
Uniform Clustered Particle Filtering for Robot Localization

Tun Yang, and Victor Aitken
Department of Systems and Computer Engineering,

Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
tunyang@sce.carleton.ca, vaitken@sce.carleton.ca

Abstract— Localization is a fundamental ability for an au-
tonomous mobile robot. Different particle filter based solutions
to the problem are simulated in a software simulator, and the
results are compared and discussed. The weighted bootstrap
filter, clustering particle filter, and the uniform particle filter
are examined. A new method based on the clustered particle
filter and the uniform particle filter, the uniform clustering
particle filter, is also proposed and evaluated.

I. INTRODUCTION

Autonomous mobile robots must act intelligently without
external control. To achieve a level of intelligence, a robot
must have some capacity in reasoning about its environment
given mounted sensors and actuators. Some regard robot
localization as “the most fundamental problem to providing
a mobile robot with autonomous capabilities” [1].

Succinctly defined, localization is the act of estimating
the location of a robot in its environment, given that the ro-
bot has an approximate map of its surrounding environment.
There has been much research into this problem, and local-
ization may be divided into more specific categories: local
position tracking, global localization, and relocalization.

Local position tracking assumes that the initial location
of the robot is relatively well known. Localization methods
that solve the tracking problem continue to provide good
estimations to robot location as the robot moves through
the environment despite uncertain motion and error filled
sensor observations.

The global localization problem assumes that the initial
location of the robot is unknown. Localization methods that
solve this issue typically need to deal with parts of the
environment that are indistinguishable from other parts of
the environment due to structural similarity.

The relocalization problem occurs when a robot may be
certain of its location, but given further observations and
motion, realizes that it is completely lost. This is the case
when a localization method estimates the incorrect robot
location, which may be due to environment similarities. This
is also an issue when a robot is moved by external interven-
tion, such as a referee in a competition. The relocalization
problem is also known as the kidnapped robot problem.

The family of methods known as Monte Carlo localiza-
tion (MCL) combines the use of particle filtering methods,
and robot sensor and action models to solve all three
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categories of robot localization. Also, MCL is easily im-
plemented, as compared to other localization methods. It is
due to these characteristics that MCL enjoys widespread
popularity in recent times. First introduced by Dellaert,
Burgard, Fox, and Thrun [2], the original MCL method has
been subsequently modified, augmented, and implemented
by other researchers including [3], [4], [5].

In this paper, we propose to modify the standard MCL
solution by changing the particle filter used. The new
MCL solution proposed is based on the Uniform MCL
(U-MCL) [4], and the Clustered Particle Filtering MCL
(CPF-MCL) [5]. The resulting MCL solution retains the
benefits of computational efficiency and ease of implemen-
tation from the U-MCL, while inheriting its robustness in
global localization from the CPF-MCL method. The MCL
method is therefore named the Uniform Clustered Particle
Filtering MCL (UCPF-MCL), and is a good solution to the
localization problems with improvements over the standard
MCL method.

II. BACKGROUND

Bayesian state estimation is the basis of successful
robot localization techniques such as the Kalman filter
[6], Markov localization [7], and Monte Carlo localization
(MCL) [2]. Bayesian state estimation is so named for its
use of Bayes’ theorem to incorporate new evidence from
robot sensors to condition the current estimated state.

For robot localization, the quantities x, y, and θ are of
interest since they describe the position and orientation of
the robot in the environment. Let the state of the robot at
time t be st = [ x y θ ]. We are interested in estimating
the state based on general events d0...t, defined as

d0...t = o0a0o1a1 . . . ot−1at−1ot,

where o are sensor observations, and a are robot actions.
The events of interest occur in alternating order follow-
ing the paradigm of a sense-plan-act architecture that is
common in robotics. Note that the sequence ends in an
observation reading due to the fact that localization occurs
as part of the planning process when ot is available, but at

has yet to occur.
With these definitions, the probability density distribution

of the state of the robot is given by

Bel(st) = p(st|o0a0o1a1 . . . ot). (1)
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This conditional distribution is a general definition that is
fundamental to all Bayesian filters, and the notation Bel(st)
emphasizes that the conditional distribution is the robot’s
belief of its location. Using the theorem of total probability,

p(x) =
∫

p(x|y)p(y)dy,

Bayes’ theorem,

p(x|y) =
p(y|x)p(x)

p(y)
,

and the Markov assumption,

p(ot|d0...tst) = p(ot|st),

a recursive estimation equation can be derived from (1) to
be

Bel(st) = ηp(ot|st)
∫

p(st|at−1st−1)Bel(st−1)dst−1,

(2)
where η is a normalizing constant.

