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Abstract— A nonlinear continuous-time feedback controller
design methodology is developed for distributed processes,
whose dynamic behavior can be described by microscopic evo-
lution rules. Employing the micro-Galerkin method to bridge
the gap between the microscopic-level evolution rules and the
“coarse” process behavior, “coarse” process steady states are
estimated and nonlinear process models are identified off-line
through the solution of a series of nonlinear programs. Sub-
sequently, nonlinear output feedback controllers are designed,
on the basis of the identified process model, that enforce
stability in the closed-loop system. The method is used to
control a system of coupled nonlinear one-dimensional PDEs
(the FitzHugh-Nagumo equations), widely used to describe
the formation of patterns in reacting and biological systems.
Employing kinetic theory based microscopic realizations of
the process, the method is used to design output feedback
controllers that stabilize the FHN at an unstable, nonuniform
in space, steady state.

I. INTRODUCTION
An important research area that has received a lot of

attention in recent years is controller design for distributed
processes, mathematically modelled by nonlinear dissipative
partial differential equation (PDE) systems. One of the
research directions involves the development of methods
[1], [2], [3], [4], [5], [6], [7], [8] for controller design
based on reduced-order models (e.g., obtained using linear
or nonlinear Galerkin’s methods) that capture the dominant
dynamics of the process and can be solved numerically in
real time. An explicit process model is the main prerequisite
for the derivation of the reduced-order models, which are
used for controller design and real-time implementation.

However, the behavior of an expanding range of dis-
tributed processes (for which explicit coarse level mathe-
matical models are unavailable, albeit in principle possible)
is being mathematically described using microscopic level
simulations (e.g., Lattice Boltzmann (LB), kinetic Monte
Carlo (KMC), molecular dynamics (MD)). The lack of
an explicit process model precludes the successful use of
standard controller design methodologies for distributed
parameter systems to such processes.

Motivated by this, linear discrete-time controller design
methodologies were recently developed for lumped [9]
and distributed [10] processes described by microscopic
evolution rules, utilizing the so-called “coarse time-stepper”
approach, developed by Kevrekidis and coworkers [11],
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[12], [13], that circumvents the derivation of the closed
form macroscopic PDEs for the process and identifies
the essential coarse-scale system behavior. Other model
reduction approaches of systems described by microscopic
evolution rules include model reduction approaches of the
Master Equation [14], the use of wavelets for KMC model
reduction [15] and the development of hybrid models for
epitaxial growth [16] and crack propagation in materi-
als [17]. In [18], [19], observers based on Monte-Carlo
simulations and process measurements were successfully
designed to capture the dynamic behavior of microscopic
process variables leading to output feedback controller
designs. In [20], microscale simulations were employed
for the off-line identification of macroscopic process be-
havior for distributed parameter systems and the derivation
of continuous-time observers. Output-feedback controllers
were subsequently designed when the manipulated variables
entered the system linearly.

This work addresses the issue of nonlinear continuous-
time controller design to regulate the coarse properties of
processes whose dynamic behavior can be described by
microscopic evolution rules. Under the assumption that
an underlying closed-form process model is, in principle,
possible, however unavailable, micro-Galerkin method [12]
is employed to bridge the gap between the microscopic-
level evolution rules and the “coarse” process behavior and
is linked with equation-free methods (such as Recursive
Projection Method (RPM) [21]) to obtain estimates of the
process stationary states, the slow evolving eigendirections
in the neighborhood of the stationary states and a discrete-
time reduced-order linear model. Nonlinear continuous-
time models are subsequently identified off-line through
the solution of a series of nonlinear programs employing
Carleman linearization [22], [23], and nonlinear output-
feedback controllers are subsequently designed using feed-
back linearization that enforce stability of the target, RPM
identified, stationary states in the closed-loop system. The
proposed approach is validated on a system of coupled
nonlinear one-dimensional PDEs (the FitzHugh-Nagumo
equations), widely used to describe the formation of patterns
in reacting and biological systems.

II. PROCESS DESCRIPTION AND PRELIMINARIES

The proposed controller design method deals with spa-
tially distributed process systems and hinges on the avail-
ability of microscopic/mesoscopic scale simulations that
provide information of the process spatiotemporal evolution.
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Consider, for example, a simplified horizontal flow reactor,
where gaseous species A and B flow into the reactor on the
left side and a reversible reaction A+B ⇀↽ AB takes place,
while on the right side, product AB and unreacted species A,
B flow out of the reactor. Macroscopic properties of interest
include the concentration of the reacting species. Reducing
the spatial length-scales to a finer level, we observe that
the process involves the motion and collisions of molecules
of species A, B and AB. There is a direct link between
the number of molecules of each species, their motion
characteristics and the collisions between molecules at the
“finer” spatial scales and the macroscopic properties of the
system at the “coarse” spatial scales of interest. Employing
microscopic evolution rules, the behavior of these molecules
can be estimated resulting to microscopic/mesoscopic level
simulators being produced, such as KMC, MD and LB-
based simulators.

