
Thermodynamic Modeling, Energy Equipartition,
and Nonconservation of Entropy for
Discrete-Time Dynamical Systems

Wassim M. Haddad†, Qing Hui†, Sergey G. Nersesov†, and VijaySekhar Chellaboina∗

†School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150
∗Mechanical and Aerospace Engineering, University of Tennessee, Knoxville, TN 37996

Abstract— In this paper we develop thermodynamic models
for discrete-time large-scale dynamical systems. Specifically,
using compartmental dynamical system theory, we develop
energy flow models possessing energy conservation, energy
equipartition, temperature equipartition, and entropy noncon-
servation principles for discrete-time, large-scale dynamical
systems. Furthermore, we introduce a new and dual notion
to entropy, namely, ectropy, as a measure of the tendency
of a dynamical system to do useful work and grow more
organized, and show that conservation of energy in an isolated
thermodynamic system necessarily leads to nonconservation of
ectropy and entropy. In addition, using the system ectropy as a
Lyapunov function candidate we show that our discrete-time,
large-scale thermodynamic energy flow model has convergent
trajectories to Lyapunov stable equilibria determined by the
system initial subsystem energies.

I. INTRODUCTION

Thermodynamic principles have been repeatedly used
in continuous-time dynamical system theory as well as
information theory for developing models that capture the
exchange of nonnegative quantities (e.g., mass and energy)
between coupled subsystems (see [1] and the numerous
references therein). In particular, conservation laws (e.g.,
mass and energy) are used to capture the exchange of
material between coupled macroscopic subsystems known
as compartments. Each compartment is assumed to be kinet-
ically homogeneous, that is, any material entering the com-
partment is instantaneously mixed with the material in the
compartment. These models are known as compartmental
models and are widespread in engineering systems as well
as biological and ecological sciences [2]–[4]. Even though
the compartmental models developed in the literature are
based on the first law of thermodynamics involving con-
servation of energy principles, they do not tell us whether
any particular process can actually occur; that is, they do
not address the second law of thermodynamics involving
entropy notions in the energy flow between subsystems.

The goal of the present paper is directed toward devel-
oping nonlinear discrete-time compartmental models that
are consistent with thermodynamic principles. Specifically,
since thermodynamic models are concerned with energy
flow among subsystems, we develop a nonlinear compart-
mental dynamical system model that is characterized by
energy conservation laws capturing the exchange of energy
between coupled macroscopic subsystems. Furthermore,
using graph theoretic notions we state three thermodynamic
axioms consistent with the zeroth and second laws of
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thermodynamics that ensure that our large-scale dynamical
system model gives rise to a thermodynamically consis-
tent energy flow model. Specifically, using a large-scale
dynamical systems theory perspective, we show that our
compartmental dynamical system model leads to a precise
formulation of the equivalence between work energy and
heat in a large-scale dynamical system.

Next, we give a deterministic definition of entropy for
a large-scale dynamical system that is consistent with the
classical thermodynamic definition of entropy and show
that it satisfies a Clausius-type inequality leading to the
law of entropy nonconservation. Furthermore, we introduce
a new and dual notion to entropy, namely, ectropy, as a
measure of the tendency of a large-scale dynamical system
to do useful work and grow more organized, and show that
conservation of energy in an isolated thermodynamically
consistent system necessarily leads to nonconservation of
ectropy and entropy. Then, using the system ectropy as
a Lyapunov function candidate we show that our ther-
modynamically consistent large-scale nonlinear dynamical
system model possesses a continuum of equilibria and is
semistable, that is, it has convergent subsystem energies
to Lyapunov stable energy equilibria determined by the
large-scale system initial subsystem energies. In addition,
we show that the steady-state distribution of the large-
scale system energies is uniform leading to system energy
equipartitioning corresponding to a minimum ectropy and
a maximum entropy equilibrium state. Finally, we note that
the proofs of the results in this paper are similar to the
proofs given in [1] and hence are omitted. For details of
the proofs see [5].

II. MATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,
and some key results needed for developing the main results
of this paper. Let R denote the set of real numbers, Z+
denote the set of nonnegative integers, R

n denote the set of
n×1 column vectors, (·)T denote transpose, and let In or I
denote the n×n identity matrix. For v ∈ R

q we write v ≥≥
0 (respectively, v >> 0) to indicate that every component
of v is nonnegative (respectively, positive). In this case we
say that v is nonnegative or positive, respectively.

