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Abstract— Control design is generally based on an approxi-
mate model of a real-life system. In this paper, a complex dy-
namical system is depicted using not one but several models of
the same system. Based on interest for robust implementation
of reduced-order controllers in higher-order models, we study
the regulator problem for a dynamical system expressed as
a framework of several models where the reduction between
them is made by singular perturbation theory. This multireso-
lutional representation portrays the model and cost at different
levels of complexity, allowing to study analytical solutions for
the minimization problem at each level to determine cases in
which the cost can be minimized without necessarily requiring
an exact optimal control. As result, we show that sometimes
a small improvement in the reduced-order optimal control
may improve the minimum cost value for the high-order
model in a significant way. A singularly perturbed quadratic
regulator accounting for actuator dynamics expressed as the
discontinuous nonlinearity sign in its structure is shown as
example to illustrate these properties.

I. INTRODUCTION

In this paper, we propose a new optimal control design
method for a model of a dynamical system in terms of
its reduced-order optimal control. This can lead to optimal
control design for higher-order models of a dynamical
system resembling a real-life process. Instead of building
the controller design for one particular model of a system,
we consider a control design for a multiresolutional frame-
work representation of the dynamical system, described
as a hierarchical group of models expressed at different
dimensionality. The case we study is one where the model
has a small improvement in terms of its complexity.

We express this framework as a reduced-order model
representing the lower-resolutional model and a higher-
order model obtained by taking into account additional
dynamics in the lower dimension. The case we investigate
is a singularly perturbed optimal problem corresponding to
a dynamical system expressed as a multiresolutional frame-
work where a cost function will be minimized. Considering
this representation and introducing a two-channel structure
at the control input, we demonstrate the optimal control
design for higher-dimensional models can be simplified
under modified reduced-order optimal control feedback.

Previously, several articles have appeared in the litera-
ture considering the order reduction technique in optimal
control. For example, Kokotovic [1] [2], proposed ways to
apply order reduction in nonlinear control systems using
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singular perturbations. O’Malley [3] [4], also found meth-
ods to obtain near-optimal solutions for singularly perturbed
optimal control problems. In [5], Artstein recently studied
the singularly perturbed optimal control problem, finding
a way to extract near-optimal solutions for the original
system from optimal solutions of the reduced-order one,
investigating the case considering first order fast dynamics.

However, for the order reduction to apply, the optimal
solutions must also satisfy restrictive conditions. In partic-
ular, the fast scale dynamics has to converge to a stationary
point. Thus, many systems fail to have these variational
limit properties needed for the system to have a continuous
plant trajectory. In the following sections we investigate the
singularly perturbed optimal regulator problem for a case
that considers two-channel dynamics.

The problem we study is described next: Assuming that
a dynamical system can be expressed as different models
having certain level of approximation, we introduce the
notation of a multiresolutional framework [6] [7] in which
the models are connected through a small parameter ε, and
where their limit is obtained as ε → 0.
Let

g : R
n2 → R

n1 , n2 > n1 ; x = g(z) (1)

be a map between two spaces with different dimensions.
A low resolutional model is

ẋ = fx(x) + Bx(x)u ; x ∈ R
n1 (2)

Ji−1(x, u) =

∫ ∞

0

Li−1(x, u)dt. (3)

Let ui−1
opt = ui−1

opt (x) be an optimal controller for (2).
A higher-resolutional model is

ż = fz(z) + Bz(z)u ; z ∈ R
n2 (4)

Ji(z, u) =

∫ ∞

0

Li(x, u)dt (5)

with optimal control ui
opt = ui−1

opt (z). Using map (1) and
optimal solution ui−1

opt we express ui
opt as

ui
opt = ui−1

opt (g(z)) + δ(z) (6)

where δ(z) is a function of the additional variables in the
higher level.