Based on microscopic/mesoscopic simulation results, the
macroscopic process state variables (e.g., concentrations
of species A, B and AB) can be calculated, which will
be subsequently used as initial conditions to re-initialized
mesoscopic simulations. The calculation of these macro-
scopic state variables as a function of time can be achieved
using “coarse timesteppers” [12], which we employ in the
current work and briefly describe for completeness.

The coarse timestepper assumes that an initial condition
of the macroscopic state variables is available, as well
as microscopic level simulations. The first step in the
simulation is called the “lifting” operation, which involves
the computation of a number, n, of initial conditions at the
microscopic level, conditioned such that their restriction to
the macroscopic state variables generate spatial profiles that
are equal to the provided macroscopic initial conditions.
The second step, termed “evolution” operation, involves the
initialization and subsequent evolution of n, microscopic
simulations. The third and final step, called “restriction”
operation, involves the restriction of the n microscopic
simulation results to provide us with the macroscopic state
variables, using statistical techniques.

One set of the “lift”-“evolve”-“restrict” operations of the
coarse timestepper is the equivalent of one time step using
regular time-integrators of systems of nonlinear ordinary
differential equation (ODEs). Note that due to the nature
of the operations, we can only obtain macroscopic state
variable spatial profiles at discrete time instants during the
process evolution. The reader may refer to [10], [12] for
details on the operation of coarse timesteppers. The coarse
timesteppers can be subsequently employed to numerically
identify the stationary states of the process. Furthermore,
when combined with matrix-free algebra methods, the
eigendirections, ψj(z) (where z is the spatial coordinate),
as well as the associated eigenvalues, µj , of the slow-
evolving modes of the system can be computed and a
linearization of the underlying macroscopic process model
in the neighborhood of the identified stationary states can
be identified.

Transport-reaction processes are usually characterized by
long-term dynamics that can be accurately captured by a
few slow-evolving degrees of freedom [24], [2]. Under the
assumption that a finite number of slow-evolving modes
accurately describes the process dynamics and the rest,
infinite, fast-evolving modes are strongly stable and quickly
die out, the distributed macroscopic process state variable
x̄(z, t) can be approximated by:

x̄(z, t) �
n∑

i=1

xi(t)ψi(z) (1)

where xi(t) ∈ IR, i = 1, . . . , n is the i-th modal
amplitude, ψi(z), i = 1, . . . , n are the slow system
eigendirections identified by matrix-free algebra methods
combined with coarse timesteppers. Without loss of gener-
ality, we assume that n degrees of freedom are sufficient to
accurately describe the long-term dynamics of the process.
The central objective of this work is to identify nonlinear
dynamic models which accurately describe the evolution of
xi(t) based on information from microscopic simulations.
Specifically, we seek to construct nonlinear models of the
following form:

ẋ = f(x) + g(x)u = f(x) +
m∑

j=1

gj(x)uj(t),

x(0) = x0

ym = Sx

yci = hi(x), i = 1, . . . , m

(2)

where x ∈ IRn is the state, u ∈ IRm is the vector of
manipulated variables and uj(t), is the j-th element of u,
ym ∈ IRq is the measured outputs vector, and yci ∈ IR is the
i-th controlled output. f(x) is a nonlinear vector function
of the state, and gj(x) is a nonlinear vector function which
accounts for the influence of the j-th control actuator on
the process. S is the measurement sensor shape function,
and hi, i = 1, . . . , m is a nonlinear function of the state
representing the i-th control objective. Moreover, without
loss of generality, we assume that the target steady state of
the system is the origin.

In the remainder of this manuscript we need to use
the following notation. The Kronecker product between
matrices A ∈ CI N×M and B ∈ CI L×K can be defined
as a matrix C ∈ CI (NL)×(MK)

C = A ⊗ B ≡

⎡
⎢⎢⎣

a1,1B a1,2B · · · a1,MB
a2,1B a2,2B · · · a2,MB
· · · · · · · · · · · ·

aN,1B aN,2B · · · aN,MB

⎤
⎥⎥⎦ (3)

We also define the k-th order Kronecker product as A[k] =
A[k−1] ⊗A, A[1] = A and A[0] = 1. In ∈ IRn×n is defined
as the unitary matrix of dimension n. We also define the
Lie derivative of the scalar function hi(x) with respect to

the vector function f(x) as Lfhi(x) =
∂hi

∂x
f(x), Lk

fhi(x)
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denotes the k-th order Lie derivative and LgL
k
fhi(x) de-

notes the mixed Lie derivative. Finally, referring to the ODE
system of Eq.2, we define the relative degree of the i-th
output yci with respect to the vector of manipulated inputs
u as the smallest integer ri for which:[

Lg1L
ri−1
f hi(x) · · · Lgm

Lri−1
f hi(x)

]
�≡ [0 · · · 0] (4)

or ri = ∞ if such an integer does not exist. Furthermore,
the matrix:

C0(x) =

⎡
⎢⎢⎢⎣

Lg1L
r1−1
f h1(x) · · ·LgmLr1−1

f h1(x)
Lg1L

r2−1
f h2(x) · · ·LgmLr2−1

f h2(x)
...