Let R
q

+ and R
q
+ denote the nonnegative and positive

orthants of R
q , that is, if v ∈ R

q, then v ∈ R
q

+ and v ∈ R
q
+

are equivalent, respectively, to v ≥≥ 0 and v >> 0. Finally,
we write ∆V (x(k)) for V (x(k + 1)) − V (x(k)).

The following definition introduces the notion of nonneg-
ative functions [6].
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Definition 2.1: Let w = [w1, . . . , wq]
T : V → R

q , where
V is an open subset of R

q that contains R
q

+. Then w is
nonnegative if wi(r) ≥ 0 for all i = 1, . . . , q and r ∈ R

q

+.

Proposition 2.1 ( [6]): Suppose R
q

+ ⊂ V . Then R
q

+ is
an invariant set with respect to

r(k + 1) = w(r(k)), r(0) = r0, k ∈ Z+, (1)

if and only if w : V → R
q is nonnegative.

The following definition introduces several types of sta-
bility for the discrete-time nonnegative dynamical system
(1).

Definition 2.2: The equilibrium solution r(k) ≡ re of
(1) is Lyapunov stable if, for every ε > 0, there exists
δ = δ(ε) > 0 such that if r0 ∈ Bδ(re) ∩ R

q

+, then
r(k) ∈ Bε(re) ∩ R

q

+, k ∈ Z+. The equilibrium solution
r(k) ≡ re of (1) is semistable if it is Lyapunov stable and
there exists δ > 0 such that if r0 ∈ Bδ(re) ∩ R

q

+, then
limk→∞ r(k) exists and converges to a Lyapunov stable
equilibrium point. The equilibrium solution r(k) ≡ re of
(1) is asymptotically stable if it is Lyapunov stable and
there exists δ > 0 such that if r0 ∈ Bδ(re) ∩ R

q

+,
then limk→∞ r(k) = re. Finally, the equilibrium solution
r(k) ≡ re of (1) is globally asymptotically stable if the
previous statement holds for all r0 ∈ R

q

+.

III. THERMODYNAMIC MODELING FOR DISCRETE-TIME

DYNAMICAL SYSTEMS

The fundamental and unifying concept in the analysis of
complex (large-scale) dynamical systems is the concept of
energy. The energy of a state of a dynamical system is the
measure of its ability to produce changes (motion) in its own
system state as well as changes in the system states of its
surroundings. These changes occur as a direct consequence
of the energy flow between different subsystems within the
dynamical system. Since heat (energy) is a fundamental
concept of thermodynamics involving the capacity of hot
bodies (more energetic subsystems) to produce work, ther-
modynamics is a theory of large-scale dynamical systems
[1]. As in thermodynamic systems, dynamical systems can
exhibit energy (due to friction) that becomes unavailable to
do useful work. This is in turn contributes to an increase in
system entropy; a measure of the tendency of a system to
lose the ability to do useful work.

To develop discrete-time compartmental models that
are consistent with thermodynamic principles, consider a
discrete-time large-scale dynamical system G involving q
interconnected subsystems. Let Ei : Z+ → R+ denote
the energy (and hence a nonnegative quantity) of the ith
subsystem, let Si : Z+ → R denote the external energy
supplied to (or extracted from) the ith subsystem, let σij :
R

q

+ → R+, i �= j, i, j = 1, . . . , q, denote the exchange of
energy from the jth subsystem to the ith subsystem, and let
σii : R

q

+ → R+, i = 1, . . . , q, denote the energy loss from
the ith subsystem. An energy balance equation for the ith
subsystem yields

∆Ei(k) =

q∑
j=1, j �=i

[σij(E(k)) − σji(E(k))]

−σii(E(k)) + Si(k), k ≥ k0, (2)

or, equivalently, in vector form,

E(k + 1) = w(E(k)) − d(E(k)) + S(k), k ≥ k0, (3)

where E(k) = [E1(k), . . . , Eq(k)]T, S(k) = [S1(k), . . . ,
Sq(k)]T, d(E(k)) = [σ11(E(k)), . . . , σqq(E(k))]T, k ≥ k0,
and w = [w1, . . . , wq]

T : R
q

+ → R
q is such that

wi(E) = Ei +

q∑
j=1, j �=i

[σij(E) − σji(E)], E ∈ R
q

+. (4)

Equation (2) yields a conservation of energy equation
and implies that the change of energy stored in the ith
subsystem is equal to the external energy supplied to (or
extracted from) the ith subsystem plus the energy gained
by the ith subsystem from all other subsystems due to
subsystem coupling minus the energy dissipated from the
ith subsystem. Note that (3) or, equivalently, (2) is a
statement reminiscent of the first law of thermodynamics
for each of the subsystems, with Ei(·), Si(·), σij(·), i �=
j, and σii(·), i = 1, . . . , q, playing the role of the ith
subsystem internal energy, energy supplied to (or extracted
from) the ith subsystem, the energy exchange between
subsystems due to coupling, and the energy dissipated to
the environment, respectively.

