(t))

)T

, (3)

for all t ∈ [τi−1, τi) and for every i ∈ {1, . . . , N}, with
the given final condition p(T) = 0.

In order to solve subproblem 2 we need to evaluate how
the cost changes if we insert a new behavior at a time
t1 for λ seconds. Inserting a new behavior corresponds to
adding two new switching times to τ and adding the inserted
behavior to B. Consider a sequence of behaviors B and
the associated state trajectory x(t) obtained when solving
subproblem 1. Assume that x evolves according to fg at
time t1. An expression for the change in the cost obtained
by inserting a behavior b at time t1 was given in [9], with
the conclusion that

lim
λ↓0

dJ

dλ
(b, t1) = p(t1)T

(
b(x(t1)) − fg(x(t1))

)
. (4)

If limλ↓0
dJ
dλ

(b, t1) < 0 and we add the two switching
points, corresponding to inserting b at time t1, and optimize
over the switching times, we will get a descent in J .

Having presented expressions for ∇J(τ) and limλ↓0
dJ
dλ

we can now proceed to derive the locally optimal solution
to the go-to-goal, obstacle-avoidance problem posed in P2.
Initializing B to B = (fg) and calculating x(t) forward
with initial condition x(0) = x0, and p(t) backward
through (3), with final condition p(T) = 0, we can then
search to find the function b ∈ (f�, f�) and the time
t ∈ [0, T] that minimizes (4). If a function b and a time
t exists such that limλ↓0

dJ
dλ

(b, t) < 0, we insert two new
switching times, one at t − dt and one at t + dt, were
dt is a small positive constant, and update B and τ to

B = (fg, b, fg) and τ = (0, t − dt, t + dt, T). We then
optimize over B to find the optimal switching vector. After
we have optimized over B = (fg, b, fg) we could try to
evaluate (4) again to see if it is beneficial to insert another
function at some time t ∈ [0, T]. It turns out that with
our particular choice of cost function, given by (1), we
do not get any significant descent by performing a second
insertion after we have optimized over B given by the first
insertion. Therefore, for each obstacle, we only consider
one insertion.

The solution to P2 is indeed locally optimal but it
is not applicable to real-time robotics problems since
we need to calculate x(t) and p(t) for each iteration in
the optimization algorithm, and this is time consuming.
We would like to obtain an optimal solution where the
switching times, i.e. when to switch from fg to f� or
f� and when to switch back to fg for each obstacle, are
given by a geometric guard defined around the obstacle.
Moreover, the structure of the guard should only depend
on the distance between the obstacle and the goal. In order
to arrive at this result, it first needs to be proven that
the solution is invariant along trajectories, given that the
final time T is big enough. To illustrate this, consider a
trajectory x̃(t), t ∈ (0, T) with a fixed initial state and a
corresponding optimal switch at τ̃ ∈ (0, T). If we initialize
another trajectory, x̂(t), to start along the path of x̃(t), that
is x̂(0) = x̃(∆) where ∆ ∈ (0, τ̃), then the optimal switch
of x̂(t) should occur at τ̃ − ∆ if the solution is invariant
along trajectories. To this end, Lemma 3 is presented.

Lemma 3: Given an initial state x0, denote by x(t)
and by p(t) the state and the costate trajectories obtained
when x(t) evolves according to ẋ = h(x). Assume h and
the costfunction L(x(t)) associated with p are continuously
differentiable. Denote by x(t) and by p(t) the state and the
costate trajectories associated with the same system, but
with an initial condition along the trajectory of x(t), i.e.
x(0) = x(∆) for some ∆ ∈ (0, T). Assume there exists a
finite time T1 s.t. dh

dx
(x(t)) is negative definite ∀t > T1,

L(x(t)) : X → R+ is bounded above by a constant C,
and the final time T → ∞. Then the state and the costate
trajectories satisfy the following two equations

x(t − ∆) → x(t) t ∈ [∆, T], (5)

p(t − ∆) → p(t) t ∈ [∆, T]. (6)

Proof : (5) is true since h does not depend on the initial state
and x(0) = x(∆), hence x(t) = x(t−∆) for all t ∈ (∆, T)
regardless of T . As for (6), we note that the costate for the
first system is given by

p(t) =

∫ T

t

dL

dx
(x(s))Φ(s, t)ds,

where Φ(s, t) is the state transition matrix of the linear,
time-varying dynamical system ż = ∂h(x(t))

∂x
z. For the

4931

second system, we have that p(t) =
∫ T

t
dL
dx

(x(s))Φ(s, t)ds,
where Φ(s, t) is the state transition matrix of the linear,
time-varying dynamical system ż = ∂h(x(t))