In MCL, p(ot|st) is called the sensor model, while
p(st|at−1st−1) is called the action model. Sensors and
actions with such models defined can be used as part of
the MCL process. These continuous probability density
functions are approximated using discrete samples called
particles, and the algorithm to update the state estimate is
called a particle filter.

Particle filters stem from developments in Monte Carlo
sampling, importance sampling, sequential importance sam-
pling, and sampling importance resampling. A standard
particle filter is the weighted bootstrap filter [8], and the
algorithm with reference to its application towards robot
localization is given in Table I. Using terms defined in
sampling importance resampling, the proposal distribution
used in the algorithm is given by

p(st|st−1at−1)Bel(st−1),

and the weight w of each particle i is given by

w
(i)
t = p(ot|s(i)

t ).

With these settings, the particle filter approximates (2).

A. Clustered Particle Filtering MCL

It is observed in [5] that the standard particle filtering
technique sometimes incorrectly converges to a unimodal
distribution. For robot localization, this occurs in the case
where there are similar locations in the robot’s environment.
Similar locations are indistinguishable from each other
given the sensor observations. Generally, however, such
locations are distinguishable given some amount of robot
motion. Milstein et al observed that standard particle filters
are unable to maintain multimodal belief distributions that
contain indistinguishable locations. Such particle filters set-
tle prematurely to an arbitrary unimodal belief distribution
before distinctive sensor observations arrive to correctly
update the location estimate.

TABLE I

WEIGHTED BOOTSTRAP FILTER ALGORITHM

N= number of samples used to approximate probability density
distribution
S= set of particles representing a continuous probability density
distribution of robot state
wi= set of weights for each particle i, where i = 1 . . . N
for i = 0 to N do

sample random s from S according to w1, . . . , wN

sample random s
′ ∼ p(s

′ |at−1, s)

w
′
= p(o1...m

t |s′
) for different observations 1 . . . m

add
(
s
′
, w

′)
to S

′

endfor
Set S=S

′

Milstein et al proceed to develop the clustered particle
filter for use in the MCL process. Developments in [5]
show that the idea of clustering spatially similar particles
together is mathematically sound, and solves the problem
of a premature collapse to a unimodal belief. The clustered
particle filter makes a number of assumptions:

• there are K clusters
• every particle is assigned to a single cluster. Let c(s(i)

t )
be a function that returns the cluster number that a
particle s

(i)
t belongs to

• f(st) gives the same value for each particle that is in
the same cluster

• the cumulative weight over all particles in a cluster is
equal to the cumulative weight in all other clusters:∑

s
(i)
t

∈St

c(s
(i)
t

)=k

f(s(i)
t )p(s(i)

t |d0...t) =
∑

s
(i)
t

∈St

c(s
(i)
t

)=k
′

f(s(i)
t )p(s(i)

t |d0...t)

• a particle, once assigned to a cluster, cannot change to
another cluster.

With these assumptions, an algorithm for a clustered
particle filter is given in Table II. The algorithm performs
well in environments with similar locations, and some
results are independently reproduced in [9].

B. Uniform MCL

Typical mobile robots have many components that vie for
computational power. As a result, computational resources
are scarce and algorithms that require real-time response
need to be aware of these limitations. In [4], Ueda et
al make modifications to the standard MCL solution to
reduce computational requirements, while maintaining per-
formance. Their motivation was a localization algorithm that
runs successfully on the Aibo robot dog for Robocup.

Ueda et al made the following key changes to the
standard MCL solution:

• action model follows a uniform distribution
• sensor model follows a uniform distribution
• particles are evolved rather than re-sampled
• new particles are sampled from old ones as necessary
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TABLE II

CLUSTERED PARTICLE FILTER ALGORITHM

Initialization

1) seed particle filter with initial seed distribution
2) iterate several steps through the particle filter
3) cluster particles based on spatial similarity
4) create a weighted bootstrap particle filter for each cluster

Normal operation
In normal operation of the CPFMCL after clustering,

• update each cluster’s particle filter separately
• combine clusters that are too similar to each other since different

clusters may have evolved to be equivalent

Additional
A separate weighted bootstrap filter is run occasionally in the back-
ground to find likely clusters of particles that may not have been
chosen by the initial seeding process due to the use of insufficient
particles, or inappropriate seeding process. It also allows for the
solution of the kidnapped robot problem.