To further elucidate that (3) is essentially the statement
of the principle of the conservation of energy let the total
energy in the discrete-time large-scale dynamical system G
be given by U � eTE, E ∈ R

q

+, where eT � [1, . . . , 1],
and let the energy received by the discrete-time large-
scale dynamical system G (in forms other than work) over
the discrete-time interval {k1, . . . , k2} be given by Q �∑k2

k=k1
eT[S(k) − d(E(k))], where E(k), k ≥ k0, is the

solution to (3). Then, premultiplying (3) by eT and using
the fact that eTw(E) ≡ eTE, it follows that

∆U = Q, (5)

where ∆U � U(k2) − U(k1) denotes the variation in
the total energy of the discrete-time large-scale dynamical
system G over the discrete-time interval {k1, . . . , k2}. This
is a statement of the first law of thermodynamics for the
discrete-time large-scale dynamical system G and gives a
precise formulation of the equivalence between variation in
system internal energy and heat.

It is important to note that our discrete-time large-scale
dynamical system model does not consider work done by
the system on the environment nor work done by the
environment on the system. Hence, Q can be interpreted
physically as the amount of energy that is received by the
system in forms other than work. The extension of address-
ing work performed by and on the system can be easily
handeled by including an additional state equation, coupled
to the energy balance equation (3), involving volume states
for each subsystem [1]. Since this slight extension does not
alter any of the results of the paper, it is not considered
here for simplicity of exposition.

For our large-scale dynamical system model G, we as-
sume that σij(E) = 0, E ∈ R

q

+, whenever Ej = 0, i, j =
1, . . . , q. This constraint implies that if the energy of the jth
subsystem of G is zero, then this subsystem cannot supply
any energy to its surroundings nor dissipate energy to the
environment. Furthermore, for the remainder of this paper
we assume that Ei ≥ σii(E) − Si −

∑q
j=1,j �=i[σij(E) −

σji(E)] = −∆Ei, E ∈ R
q

+, S ∈ R
q, i = 1, . . . , q. This

constraint implies that the energy that can be dissipated,
extracted, or exchanged by the ith subsystem cannot ex-
ceed the current energy in the subsystem. Note that this
assumption implies that E(k) ≥≥ 0 for all k ≥ k0.
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Next, premultiplying (3) by eT and using the fact that
eTw(E) ≡ eTE, it follows that

eTE(k1) = eTE(k0) +

k1−1∑
k=k0

eTS(k)

−

k1−1∑
k=k0

eTd(E(k)), k1 ≥ k0. (6)

Now, for the discrete-time large-scale dynamical system
G define the input u(k) � S(k) and the output y(k) �
d(E(k)). Hence, it follows from (6) that the discrete-time
large-scale dynamical system G is lossless [7] with respect
to the energy supply rate r(u, y) = eTu − eTy and with
the energy storage function U(E) � eTE, E ∈ R

q

+. This
implies that (see [7] for details)

0 ≤ Ua(E0) = U(E0) = Ur(E0) < ∞, E0 ∈ R
q

+, (7)

where

Ua(E0) � − inf
u(·), K≥k0

K−1∑
k=k0

(eTu(k) − eTy(k)), (8)

Ur(E0) � inf
u(·), K≥−k0+1

k0−1∑
k=−K

(eTu(k) − eTy(k)), (9)

and E0 = E(k0) ∈ R
q

+. Since Ua(E0) is the maximum
amount of stored energy which can be extracted from
the discrete-time large-scale dynamical system G at any
discrete-time instant K, and Ur(E0) is the minimum amount
of energy which can be delivered to the discrete-time large-
scale dynamical system G to transfer it from a state of
minimum potential E(−K) = 0 to a given state E(k0) =
E0, it follows from (7) that the discrete-time large-scale
dynamical system G can deliver to its surroundings all
of its stored subsystem energies and can store all of the
work done to all of its subsystems. In the case where
S(k) ≡ 0, it follows from (6) and the fact that σii(E) ≥
0, E ∈ R

q

+, i = 1, . . . , q, that the zero solution E(k) ≡ 0
of the discrete-time large-scale dynamical system G with
the energy balance equation (3) is Lyapunov stable with
Lyapunov function U(E) corresponding to the total energy
in the system.