∂x
z. Furthermore

p(t − ∆) =

∫ T

t−∆

dL

dx
(x(s))Φ(s, t − ∆)ds =

=

∫ T+∆

t

dL

dx
(x(s − ∆))Φ(s − ∆, t − ∆)ds,

by a change of variables. Noting that x(s − ∆) = x(s)
and Φ(s − ∆, t − ∆) = Φ(s, t), we get that p(t − ∆) =∫ T+∆

t
dL
dx

(x(s))Φ(s, t)ds. The following expression for the
difference holds for all times t ∈ (∆, T),

||p(t) − p(t − ∆)|| =

∥∥∥∥∥
∫ T

t

dL

dx
(x(s))Φ(s, t)ds−

−

∫ T+∆

t

dL

dx
(x(s))Φ(s, t)ds

∥∥∥∥∥ ≤ C

∫ T+∆

T

||Φ(s, t)||ds. (7)

The following equation is in force for Φ(s, t),

d

ds
Φ(s, t) =

dh

dx
(x(s))Φ(s, t) (8)

Φ(t, t) = I. (9)

As dh
dx

(x(s)) is negative definite for t > T1, lim
s→∞

Φ(s, t) =

0 by (8) and (9). Since ∆ and t are finite it follows from
(7) that p(t − ∆) → p(t) as T → ∞.

It should be noted that variants of Lemma 3 have ap-
peared in the literature ([10], [11]). Nevertheless it is impor-
tant for our future presentation and is therefore presented.

IV. GUARD GENERATION

As an application of Lemma 3, consider subproblem
1 and let B = (fg). Let x1(t) be the state trajectory
associated with solving subproblem 1 starting at x0.
Likewise, let x2(t) be the state trajectory when we start at
x1(∆) for some time ∆ ∈ (0, T). From Lemma 3 we know
that (5,6) are in force and hence x1(t) → x2(t − ∆) and
p1(t) → p2(t−∆) for all finite times t as T → ∞. Denote
by J1 the cost associated with x1(t) and by J2 the cost
associated with x2(t) and define ∆ to be the vector with the
same dimension as τ with each element equal to ∆. Since
∇J(τ) and limλ↓0

dJ
dλ

only depend on the state x(t) and the
costate p(t) it follows that both ||∇J1(τ) −∇J2(τ − ∆)||
and | limλ↓0

dJ1

dλ
(b, t) − limλ↓0

dJ2

dλ+ (b, t − ∆)| are close to
zero for all finite times t ∈ (∆, T). The implication of
this is that dJ1

dλ
(b, t) will be minimized at the same time

t ∈ (∆, T) and with the same behavior b as dJ2

dλ
(b, t−∆).

Hence, given that dJ1

dλ
(b, t) < 0, the insertion of a new

behavior will occur at the same point for both systems. After
the insertions we will still have ∇J1(τ) = ∇J2(τ − ∆).
Hence the optimization algorithm will terminate at two
distinct switching vectors: τ1 associated with x1(t) and τ2

associated with x2(t) such that τ1 = τ2 − ∆. Moreover,
the switches occur at the same point in the state space.

Thus, we have shown that the solution to subproblem
1 is invariant along trajectories, e.g. if we start along a
trajectory we will switch at the same points in the state
space independently of where on the trajectory we start.
This is exactly the result we need in order to generate the
guards for when to switch from the go-to-goal behavior to
the obstacle-avoidance behavior. Left to do is to show that
problem P2 indeed does satisfy the assumptions in the
lemma. We also want to prove that (5) and (6) are close
to being true, in the sense that ||x(t) − x(t − ∆)|| and
||p(t) − p(t − ∆)|| are small, even if T is finite but big
enough to guarantee that we indeed end up close to the goal.

In order to prove this we assume that the obstacle
and the goal are far enough apart. This results in (1)
being small at the final time since x(T) is close to xg.
Furthermore, since x ∈ X , where the set X were defined
in Section 2, L(x(t)) is bounded for all times t ∈ (∆, T).
Hence the constant C defined in (7) is small. Next, we
need to prove the existence of a positive time T1 such
that if x(t) evolves according to ẋ = h(x(t)) after time
T1 then dh

dx
is negative definite for all times t ∈ (T1, T).

To show this we note that dfg

dx
= −cI , where I denotes

the identity matrix and c > 0, is negative definite Next,
two cases are needed in order to capture possible Bs. The
first case corresponds to B = (fg), i.e. we do not switch.
In this case we can choose T1 = 0 since dfg

dx
is negative

definite. The second case corresponds to B = (fg, b, fg),
where b = f� or b = f�. Here we might choose T1 = τ2

and by the assumption that the obstacle and the goal are
far enough apart it follows that T1 < T . Note that the
case corresponding to B = (fg, b) is excluded by virtue of
the same assumption. Since Φ(s, t) decays exponentially
when we evolve according to ẋ = fg , we conclude that
||x(t) − x(t − ∆)|| and ||p(t) − p(t − ∆)|| both will be
close to zero even if T is finite.