Some of the results are known. For example, O’Malley
[8] considered the following

ui
opt(t) = ui−1

opt (t)+
∞∑

j=1

cj(t)·ε
j ; δ(z) =

∞∑
j=1

cj(t)·ε
j (7)

where the additional function δ(z) in (6) represents the
difference between ui

opt and ui−1
opt expanded with respect

to the small parameter ε as is shown above.
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In general, the minimized cost for each model as consid-
ered in the multiresolutional framework, is found to be

Ji(u
i
opt(t)) ≤ Ji(u

i−1
opt (t)). (8)

Assuming the controls ui−1 and ui that minimize the cost
at each resolution are bounded in magnitude, and contained
in the admissible control set U , in the control aspect of the
problem we analyze, we can think about the following
• If (2), (3) is the limit for a high-resolution model (4), (5)
as ε → 0, a) is it true that Jε

i

ε→0
−→ Ji−1 for an optimal

solution? b) does the optimal control converge uε
i → ui−1?

• If a way to improve the lower resolution optimal control
optimality without considering the exact design of a higher-
resolutional problem exists, is it possible to find a case

Jε
i (u∗

i−1) < Jε
i (u∗

i ) , as ε → 0, (9)

where the minimized cost value Ji is significantly improved
by using the improved lower optimal control?

For the quadratic regulator minimization problem, we are
also interested to find if the minimum cost J∗ and optimal
control u∗ in each model follow the next consideration
• If ε → 0, is it true that J∗

i → J∗
i−1?

• If ε → 0, u∗
i → u∗

i−1?
We study this problem by accounting for additional

second-order actuator dynamics at the lower-dimensional
model input to construct a higher-dimensional model. Thus,
we prove that considering this framework under reduced-
order optimal control feedback will satisfy the conditions
mentioned previously.

II. OPTIMAL CONTROL FORMULATION IN

MULTIRESOLUTIONAL FRAMEWORK

A. Multiresolutional framework from singular perturbation

As shown in the introduction, the limit between the state
variables from two different models can be expressed as
a mapping gi. However, this may not always satisfy the
overall limit between models; for instance, when a time
varying system under feedback control is considered. In this
case, the mapping function has to satisfy other restrictions
in order to provide sufficient conditions for a limit value to
exist between the state trajectory in both models.

A dynamical system expressed as the model and cost
written in terms of the system states at two different levels
of resolution defines the multiresolutional formulation for
an optimal control problem as

ẋε
i = fi(x

ε
i , ui) (10)

Jε
i =

∫ ∞

0

J(xi, ui)dt (11)

ẋi−1 = fi−1(xi−1, ui−1) (12)

Jε
i−1 =

∫ ∞

0

J(xi−1, ui−1)dt. (13)

Assuming that the ith and (i−1)th model depend on x, and
u, and a parameter ε in the ith-order system connects both

models, cases exist where the ith model is reduced to (i−
1)th-order in the multiresolutional framework by singular
perturbation as ε → 0. Mathematically, this is described as
two models of different dimension from the same dynamical
system expressed as a singular perturbation problem where
the higher-order system is reduced as xε

i → xi−1, ε → 0.

Consider a manifold Mi corresponding to the func-
tion σi(xi, ui) = 0 is a subset of the extended space
Mi(xi, ui) ⊂ Xi × Ui. Assuming the initial state
x(t0) lies within an ε-neighborhood of Mi, the mapping
from the ith to the (i − 1)th resolution is described
by an instantaneous motion onto σi(xi−1, ui−1) = 0 as
limε→0 σi(xi−1, ui−1) = xi−1. For this to occur, we also
require a map in the control providing the limit value for
model reduction under feedback as ε → 0. Thus, the state
trajectory map from the ith model onto the manifold Mi is
a dual map, where g in (1) accounts for the state variables,
and h for the trajectory and control

(gi × hi) : lim
ε→0

(xi) = xi−1. (14)

The lower-order model (12) is isomorphic to the manifold
Mi where (14) represents an instantaneous switching in the
trajectory between the set describing the extended system,
and Mi.