The next result shows that the large-scale dynamical
system G is locally controllable.

Proposition 3.1: Consider the discrete-time large-scale
dynamical system G with energy balance equation (3). Then
for every equilibrium state Ee ∈ R

q

+ and every ε > 0 and
T ∈ Z+, there exist Se ∈ R

q, α > 0, and T̂ ∈ {0, · · · , T}
such that for every Ê ∈ R

q

+ with ‖Ê − Ee‖ ≤ αT , there
exists S : {0, · · · , T̂} → R

q such that ‖S(k)−Se‖ ≤ ε, k ∈

{0, · · · , T̂}, and E(k) = Ee + (Ê−Ee)

T̂
k, k ∈ {0, · · · , T̂}.

It follows from Proposition 3.1 that the discrete-time
large-scale dynamical system G with the energy balance
equation (3) is reachable from and controllable to the origin
in R

q

+. Recall that the discrete-time large-scale dynamical
system G with the energy balance equation (3) is reachable
from the origin in R

q

+ if, for all E0 = E(k0) ∈ R
q

+, there
exists a finite time ki ≤ k0 and an input S(k) defined
on {ki, . . . , k0} such that the state E(k), k ≥ ki, can be
driven from E(ki) = 0 to E(k0) = E0. Alternatively, G is

controllable to the origin in R
q

+ if, for all E0 = E(k0) ∈

R
q

+, there exists a finite time kf ≥ k0 and an input S(k)
defined on {k0, . . . , kf} such that the state E(k), k ≥ k0,
can be driven from E(k0) = E0 to E(kf) = 0. We let Ur
denote the set of all admissible bounded energy inputs to
the discrete-time large-scale dynamical system G such that
for any K ≥ −k0, the system energy state can be driven
from E(−K) = 0 to E(k0) = E0 ∈ R

q

+ by S(·) ∈ Ur, and
we let Uc denote the set of all admissible bounded energy
inputs to the discrete-time large-scale dynamical system G
such that for any K ≥ k0, the system energy state can be
driven from E(k0) = E0 ∈ R

q

+ to E(K) = 0 by S(·) ∈ Uc.
Furthermore, let U be an input space that is a subset of
bounded continuous R

q-valued functions on Z. The spaces
Ur, Uc, and U are assumed to be closed under the shift
operator, that is, if S(·) ∈ U (respectively, Uc or Ur), then
the function SK defined by SK(k) = S(k+K) is contained
in U (respectively, Uc or Ur) for all K ≥ 0.

The nonlinear energy balance equation (3) can exhibit
a full range of nonlinear behavior including bifurcations,
limit cycles, and even chaos. However, a thermodynami-
cally consistent energy flow model should ensure that the
evolution of the system energy is diffusive (parabolic) in
character with convergent subsystem energies. Hence, to
ensure a thermodynamically consistent energy flow model
we require the following axioms. For the statement of these
axioms we first recall the following graph theoretic notions.

Definition 3.1 ( [1]): A directed graph G(C) associated
with the connectivity matrix C ∈ R

q×q has vertices
{1, 2, . . . , q} and an arc from vertex i to vertex j, i �= j,
if and only if C(j,i) �= 0. A graph G(C) associated with
the connectivity matrix C ∈ R

q×q is a directed graph for
which the arc set is symmetric; that is, C = CT. We say
that G(C) is strongly connected if for any ordered pair of
vertices (i, j), i �= j, there exists a path (i.e., sequence of
arcs) leading from i to j.

Recall that C ∈ R
q×q is irreducible, that is, there does

not exist a permutation matrix such that C is cogredient
to a lower-block triangular matrix, if and only if G(C) is
strongly connected (see Theorem 2.7 of [8]). Let φij(E) �

σij(E)−σji(E), E ∈ R
q

+, denote the net energy exchange
between subsystems Gi and Gj of the discrete-time large-
scale dynamical system G.

Axiom i): For the connectivity matrix C ∈ R
q×q associ-

ated with the large-scale dynamical system G defined by

C(i,j) =

{
0, if φij(E) ≡ 0,

1, otherwise,

i �= j, i, j = 1, . . . , q, (10)

and

C(i,i) = −

q∑
k=1, k �=i

C(k,i), i = j, i = 1, . . . , q, (11)

rank C = q − 1, and for C(i,j) = 1, i �= j, φij(E) = 0 if
and only if Ei = Ej .