It is argued that the motion model for Aibo is well
represented by a uniform distribution. Since the robot is
a legged robot, the same command for the robot to move
forward does not always result in a consistent amount
of distance traveled. Furthermore, the robot is prone to
collisions with obstacles in the environment, or even with
other robots. The distance that the Aibo travels with one
step forward is therefore well modeled by the uniform
distribution

f(x) =
1
d
,

where d is the maximum distance traveled when there are
no obstructions.

Suppose laser range sensors provide sensor readings to
a robot, and the plausibility of the range readings for a
specific particle follows that of a Gaussian distribution.
In Fig 1(a), the measured range r̂ is similar enough to
the expected reading r̃ in accordance to the Gaussian
distribution, and the specified particle has relatively high
weight. In Fig 1(b), however, r̂ is not close to r̃, and
the corresponding particle is assigned negligent weight. A
particle with high weight is expected to be re-selected as
part of the sampling process, while a particle with low
weight is not expected to be resampled, and is discarded.

Intuitively, however, the sensor model merely conditions
the weight of the particles so that likely particles are kept as
part of the resampling process, while unlikely particles are
discarded. As is demonstrated, likely particles are particles
for which readings are within a distance ε of the expected
distance r̃. Therefore, it is argued that weights for particles
may be set based on a discrete uniform distribution. The
sensor model is therefore

f(x) =
{

1
2ε |r̃ − r̂| < ε
0 otherwise

.

(a) Possible candidate state given high weight

(b) Possible candidate state given low weight

Fig. 1. Laser Range Measurement Scenario for Localisation

Given a simplified sensor model, the normal resampling
process of MCL is no longer useful. After an update
procedure, particles in the filter will either have zero weight,
or a non-zero weight. The particles with zero weight are
unlikely particles that are removed from the filter, while the
particles with non-zero weight will have a numerically equal
weight, and are all kept. In U-MCL, resampling only occurs
in the event where there are less particles than desired. To
generate new particles, Ueda et al inject a mid-point particle
from two random particles selected from the filter.

An example of the update procedure is given in the
following steps:

1) The U-MCL filter is set to have N particles that
approximate the robot’s starting position

2) The filter updates the particles based on the robot’s
actions

3) The filter removes particles with zero weight, leaving
n particles in the filter

4) If n < N , N − n particles are injected into the filter
using the aforementioned re-sampling procedure

These various changes minimize the amount of compu-
tation needed by:

• simplifying the probability distributions used
• having a simple re-sampling process on a “as-needed”

basis.

Results given in [4] show that U-MCL performs as well as
another variant, the sensor resetting localization (SRL) [3]
method.
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Fig. 2. U-MCL Failing in a General Environment

III. UNIFORM CLUSTERED PARTICLE FILTER MCL

The robustness of CPF-MCL is great for localization
in a general structured indoor office environment. Such
environments typically have many similar locations, such as
indistinct rooms, and being able maintain multimodal belief
of the robot’s location is useful for faster convergence to the
correct robot state.

The computational simplicity of U-MCL is attractive for
mobile robots. U-MCL as formulated, however, does not
work in a general environment. U-MCL is formulated for
the environment used for the Robocup Sony Legged Robot
league. In that environment, the robot can distinguish its
location to arrive at a unimodal belief distribution; that is
to say, all locations within the environment are distinct. In
a general environment, however, it is possible that there are
many locations in the environment that are indistinguishable
from each other leading to a multimodal belief distrib-
ution. This belief remains multimodal until new sensor
observations and motion refine the belief to be the correct
unimodal belief. The U-MCL resampling process does not
account for multimodal belief distributions. Fig 2 exhibits
the failure of the resampling process in an environment
with indistinguishable locations. The robot starts off in a
corridor, and the algorithm correctly identifies locations that
the robot may exist. The particles that are proposed by
the U-MCL resampling process, however, are enclosed by
the rectangular marking. These particles accentuate that the
resampling process in a multimodal belief distribution does
not propose good particles. This problem is identified in [4],
and indicates that a different resampling process is needed
for a general environment.