In the regulator problem, the extended cost Ji is also
reduced to the lower resolution cost Ji−1 as (xε

i , J
ε
i ) →

(xi−1, Ji−1), ε → 0. The extended cost is minimized for
an admissible control u ∈ U , u = u(t), as ε → 0. In this
case, the state trajectories will be mapped between the full-
order model and the reduced model by restricting the cost
value Ji onto the state and control values in manifold Mi.
In that way, any variables in the extended model depending
on the control will be eliminated from the extended cost,
restricting it to only take values for x and u, thus it becomes
equivalent to the reduced cost. By excluding the dependent
variables in the extended model, its cost Ji is reduced to
Ji−1, as ε → 0, restricting the extended cost to be

Ji−1 = Ji

∣∣∣∣
restricted

(x,u)∈Mi

for (x, u) ∈ Mi. (15)

B. Two-channel control structure

The two-channel control structure shown in Figure 1,
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Fig. 1. Two-channel structure
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considers two paths at the control input providing a way
to introduce additional dynamics into the reduced model
to obtain a full-order model. Thus, the multiresolutional
framework is expressed as a singular perturbation problem
that becomes reduced as ε → 0.
In general, from the model representation at each resolution
level, the state vector in each model may be expressed as

xi =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...
xN−1

xN

⎤
⎥⎥⎥⎥⎥⎦

; xi−1 =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...
xN−2

xN−1

⎤
⎥⎥⎥⎥⎥⎦

. (16)

The state vector for the higher resolution model can also be
expressed as a function of the additional states introduced
by the actuator dynamics as

xi =

[
xi−1

xN

]
; xN =

[
wi

zi

]
. (17)

Considering additional dynamics are introduced, two new
additional states wi, zi appear, thus

x̃i =

⎡
⎢⎢⎣

xi−1

wi

zi

ui

⎤
⎥⎥⎦ ; x̃i−1 =

[
xi−1

ui−1

]
. (18)

By using this configuration, the state vector mapping be-
tween models gi ×hi : x̃i → x̃i−1 provides limit properties
between the additional state variables from the extended
model xN , ui and the reduced-order control variable ui−1

gi × hi

(⎡
⎣ wi

zi

ui

⎤
⎦

)
= ui−1 (19)

such that the additional states wi and zi and the extended
control ui become ui−1 as ε → 0.

The optimal control formulation in the multiresolutional
framework is made by minimizing the cost for each partic-
ular model of the dynamical system using some permissible
control u in each case. In particular, consider the cost
functions Ji, and Ji−1. Let (11) be the extended cost and
(13) be the reduced cost. By replacing the additional states
from (17) into (11) we have that

Jε
i =

∫ ∞

0

J(xi−1, wi, zi, ui)dt. (20)

Thus, we can write the cost as a limit between the two
models of the multiresolutional framework for ε → 0 as

lim
ε→0

Jε
i (xi, ui) = lim

ε→0
Jε

i (xi−1, wi, zi, ui). (21)

The ith model trajectory maps onto the surface σi = 0
under the following condition

lim
ε→0

dist[(xi(·), ui(·)), σi] = 0 (22)

where σi = xN − ui = 0, and xN in (17) represents
the additional states introduced into xi by the actuator

i-1
Ji-1u

ε 0
i-1JiJ

ε**Ji

Jiiu* *

Fig. 2. Relationship between reduced and extended problems

dynamics mapped by (19) to the manifold Mi : σ = 0.
These variables represent the internal dynamics contributed
by each channel of the two-channel structure. The extended
cost in (20) is also expressed as the solution of the variables
that define σ = 0, where σi is a function of the additional
states xN and extended optimal control ui.

In general, the numerical value of the minimized cost for
the reduced system (u∗

i−1, J
∗
i−1) is Ji−1 > Ji. We look

to minimize the cost using reduced-order optimal control
schemes. Although this could happen only approximately,
considering the analytical solution is found for ε → 0, the
minimized value for the extended cost J∗∗ will be equal to
the minimized cost for the reduced model, as ε → 0.

Figure 2 shows the limit of the cost function Jε
i for the

extended model, will be exactly equal to the reduced cost
as ε → 0. This is formally stated as

lim
ε→0

J∗∗
i (ε) = lim

ε→0
J∗

i . (23)

Sometimes this solution may not guarantee a minimization
on the whole interval ε �= 0, taking only a near-minimum
value in certain sections.