Axiom ii): For i, j = 1, . . . , q, (Ei − Ej)φij(E) ≤ 0,
E ∈ R

q

+.

Axiom iii): For i, j = 1, . . . , q, ∆Ei−∆Ej

Ei−Ej
≥ −1, Ei �=

Ej .

The fact that φij(E) = 0 if and only if Ei = Ej , i �= j,
implies that subsystems Gi and Gj of G are connected;
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alternatively, φij(E) ≡ 0 implies that Gi and Gj are
disconnected. Axiom i) implies that if the energies in the
connected subsystems Gi and Gj are equal, then energy
exchange between these subsystems is not possible. This is a
statement consistent with the zeroth law of thermodynamics
which postulates that temperature equality is a necessary
and sufficient condition for thermal equilibrium. Further-
more, it follows from the fact that C = CT and rank C = q−
1 that the connectivity matrix C is irreducible which implies
that for any pair of subsystems Gi and Gj , i �= j, of G there
exists a sequence of connected subsystems of G that connect
Gi and Gj . Axiom ii) implies that energy is exchanged from
more energetic subsystems to less energetic subsystems
and is consistent with the second law of thermodynamics
which states that heat (energy) must flow in the direction
of lower temperatures. Furthermore, note that φij(E) =
−φji(E), E ∈ R

q

+, i �= j, i, j = 1, . . . , q, which implies
conservation of energy between lossless subsystems. With
S(k) ≡ 0, Axioms i) and ii) along with the fact that
φij(E) = −φji(E), E ∈ R

q

+, i �= j, i, j = 1, . . . , q,
imply that at a given instant of time energy can only be
transported, stored, or dissipated but not created and the
maximum amount of energy that can be transported and/or
dissipated from a subsystem cannot exceed the energy in
the subsystem. Finally, Axiom iii) implies that for any pair
of connected subsystems Gi and Gj , i �= j, the energy
difference between consecutive time instants is monotonic,
that is, [Ei(k + 1)−Ej(k + 1)][Ei(k)−Ej(k)] ≥ 0 for all
Ei �= Ej , k ≥ k0, i, j = 1, . . . , q.

Next, we establish a Clausius-type inequality for our
thermodynamically consistent energy flow model.

Proposition 3.2: Consider the discrete-time large-scale
dynamical system G with energy balance equation (3) and
assume that Axioms i), ii), and iii) hold. Then for all E0 ∈
R

q

+, kf ≥ k0, and S(·) ∈ U such that E(kf) = E(k0) = E0,

kf−1∑
k=k0

q∑
i=1

Si(k) − σii(E(k))

c + Ei(k + 1)

=

kf−1∑
k=k0

q∑
i=1

Qi(k)

c + Ei(k + 1)
≤ 0, (12)

where c > 0, Qi(k) � Si(k) − σii(E(k)), i = 1, . . . , q,
is the amount of net energy (heat) received by the ith
subsystem at the kth instant, and E(k), k ≥ k0, is the
solution to (3) with initial condition E(k0) = E0. Further-
more, equality holds in (12) if and only if ∆Ei(k) = 0,
i = 1, . . . , q, and Ei(k) = Ej(k), i, j = 1, . . . , q, i �= j,
k ∈ {k0, . . . , kf − 1}.

Inequality (12) is analogous to Clausius’ equality and
inequality for reversible and irreversible thermodynamics
as applied to discrete-time large-scale dynamical systems. It
follows from Axiom i) and (3) that for the isolated discrete-
time large-scale dynamical system G; that is, S(k) ≡ 0 and
d(E(k)) ≡ 0, the energy states given by Ee = αe, α ≥ 0,
correspond to the equilibrium energy states of G. Thus, we
can define an equilibrium process as a process where the
trajectory of the discrete-time large-scale dynamical system
G stays at the equilibrium point of the isolated system G.
The input that can generate such a trajectory can be given by
S(k) = d(E(k)), k ≥ k0. Alternatively, a nonequilibrium
process is a process that is not an equilibrium one. Hence,
it follows from Axiom i) that for an equilibrium process
φij(E(k)) ≡ 0, k ≥ k0, i �= j, i, j = 1, . . . , q, and
thus, by Proposition 3.2 and ∆Ei = 0, i = 1, . . . , q,

inequality (12) is satisfied as an equality. Alternatively, for
a nonequilibrium process it follows from Axioms i) − iii)
that (12) is satisfied as a strict inequality.

Next, we give a deterministic definition of entropy for
the discrete-time large-scale dynamical system G that is
consistent with the classical thermodynamic definition of
entropy.