It is expected that a resampling process that works
in a general environment will increase the computational
complexity. The idea of the proposed solution is use the
clustering concept of CPF-MCL to reduce the multimodal
belief distribution to multiple unimodal distributions that
is solvable using the standard U-MCL solution, exhibiting
the characteristics of a divide-and-conquer algorithm. The
proposed solution is therefore named the Uniform Clus-
tered Particle Filtering MCL (UCPF-MCL). This proposed
algorithm combines the advantages of robustness in general

TABLE III

UNIFORM CLUSTERED PARTICLE FILTER ALGORITHM

Initialisation

1) seed U-MCL filter with initial seed distribution
2) iterate several steps through the particle filter
3) cluster particles based on spatial similarity
4) create a U-MCL particle filter for each cluster

Normal operation
In normal operation of the CPFMCL after clustering,

• update each cluster’s particle filter separately
• combine clusters that are too similar to each other since different

clusters may have evolved to be equivalent

Additional
Relocalize the filter if all clusters are considered improbable, and
eliminated. First attempt to locally resample from the most likely
cluster to attempt and recover from losing track of the robot location.
If the local resampling fails, then the filter is re-initialised with the
uniform distribution.

environments and computational simplicity. The algorithm
is outlined in Table III.

IV. EVALUATION

All the localization methods described in this paper are
implemented and evaluated in a software simulator. This
section describes the robot modeled for the experiments,
and the virtual test environments.

A. Robot

The robot modeled for the experiments is based on a
robot built for a robotics competition, shown in Fig 3 and
Fig 4. It is equipped with laser range sensors mounted at
strategic locations on the robot, and provides the robot with
sparse sensor observations.

Fig. 3. Blueprint of Robot Fig. 4. Picture of Realistic
Robot

B. Test Environments

There are two test environments that are used for the
experiments in this section. The first environment is a small
scale symmetric environment. The environment, and the
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corresponding path that the robot takes through the envi-
ronment are shown in Fig 5. The symmetric environment
is composed of four corridors labeled as left, right, top,
and bottom corridors. It should be noted that the top and
bottom corridors are longer than the left and right corri-
dors. The second environment is a larger scale office-like
environment. Shown in Fig 6 is the environment with the
corresponding path the robot takes through the environment.
The environment has many similar areas, such as the square
rooms on the left hand edge of the environment.

Fig. 5. Symmetric Environment Fig. 6. Office-like Environment

V. RESULTS

Two types of experiments were conducted. The first
compares the performance of the localization methods in
the symmetric test environment, while the second compares
the methods’ performance in a more realistic environment.

A. Symmetric Test

A series of test runs were conducted for the robot in
the symmetric test environment varying the level of sensor
and motion noise. If the robot is at any of the marked
locations in Fig 7, then the ideal result of a localization
method is to believe that the robot could be at any of the
marked locations. If the symmetric test environment was
both horizontally and vertically symmetric, then the ideal
result is to maintain all marked locations indefinitely. The
top and bottom corridors of the environment, however, are
longer than the other two corridors. Therefore, given the
proper robot motion, the ideal result of the localization
methods is to maintain only two possible locations of the
robot as shown in Fig 8. A number of effects are observed
for each method, and are discussed below.

1) MCL: The problem that motivated the development of
CPF-MCL arose as expected. Although the MCL method is
able to initially represent a multimodal belief distribution, it
is unable to maintain it. The MCL method tends to settle to
a unimodal belief distribution rather quickly, even though
there are no distinctive environment features that warrant
such a refinement. The resulting unimodal belief does not
necessarily represent the robot’s true location. This is true
regardless of the number of samples used.

TABLE IV

TEST CASE SETTINGS FOR REPEATED RUNS

Test Set Sample Size Sensor Noise Motion Noise
R1-1

10,000
10% 10%

R1-2 50% 50%
R2-1

100,000
10% 10%

R2-2 50% 50%
R3-1

500,000
10% 10%

R3-2 50% 50%

2) CPF-MCL: The CPF-MCL method deals well with
the symmetric environment, and is able to find and maintain
clusters of particles that represent the robot’s true location.
At the end of the robot’s test runs with varying amounts
of noise, the robot tends to maintain all four modes of the
belief distribution. The ideal result, however, is to maintain
only two modes.