To illustrate the discussion above, a solution to problem
P2 for two different initial states (denoted by a star and a
circle) along the same trajectory is depicted in Figure 2(a).
Both trajectories evolve according to B = (fg) before the
insertion. Here, the final time is 5 seconds, xob = (0, 2)T ,
xg = (0, 4)T , and the values for ρ, α and β are ρ = 1/100,
α = 2, and β = 0.1. It is clear, from Figure 2(a), that the
solution to problem P2 for both initial states switches at
the same place in the state space even though the final time
is finite. Furthermore, in Figure 2(b), limλ↓0

dJ
dλ

(f�, t)
is depicted for both state trajectories. As seen from the
figure, both curves are similar in shape but there is a time
offset between them corresponding to the fact that the
dotted curve starts along the trajectory of the solid curve.
From Figure 2(b) it is moreover clear that the insertion
will occur at the same point in the state space.

To summarize, we have proved that problem P2 satisfies

4932

the assumptions of Lemma 3 and that the Lemma is valid
for practical purposes even if the final time is finite. In

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

(a)

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

limλ↓0
dJ
dλ

(f�, t)

(b)

Fig. 2. Different Initial States: In the top figure, the optimal state
trajectories for both initial states are shown. In the bottom figure
limλ↓0

dJ
dλ

(f� , t) is shown for both trajectories as functions of t when
B = (fg).

order to get the data needed to generate the guard for
a given distance between the obstacle and the goal we
execute the following program:

• Step 0: Select a finite set of representative initial states
X0 and a small constant δt, and create a set of times
G = {t | t ∈ [0, T] and t = kδt, k = 1, 2, . . .}

• Step 1: If X0 = ∅ STOP. Else, select an initial state
x0 ∈ X0, calculate the state forward as described in
problem P2 with initial condition x(0) = x0, and p(t)
backwards through (3), with final condition p(T) = 0.
Remove x0 from X0.

• Step 2: Evaluate limλ↓0
dJ
dλ

(b, t) for ∀t ∈ G and
b ∈ {f�, f�}. If minb,t

dJ
dλ+ (b, t) ≥ 0 go to Step 1.

Else, insert the one out of f� and f� that minimizes
limλ↓0

dJ
dλ

(b, t) for an interval of length δt seconds

around r = arg min
t

{lim
λ↓0

dJ

dλ
(b, t)}. Update B and τ .

• Step 3: Run the optimization algorithm to obtain a
locally optimal switching vector. Go to Step 1.

An example of the state trajectories obtained by running
this program is depict in Figure 3(a), where xob = (0, 2)T ,
xg = (0, 4)T , and the values for ρ, α and β are as before.
By examining Figure 3(a), we see that whenever the robot
is inside the region denoted by Guard I in Figure 3(b), it is

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

(a)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

1 2

3 4

5

6

Guard I Guard II

(b)

Fig. 3. State trajectories and associated guard structure: In the top figure
the result for executing the program for a set of initial states along the
x-axis is shown. In the bottom figure, an approximation of the associated
guards using only lines and a parabola is depict. Guard I is represented by
the striped region and Guard II is represented by the boxed region. Number
1 to 6 represent the respective lines and the parabola used to approximate
the guards.

optimal to let the robot evolve according to f�. Likewise,
if the robot is inside the region denoted by Guard II in
Figure 3(b), it is optimal to let the robot evolve according
to f�. Everywhere else it is optimal to use fg . The regions
where it is beneficial to evolve according to f� or f�

are approximated by a parabola and five lines as shown
in Figure 3(b). At this point it should be noted that given
the cost-function and a set of behaviors, the structure of the
guards depends only on the distance between the goal and
the obstacle. We denote the distance between the goal and
the obstacle by d where d = ||xg − xob||. As we change d
it might be conceivable that we no longer can approximate
the guards the same way as done above, e.g. the error
from assuming that the guards can be approximated with
lines and parabolas might be substantial. Simulation shows
that this is not the case for our range of distances. Hence,
we denote by ai,d and bi,d the parameters for line 1 to
4, in Figure 3(b), such that line i is described by y =
ai,dx + bi,d, i = {1, 2, 3, 4} and denote by a5,d and b5,d

the parameters of the parabola y = a5,dx
2 + b5,d. Here,

subscript d denoted the distance between the goal and the
obstacle. Then, under the assumption that the obstacle and
the goal lie on the y-axis, the guard associated with f� can

4933

be expressed as

Gf�,d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TRUE, if

⎧⎪⎪⎨
⎪⎪⎩

y < a1,dx + b1,d and
y < a3,dx + b3,d and
y > a5,dx

2 + b5,d and
x < 0,

FALSE, otherwise.