Definition 3.2: For the discrete-time large-scale dynam-
ical system G with energy balance equation (3), a function
S : R

q

+ → R satisfying

S(E(k2)) ≥ S(E(k1))

+

k2−1∑
k=k1

q∑
i=1

Si(k) − σii(E(k))

c + Ei(k + 1)
, (13)

for any k2 ≥ k1 ≥ k0 and S(·) ∈ U , is called the entropy
of G.

Next, we show that (12) guarantees the existence of an
entropy function for G. For this result define the available
entropy of the large-scale dynamical system G by

Sa(E0)

� − sup
S(·)∈Uc, K≥k0

K−1∑
k=k0

q∑
i=1

Si(k) − σii(E(k))

c + Ei(k + 1)
, (14)

where E(k0) = E0 ∈ R
q

+ and E(K) = 0, and define the
required entropy supply of the large-scale dynamical system
G by

Sr(E0)

� sup
S(·)∈Ur, K≥−k0+1

k0−1∑
k=−K

q∑
i=1

Si(k) − σii(E(k))

c + Ei(k + 1)
, (15)

where E(−K) = 0 and E(k0) = E0 ∈ R
q

+. Note that the
available entropy Sa(E0) is the minimum amount of scaled
heat (entropy) that can be extracted from the large-scale
dynamical system G in order to transfer it from an initial
state E(k0) = E0 to E(K) = 0. Alternatively, the required
entropy supply Sr(E0) is the maximum amount of scaled
heat (entropy) that can be delivered to G to transfer it from
the origin to a given initial state E(k0) = E0.

Theorem 3.1: Consider the discrete-time large-scale dy-
namical system G with energy balance equation (3) and
assume that Axioms ii) and iii) hold. Then there exists
an entropy function for G. Moreover, Sa(E), E ∈ R

q

+,
and Sr(E), E ∈ R

q

+, are possible entropy functions for
G with Sa(0) = Sr(0) = 0. Finally, all entropy functions
S(E), E ∈ R

q

+, for G satisfy

Sr(E) ≤ S(E) − S(0) ≤ Sa(E), E ∈ R
q

+. (16)

Remark 3.1: It is important to note that inequality (12)
is equivalent to the existence of an entropy function for
G. Sufficiency is simply a statement of Theorem 3.1 while
necessity follows from (13) with E(k2) = E(k1). For
nonequilibrium process with energy balance equation (3),
Definition 3.2 does not provide enough information to
define the entropy uniquely. This difficulty has long been
pointed out in [9] for thermodynamic systems. A similar
remark holds for the definition of ectropy introduced below.

The next proposition gives a closed-form expression for
the entropy of G.
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Proposition 3.3: Consider the discrete-time large-scale
dynamical system G with energy balance equation (3) and
assume that Axioms ii) and iii) hold. Then the function
S : R

q

+ → R given by

S(E) = eTloge(ce + E) − q loge c, E ∈ R
q

+, (17)

where loge(ce + E) denotes the vector natural logarithm
given by [loge(c + E1), . . . , loge(c + Eq)]

T and c > 0, is
an entropy function of G.

Remark 3.2: Note that the entropy function given by (17)
satisfies (13) as an equality for an equilibrium process and
as a strict inequality for a nonequilibrium process.

The entropy expression given by (17) is identical in form
to the Boltzmann entropy for statistical thermodynamics.
Due to the fact that the entropy is indeterminate to the extent
of an additive constant, we can place the constant q loge c to
zero by taking c = 1. Since S(E) given by (17) achieves a
maximum when all the subsystem energies Ei, i = 1, . . . , q,
are equal, entropy can be thought of as a measure of the
tendency of a system to lose the ability to do useful work,
lose order, and settle to a more homogenous state.

Next, we introduce a new and dual notion to entropy,
namely, ectropy, describing the status quo of the discrete-
time large-scale dynamical system G. First, however, we
present a dual inequality to inequality (12) that holds for
our thermodynamically consistent energy flow model.

Proposition 3.4: Consider the discrete-time large-scale
dynamical system G with energy balance equation (3) and
assume that Axioms i), ii), and iii) hold. Then for all E0 ∈
R

q

+, kf ≥ k0, and S(·) ∈ U such that E(kf) = E(k0) = E0,

kf−1∑
k=k0

q∑
i=1

Ei(k + 1)[Si(k) − σii(E(k))]

=

kf−1∑
k=k0

q∑
i=1

Ei(k + 1)Qi(k) ≥ 0, (18)

where E(k), k ≥ k0, is the solution to (3) with initial
condition E(k0) = E0. Furthermore, equality holds in (18)
if and only if ∆Ei = 0 and Ei = Ej , i, j = 1, . . . , q, i �= j.