Assuming the trajectory of the extended system reaches
an ε-vicinity of the manifold Mi at time moment t1, the
model of the dynamical system at this time is expressed by

xi(t1) = xi−1(t1) (24)

zε
i (t1) = u(t1) , as ε → 0. (25)

This guarantees the ith-order system will reduce to the (i−
1)th-order system as ε → 0. The ith-order states are also
reduced to the (i − 1)th-order states as we find the limit1

when ε → 0. In mathematical terms, this is expressed by
the following limit functions

lim
ε→0

xε
i = xi−1 (26)

lim
ε→0

zε
i = u. (27)

1note: the limit is understood in L2-sense, i.e.

lim
ε→0

x
ε

i = xi−1 ⇐⇒ ‖xε

i − x
ε

i−1
‖L2

→ 0 (ε → 0)

‖x‖2

L2
=

∫
T

0

‖x‖2
dt
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Therefore, during the reduction stage, the extended model
xi tends to the reduced model xi−1, because z → u as ε →
0. The mapping from the manifold Mi onto the reduced
space is expressed by the following identity

gi(x, u, u) ≡ gi−1(x, u) (28)

gi × hi(x, u, u) ≡ gi−1 × hi−1(x, u). (29)

III. EXAMPLE

To demonstrate we can improve the minimum cost value
in the extended system, we must compare its performance in
two different situations. We will first use the reduced-order
control to show that the optimal cost and state converge
to the cost of the reduced system as ε → 0. After that, we
will show that the optimal solution for the full-order system
tends to a completely different value (improved) as ε → 0.
Simulations are included to illustrate our theoretical results.

Consider a multiresolutional framework described as two
models of the same dynamical system expressed at different
level of resolution satisfying the limit properties. The ac-
tuator dynamics are introduced in the reduced-order model
by considering a two-channel structure at the control input.
Based on this multiresolutional representation, we will study
the cost-minimization problem in systems that have the form
(10)-(13) using reduced-order optimal control schemes.
The extended model is

ẋ(t) =
1

2
z(t) +

1

2
u(t) (30)

εż(t) = −sign (z(t) − u(t)) (31)

J1 =

∫ ∞

0

(x2(t) + z2(t))dt. (32)

The reduced-order model is

ẋ(t) = u(t) (33)

J0 =

∫ ∞

0

(x2(t) + u2(t))dt. (34)

In fact, because the sign function is not smooth, an exact
optimal control design for this particular model becomes
even more difficult. In our approach, we assume certain
initial conditions and perform an analysis based on the
behavior of the state trajectories as t → ∞.

Assuming the initial state is close to an ε-vicinity of
manifold Mi, the system trajectories will reach the ε-
vicinity at t1. At this time, when ε → 0, the state trajectory
is described as the mapping in (14) from x(t1) to σ = 0.

From time t1 until reaching the origin, the nonlinear
actuator dynamics drives the argument of the sign function
(31), which is the sliding surface σ into sliding mode.

The two cases shown next illustrate a way to improve
the optimality of the lower-resolution optimal control with-
out considering the exact design for a higher-resolutional
problem, where it is possible to find a case such that

min Jε
i (u∗

i−1) < min Jε
i (u∗

i ) , as ε → 0 (35)

in which the minimized cost value Ji is significantly im-
proved by using a modified lower optimal control.

A. Minimization using a reduced-order optimal control

The cost-minimization analysis for the multiresolutional
framework is divided into two time intervals∫ ∞

0

=

∫ t1

0

+

∫ ∞

t1

(36)

where the first stage is a transition between the initial time at
the starting point in the trajectory in the extended space and
the time when the trajectory reaches the sliding manifold,
as ε → 0; and the final stage in the sliding manifold, that
describes the system in the reduced-order space. Consider
the multiresolutional framework in (30)-(34). The optimal
control for the reduced-order model is

u(t) = −x(t). (37)

Substituting (37) into (30)-(32) we obtain

ẋ(t) =
1

2
z(t) −

1

2
x(t) (38)

εż(t) = −sign (z(t) + x(t)). (39)

The lower equation (39) can also be expressed as

ż(t) = −ε−1sign σ(t), where σ(t) = z(t) + x(t) (40)

and Mi = {σ = 0} is a sliding surface. At t0 = 0, σ(0) =
z(0) − u(0). Assuming the trajectory reaches the manifold
Mi at t1, σ(t1) = 0, thus z(t1) = u(t1).