3) UCPF-MCL: The UCPF-MCL presents the best re-
sults of the methods compared in this environment when
tested under the same conditions. UCPF-MCL typically
ended up with the two ideal modes, and in some cases ended
up with only one of the ideal modes.

Fig. 7. Similar Locations Fig. 8. Distinguished Similar
Locations

B. Office-Like Test

The test cases shown in Table IV are conducted for the
simulated robot in the office-like test environment. Each
test case varies the level of sensor and motion noise, and is
executed 50 times each to collect statistics.

As discussed earlier, similarities in the environment re-
duce the performance of some localization methods. In the
office-like map, such similarities exist in the beginning of
the robot’s path since it starts in a square room, and is
advantageous to methods that account for similarities.

Looking at the success rates yielded by the methods
(Fig 9, Fig 10) insinuates that both the CPF-MCL and the
UCPF-MCL perform better than MCL. With 10% motion
noise, the UCPF-MCL outperforms the other methods. With
50% motion noise, the performance of UCPF-MCL is sim-
ilar to that of CPF-MCL, although the CPF-MCL performs
marginally better. Therefore, UCPF-MCL’s performance
would appear to suffer as the amount of noise is increased.
Closer examination indicates that this effect is due to a
mismatch in the action model used for UCPF-MCL, and
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Fig. 9. Sample Size vs Success
of Repeated Runs 10% noise

Fig. 10. Sample Size vs Success
of Repeated Runs 50% noise

Fig. 11. Sample Size vs Relocal-
isation

Fig. 12. Avg Longest Run vs
Sample Size

the simulated robot movement model. The odometry sensor
model employed by UCPF-MCL uses a uniform distribution
that assumes that the robot does not travel further than its
odometry sensor reading. This is not a bad assumption,
since a real odometry measurement usually over estimates
the actual motion of the robot due to wheel slip and
collisions. The simulator, however, is implemented such that
a zero mean Gaussian noise process of variable variance
is added to the ideal projected movement distance. This
implies that simulated actual movement may be greater than
the odometry distance, and in such a case, the action model
employed by UCPF-MCL does not suggest any samples in
the correct area, and needs to relocalize. Eliminating this
mismatch will yield better success rates.

Another statistic of interest is the average number of
relocalizations required for MCL and UCPF-MCL. As seen
in Fig 11, MCL required less relocalizations as the noise
level increased. This effect is documented in [10]. It is
advantageous to use the most accurate sensors possible,
but the sensor and action models cannot be chosen to be
too accurate. Accurate models are unable to robustly inject
samples into the filter that counteract effects of non-ideal
Monte Carlo sampling and inaccurate localization. UCPF-
MCL required more relocalizations as the noise increased,
and is again attributed towards the action model mismatched
mentioned earlier. The effect of the mismatch is visible with
higher amounts of noise, and improving the mismatched
model will improve these results. One interesting result is
that although the number of relocalizations increases with

noise, UCPF-MCL still maintains success rates comparable
to the other methods. This indicates that UCPF-MCL is both
quick and successful in relocalization.

Lastly, the number of continuous successful localization
attempts for the methods are shown in Fig 12. This statistic
indicates the ability of the different methods to track the
robot under noisy motion. As can be seen, UCPF-MCL
consistently produces longer successive correct localization
attempts as compared to MCL at the same noise level.

VI. CONCLUSIONS AND FUTURE WORK

Various experiments were performed to compare different
particle filtering solutions to the robot localization problem.
Results show that MCL does not deal well with similar
locations in a general environment, while both the CPF-
MCL and the UCPF-MCL perform well in such environ-
ments. The UCPF-MCL method appears to perform best
because it can eliminate certain similar locations that are
distinguishable given further robot observations and actions.

Further experimentation indicates that all methods tested
are reasonably successful, although UCPF-MCL tends to
perform better under certain conditions with respect to
success rate, and length of successive correct localizations.

Given the preliminary simulated results, the newly pro-
posed UCPF-MCL method appears to be a satisfactory so-
lution, with decreased computational requirements. Further
work is needed to test the method in a real robot, as well
as augmenting the solution with a mapping component to
solve the simultaneous localization and mapping (SLAM)
problem.
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