Note that inequality (18) is satisfied as an equality for
an equilibrium process and as a strict inequality for a
nonequilibrium process. Next, we present the definition of
ectropy for the discrete-time large-scale dynamical system
G.

Definition 3.3: For the discrete-time large-scale dynam-
ical system G with energy balance equation (3), a function
E : R

q

+ → R satisfying

E(E(k2)) ≤ E(E(k1))

+

k2−1∑
k=k1

q∑
i=1

Ei(k + 1)[Si(k) − σii(E(k))],

(19)

for any k2 ≥ k1 ≥ k0 and S(·) ∈ U , is called the ectropy
of G.

For the next result define the available ectropy of the

large-scale dynamical system G by

Ea(E0)

� − inf
S(·)∈Uc, K≥k0

K−1∑
k=k0

q∑
i=1

Ei(k + 1)[Si(k) − σii(E(k))],

(20)

where E(k0) = E0 ∈ R
q

+ and E(K) = 0, and the required
ectropy supply of the large-scale dynamical system G by

Er(E0) � inf
S(·)∈Ur, K≥−k0+1

k0−1∑
k=−K

q∑
i=1

Ei(k + 1)[Si(k)

−σii(E(k))], (21)

where E(−K) = 0 and E(k0) = E0 ∈ R
q

+. Note that the
available ectropy Ea(E0) is the maximum amount of scaled
heat (ectropy) that can be extracted from the large-scale
dynamical system G in order to transfer it from an initial
state E(k0) = E0 to E(K) = 0. Alternatively, the required
ectropy supply Er(E0) is the minimum amount of scaled
heat (ectropy) that can be delivered to G to transfer it from
an initial state E(−K) = 0 to a given state E(k0) = E0.

Theorem 3.2: Consider the discrete-time large-scale dy-
namical system G with energy balance equation (3) and
assume that Axioms ii) and iii) hold. Then there exists
an ectropy function for G. Moreover, Ea(E), E ∈ R

q

+,
and Er(E), E ∈ R

q

+, are possible ectropy functions for
G with Ea(0) = Er(0) = 0. Finally, all ectropy functions
E(E), E ∈ R

q

+, for G satisfy

Ea(E) ≤ E(E) − E(0) ≤ Er(E), E ∈ R
q

+. (22)

The next proposition gives a closed-form expression for
the ectropy of G.

Proposition 3.5: Consider the discrete-time large-scale
dynamical system G with energy balance equation (3) and
assume that Axioms ii) and iii) hold. Then the function
E : R

q

+ → R given by

E(E) = 1
2ETE, E ∈ R

q

+, (23)

is an ectropy function of G.
Remark 3.3: Note that the ectropy function given by (23)

satisfies (19) as an equality for an equilibrium process and
as a strict inequality for a nonequilibrium process.

It follows from (23) that ectropy is a measure of the
extent to which the system energy deviates from a homo-
geneous state. Thus, ectropy is the dual of entropy and is
a measure of the tendency of the discrete-time large-scale
dynamical system G to do useful work and grow more
organized.

Inequality (13) is analogous to Clausius’ inequality for
equilibrium and nonequilibrium thermodynamics as applied
to discrete-time large-scale dynamical systems, while in-
equality (19) is an anti-Clausius’ inequality. Moreover, for
the ectropy function defined by (23), a thermodynamically
consistent discrete-time large-scale dynamical system is
dissipative [7] with with respect to the supply rate ETS and
with storage function corresponding to the system ectropy
E(E). For the entropy function given by (17) note that
S(0) = 0, or, equivalently, limE→0 S(E) = 0, which is
consistent with the third law of thermodynamics (Nernst’s
theorem) which states that the entropy of every system at
absolute zero can always be taken to be equal to zero.
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For the isolated discrete-time large-scale dynamical sys-
tem G, (13) yields the fundamental inequality

S(E(k2)) ≥ S(E(k1)), k2 ≥ k1. (24)

Inequality (24) implies that, for any dynamical change in
an isolated (i.e., S(k) ≡ 0 and d(E(k)) ≡ 0) discrete-time
large-scale system, the entropy of the final state can never
be less than the entropy of the initial state. It is important
to stress that this result holds for an isolated dynamical
system. It is however possible with energy supplied from
an external dynamical system (e.g., a controller) to reduce
the entropy of the discrete-time large-scale dynamical sys-
tem. The entropy of both systems taken together however
cannot decrease. The above observations imply that when
an isolated discrete-time large-scale dynamical system with
thermodynamically consistent energy flow characteristics
(i.e., Axioms i)−iii) hold) is at a state of maximum entropy
consistent with its energy, it cannot be subject to any further
dynamical change since any such change would result in a
decrease of entropy. This of course implies that the state of
maximum entropy is the stable state of an isolated system
and this state has to be semistable.