To find the reaching time t1 we obtain the derivative

σ̇i(t) = żi(t) − u̇i(t). (41)

Replacing ż from (40) into (41), the integral on [0, t1) is∫ t1

0

σ̇ dt = −
1

ε

∫ t1

0

sign σ dt −

∫ t1

0

u̇ dt. (42)

For σi(t1) = 0 and x(t1) = z(t1), the solution to (42) is

−σ(0) = ±
1

ε
t1 − u(t1) + u(0). (43)

Finally, solving for t1 the reaching time is found to be

t1 = ε

∣∣∣∣u(t1) − z(0)

∣∣∣∣ = Cε. (44)

Now, we consider the multiresolutional framework (30)-(34)
to demonstrate that minJε

i →minJi−1, as ε → 0. Assuming
the trajectory is above the switching surface at initial time,
σ(0) > 0, we obtain z(t) in the reaching phase using (37)

z(t) = −ε−1t + z(0) (45)

z2(t) =
1

ε2
t2 −

2z(0)

ε
t + z2(0). (46)

We substitute (45) into (38) and find the solution for x(t)

x(t) = e−
t

2 x(0) +
t

ε
ψε(t) (47)

x2(t) = e−tx2(0) + 2e−
t

2 x(0)
t

ε
ψε(t) +

t2

ε2
ψ2

ε(t) (48)

where |ψε(t)| ≤ C is bounded for every ε > 0, 0 ≤ t ≤ t1.
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Replacing (46) and (48) into the cost (32), and evaluating
(47) at t1 from (44), results an integral of order O(ε), as
ε → 0. Thus, the cost in that interval will be insignificant.∫ t1

0

=

∫ Cε

0

[
e−tx2(0)+2e−

t

2 x(0)
t

ε
ψε(t)+

t2

ε2
ψ2

ε(t)

]
dt=O(ε)

(49)
Since at t1 the ith-order system is reduced to (i−1)th-order,
its total cost expressed as J1 in the simulations will be

J1 = O(ε) +

∫ ∞

t1(ε)

Jlow resolution cost. (50)

In this way we prove that J tends to the low resolutional
optimal cost, shown as J0 in the simulations, as ε → 0.
B.Minimization using modified reduced-order optimal control

This section shows a case where the limit of the full-
order optimal cost is actually much smaller that the lower-
resolution optimal cost. We will demonstrate a control
uε(t), although not optimal for ε > 0 but for which the
cost Jε has the same limit as the full-order optimal cost as
ε → 0, will significantly improve the minimum value of the
cost, as ε → 0.
Analysis for 0 ≤ t ≤ t1

The first time interval occurs while the extended model
states approach the sliding manifold. Our analysis of the
state trajectories is made assuming that the states should
be x(t1) = z(t1) = 0 at the end of this interval. Singular
perturbation during the first stage causes z → u, as ε → 0.
The higher-order cost is expressed as a function of x and
z as is shown in (32). The control during the first stage, is
an open-loop high magnitude control with constant value

u(t) = −
2

t1
x(0). (51)

Analytically, choosing (51) allows us to cancel out the initial
condition x(0) in the reduced model after substituting it
into state equation (30) and solving for x(t). Thus, the
cost-minimization problem will be dependent only on the
extended state initial conditions z(0).

We obtain t1 for a constant control (51) by considering
the switching surface σ(t) is described by a linear interval.
Initially, we know that z(t0) �= u(t0), however, as t0 → t1,
z → u as ε → 0, thus

t1 = εσ(0). (52)

Replacing (52) in (45) we obtain z(t1), which into (30)
is

ẋ(t) = −
t1

2ε
+

z(0)

2
+

1

2
u(t). (53)

Then substituting (51) into (53), and solving for x(t) gives

x(t) − x(0) = −
t1 t

2ε
+

tz(0)

2
+

1

2

(
−2x(0)

t1

)
t. (54)

Assuming t = t1 will cancel the terms expressed as a
function of the initial condition x(0), thus x(t1) becomes

x(t1) = −
t21
2ε

+
t1z(0)