Likewise, the guard associated with f� is given by

Gf�,d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TRUE, if

⎧⎪⎪⎨
⎪⎪⎩

y < a2,dx + b2,d and
y < a4,dx + b4,d and
y > a5,dx

2 + b5,d and
x > 0,

FALSE, otherwise.

If the goal and obstacle do not line up, a simple rotation
and translation of the above equations is needed. From the
assumption that xob and xg are far enough apart, it follows
from the structure of problem P2 that there are only three
distinct sequences of switching vectors that can occur in
the optimal solution. These corresponds to B = (fg), B =
(fg, f�, fg) and B = (fg, f�, fg), from which it follows
that we never switch between f� and f�. Therefore the
optimal solution is given in terms of the guards Gf�,d and
Gf�,d and the optimal solution can be cast on the form of
Figure 4. This solution is suitable for realtime applications
since the guards are easily stored and evaluated.

ẋ = f�

ẋ = fg

ẋ = f�

Gf�,d = TRUE Gf�,d = TRUE

Gf�,d = FALSE Gf�,d = FALSE

Fig. 4. The optimal solution to problem P2 given in terms of guards
associated with each obstacle encountered in the robots path.

V. ROBOTICS IMPLEMENTATION

In order to verify that the proposed navigation system
performs well when implemented on a real robotics plat-
form, we tested it on the MAGELLAN PRO platform from
IROBOT. In the experiment, the goal was located at (0, 4),
while the obstacle was at (0.3, 2). To detect the obstacle
the robot uses infrared sensors that have an effective range
from 0 to 1 meter. When the robot gets inside one of the
regions defined by the guards Gf�,2 and Gf�,2 it switches
to the respective behavior. From Figure 5 it can be seen that
the robot detects the obstacle, and then switches to f� to
avoid the obstacle. The robot switches back to the go-to-
goal-behavior when the guard predicate no longer is true. At

this point it should be noted that even though our proposed
model performs well in experiments, we do not claim to
have solved any of the classical problems [1] associated
with the reactive approach.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Fig. 5. Robot Experiment: The robot’s path together with the sensor data
is shown.

VI. CONCLUSIONS

In this paper we presented a technique for computing
guards using optimal timing control. In particular, we
showed how to construct switching surfaces that dictate
when to switch between go-to-goal and avoid-obstacle in
reactive navigation systems for mobile robots. Once the
initial computational price has been paid in simulation, the
guards can be implemented on a real platform with very
little computational overhead.

REFERENCES

[1] R. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, Mas-
sachusetts, 1998.

[2] J. Lygeros, C. Tomlin and S. Sastry, ”Controllers for reachability
specifications for hybrid systems”, Automatica, 35, pp. 349-370.

[3] M. Egerstedt, K.H. Johansson, J. Lygeros and S. Sastry, ”Behavior
Based Robotics Using Regularized Hybrid Automata”, IEEE Con-
ference on Decision and Control, Phoenix, AZ, 1999.

[4] J.H. Reif and H. Wang, ”Social Potential fields: A distributed
behavioral control for autonomous robots”, Robotics and Autonomous
Systems, 27, 171-194, 1999.

[5] E.W. Large, H.I. Christensen and R. Bajcsy, ”Dynamic Robot Plan-
ning: Cooperation through Competition”, Proceedings of the 1997
IEEE International Conference on Robotics and Automation, Vol.
35, pp. 2306-2312, 1997.

[6] D. Kortenkamp, R.P Bonasso and R Murphy, Artificial Intelligence
and Mobile Robots: Case Studies of Successful Robot Systems, AAAI
Press, Cambridge, Massachusetts, 1998.

[7] Y. Wardi, M. Egerstedt, M. Boccadoro and E. Verriest, ”Optimal Con-
trol of Switching Surfaces”, in 43rd IEEE Conference on Decision
and Control, Atlantis, Bahamas, 2004.

[8] M. Boccadoro, M. Egerstedt and Y. Wardi, ”Optimal Control of
Switching Surfaces in Hybrid Dynamic Systems”, IFAC Workshop
on Discrete Event Systems, Reims, France, Sept. 2004.

[9] M. Egerstedt, Y. Wardi, and H. Axelsson, ”Optimal Control of
Switching Times in Hybrid Systems”, 9th IEEE International Confer-
ence on Methods and Models in Automation and Robotics, Miedzyz-
droje, Poland, 2003.

[10] A.E. Bryson, Jr. and Y.-C. Ho, Applied Optimal Control, Ginn and
Co., 1969.

[11] E.B. Lee and L. Markus, Foundations of Optimal Control Theory,
Wiley, New York, 1967.

4934

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