Analogously, it follows from (19) that for an isolated
discrete-time large-scale dynamical system G the fundamen-
tal inequality

E(E(k2)) ≤ E(E(k1)), k2 ≥ k1, (25)

is satisfied, which implies that the ectropy of the final state
of G is always less than or equal to the ectropy of the initial
state of G. Hence, for the isolated large-scale dynamical
system G the entropy increases if and only if the ectropy
decreases. Thus, the state of minimum ectropy is the stable
state of an isolated system and this equilibrium state has
to be semistable. The next theorem concretizes the above
observations.

Theorem 3.3: Consider the discrete-time large-scale dy-
namical system G with energy balance equation (3) with
S(k) ≡ 0 and d(E) ≡ 0, and assume that Axioms i)− iii)
hold. Then for every α ≥ 0, αe is a Lyapunov equilibrium
state of (3). Furthermore, E(k) → 1

q
eeTE(k0) as k → ∞

and 1
q

eeTE(k0) is a semistable equilibrium state. Finally,

if for some m ∈ {1, . . . , q}, σmm(E) ≥ 0, E ∈ R
q

+,
and σmm(E) = 0 if and only if Em = 01, then the zero
solution E(k) ≡ 0 to (3) is a globally asymptotically stable
equilibrium state of (3).

Theorem 3.3 implies that the steady-state value of the
energy in each subsystem Gi of the isolated large-scale
dynamical system G is equal, that is, the steady-state energy
of the isolated discrete-time large-scale dynamical system
G given by E∞ = 1

q
eeTE(k0) =

[
1
q

∑q
i=1 Ei(k0)

]
e

is uniformly distributed over all subsystems of G. This
phenomenon is known as equipartition of energy [1] and is
an emergent behavior in thermodynamic systems. The next
proposition shows that among all possible energy distribu-
tions in the discrete-time large-scale dynamical system G,
energy equipartition corresponds to the minimum value of
the system’s ectropy and the maximum value of the system’s
entropy.

Proposition 3.6: Consider the discrete-time large-scale
dynamical system G with energy balance equation (3), let

1The assumption σmm(E) ≥ 0, E ∈ R
q

+, and σmm(E) = 0 if
and only if Em = 0 for some m ∈ {1, . . . , q} implies that if the mth
subsystem possesses no energy, then this subsystem cannot dissipate energy
to the environment. Conversely, if the mth subsystem does not dissipate
energy to the environment, then this subsystem has no energy.

E : R
q

+ → R and S : R
q

+ → R denote the ectropy and
entropy of G given by (23) and (17), respectively, and define
Dc � {E ∈ R

q

+ : eTE = β}, where β ≥ 0. Then,

arg min
E∈Dc

(E(E)) = arg max
E∈Dc

(S(E)) = E∗ =
β

q
e. (26)

Furthermore, Emin � E(E∗) = 1
2

β2

q
and Smax � S(E∗) =

q loge(c + β
q
) − q loge c.

It follows from (24), (25), and Proposition 3.6 that
conservation of energy necessarily implies nonconservation
of ectropy and entropy. Hence, in an isolated discrete-
time large-scale dynamical system G all the energy, though
always conserved, will eventually be degraded (diluted) to
the point where it cannot produce any useful work. Hence,
all motion would cease and the dynamical system would
be fated to a state of eternal rest (semistability) wherein all
subsystems will posses identical energies (energy equiparti-
tion). Ectropy would be a minimum and entropy would be
a maximum giving rise to a state of absolute disorder. This
is precisely what is known in theoretical physics as the heat
death of the universe [1].

IV. CONCLUSION

Motivated by energy flow modeling of large-scale inter-
connected systems, in this paper we develop discrete-time
nonlinear compartmental models that are consistent with
thermodynamic principles. Specifically, using a discrete-
time large-scale systems perspective, we develop some of
the key properties of thermodynamic systems involving
conservation of energy and nonconservation of entropy and
ectropy using dynamical systems theory. The concept of
entropy for a large-scale dynamical system is defined and
shown to be consistent with the classical thermodynamic
definition of entropy.
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