2
. (55)

Analysis for t > t1
At time t1, the full-order model and cost become reduced

in order. Therefore, on the interval [t1,∞), for t > t1,
the system model that must be considered in the cost-
minimization analysis is the reduced system and its optimal
control.
Again, in order to analyze the state trajectories to find
the total minimized cost value and to verify we obtain an
improvement in the cost, as ε → 0, consider dividing the
cost integral (32) in two intervals as is shown in (36).
Analysis of the Cost-Minimization Problem for 0 ≤ t ≤ t1

As it was previously mentioned, the full-order model
in (30)-(32) becomes reduced at t1, following the singular
perturbation of (31), as ε → 0. During this reduction stage,
the penalization J1 from (34) in the state z will become
one in the control u.

The state trajectory reaches the sliding manifold at Mi =
{σi(zi, ui) = (0)} when the full-order system has been
reduced. Its motion is generated by the function σ in (40).
Replacing (45) and u from (51) into (30), we obtain

ẋ(t) = −
1

2ε
t +

1

2
z(0) −

1

t1
x(0). (56)

Integrating 56, the solution for x(t) is

x(t) = −
1

4ε
t2 +

(
z(0)

2
−

1

t1
x(0)

)
t + x(0). (57)

We simplify (57) for reaching time t = t1 = εσ(0)

x(t1) = −
1

4ε
ε2σ2(0) +

1

2
z(0)εσ(0). (58)

The state x2(t) is shown in (59) and z2(t) is shown in (46).

x2(t) =
1

16ε2
t4 −

1

2ε

(
z(0)

2
−

1

t1
x(0)

)
t3

+

(
−1

2ε
x(0) +

(
z(0)

2
−

1

t1
x(0)

)2)
t2

+ 2x(0)

(
z(0)

2
−

1

t1
x(0)

)
t + x2(0) (59)

The time t1 represents the end of the reduction interval,
thus the upper limit value of the integral will be lim J(ε) →
0, as ε → 0. Replacing (59) and (46) into the cost (32) in
[0, t1) and simplifying we find every term is a function of
ε, as ε → 0

J0 =

∫ t1

0

(
x2(t) + z2(t)

)
dt = O(ε) → 0, J0

∣∣∣∣
t1

0

→ 0.

(60)
Analysis of the Cost-Minimization Problem for t > t1

Following from our explanation of the state trajectory
behavior our assumption was that at time t1, the extended
model xi would become the reduced model xi−1, as ε → 0.

ẋ(t) = u(t) (61)

J1 =

∫ ∞

t1

(x2(t) + u2(t))dt (62)
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The reduced-order cost is expressed in terms of the reduced
state x and the control u as (62). By replacing the reduced-
order optimal control (37) into the cost (62) we obtain

J1 =

∫ ∞

t1

2x2(t)dt. (63)

Solving (63) and evaluating the state trajectory on [t1,∞),
x(t) → 0, as t → ∞. Thus, the cost will tend to zero

J1 = −2x2(t1) = O(ε2) → 0 , as ε → 0. (64)

On the second interval, after integrating, the cost is also
found to be a function of t1. The cost is actually given
in the order O(ε2), therefore as result and knowing (52),
x(t1) → 0, as ε → 0. Thus, the total cost for the whole
interval expressed as J2 in the simulations is zero, as ε → 0

J2=J0+J1 =O(ε)+O(ε2) → 0, lim
ε→0

J2(ε) → 0. (65)

Therefore, we show that using control (51) on the initial
interval [0, t1) we drastically reduce the cost. In fact, as
ε → 0 it tends to zero, which is the best possible value.

IV. CONCLUSIONS

The main contribution in this paper was that we found
a control design method based on optimal schemes for
reduced-order models of a dynamical system, that exhibits
good optimal performance and provides an improvement
over the actual minimum cost value known for an exact
optimal design in a similar higher-order model. As op-
timal control design usually becomes more complicated
for higher-order models, our motivation for this approach
was that a reduced-order control may contain part of the
information found in a higher-order control of the same dy-
namical system. The questions made in the introduction are
clearly proved theoretically as is shown in the simulations.
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