...
...

Lg1L
rl−1
f hm(x)· · ·LgmLrl−1

f hm(x)

⎤
⎥⎥⎥⎦ (5)

is the characteristic matrix of the system of Eq.2.

III. OFF-LINE SYSTEM IDENTIFICATION
During the identification stage, the coarse time-steppers

through the “lift-evolve-restrict” procedure provide us with
a bridge between macroscopic scale system properties and
microscopic evolution simulations; initially, the process
stationary states are identified (using numerical algebra
methods such as recursive projection method [21]) and after
variance reduction, a coarse slow discrete-time linearization
(i.e. the coarse slow eigenvalues and the corresponding
eigenvectors) is derived. Subsequently, the nonlinear dy-
namic behavior of the process is identified through the
solution of a series of dynamic optimization problems. To
formulate the dynamic optimization problem as a nonlinear
program, we approximate the unidentified system dynamics
using polynomial expressions and represent the approximate
polynomial system as a linear one through Carleman lin-
earization (linear ODE systems can be solved analytically).
We thus formulate a series of nonlinear unconstrained opti-
mization programs, first identifying the open-loop dynamics
of the process and subsequently identifying the effect of
each control actuator on the system independently.

Specifically, the proposed off-line identification of the
system, which is achieved in a sequential manner, involves
the following steps:

• Use of equation-free Krylov subspace methods, such as
Arnoldi process [25], to identify the slow eigenvalues
and eigendirections of the process behavior, compute
the fast-slow subsystem time-scale separation, and ob-
tain a linearization of the dominant open-loop behavior.

• Identification of the affect of the control actuators on
the slow eigenmodes of the system under consideration
and computation of a linearization of the actuator
effect.

• Generation of M + 1 ensembles of snapshots during
process evolution, employing coarse timesteppers.
− Use of Mol microscopic simulations to generate

an ensemble Y ol of snapshots of the process
evolution for a variety of reporting horizons, time-
length of simulation and initial conditions for
uj ≡ 0, ∀j = 1, . . . , m.

− Use of Mclj microscopic simulations to generate
m ensembles of Y cl

j of snapshots of the system
state during the process evolution for a variety of
reporting horizons, time-length of simulation and
random manipulated variable piece-wise constant
profile of the jth manipulated variable only.

• Solution of M + 1 unconstrained nonlinear programs
(NLPs) to identify a nonlinear approximation of the
slow evolving subsystem.

In the following subsections we present each step in detail.

A. Problem formulation

Referring to the system of Eq.2, we apply McLaurin
series expansion to the nonlinear vector fields f(x), gj(x)
in Eq.2 to obtain the equivalent system of the form:

ẋ = f(x) + g(x)u ≡
∞∑

k=1

Akx[k] +
m∑

j=1

∞∑
k=1

Bjkx[k]uj (6)

where Ak ∈ CI n×(nk) and Bjk ∈ CI n×(nk) are matrices
that denote the k-th partial derivatives of f(x) and g(x)
with respect to x, respectively, evaluated at x = 0. With
x[k] we denote the k-th Kronecker product.

We focus on a finite order polynomial approximation of
the nonlinear system of order p for f(x) and p−1 for gj(x),
respectively, of the form:

ẋ �
p∑

k=1

Akx[k] +
m∑

j=1

p−1∑
k=0

Bjkx[k]uj (7)

To linearize the system of Eq.7, we compute the dynamic
behavior of the terms x[k]:

d(x[k])
dt

=
p−k+1∑

i=1

Ak,ix
[i+k−1] +

m∑
j=1

p−k∑
i=0

Bjk,ix
[i+k−1]uj

where Ak,i =
k−1∑
l=0

I [l]
n ⊗Ai ⊗ I [k−1+l]

n and Bjk,i is defined

similarly. Defining x⊗ = [xT x[2]T · · ·x[p]T ]T , the system
of Eq.7 can be equivalently written in the following bilinear
form:

ẋ⊗ = Ax⊗ +
m∑

j=1

[Bjx⊗uj + Bj0uj

]
(8)

where A, Bj and Bj0 are matrices of appropriate form (the
reader may refer to [20] for the form of the matrices). The
presented operation, also known as Carleman linearization
[22] (previously used for the temporal discretization of ODE
systems [23]), presents us with the basis for the identifica-
tion of the system behavior. The number of unique elements
of matrix A in Eq.8 that need be identified for an order p-th
approximation of f(x)is n2(np − 1)/(n − 1), representing
the higher order derivatives of f(x). Under appropriate
assumptions of smoothness for the unidentified functions
f(x) and g(x), the number of parameters to be identified
can be drastically reduced (e.g., the number of unidentified
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elements of matrix A becomes (p+1)(n+p)!/(p+1)!−n!).
We proceed to compute off-line the unknown parameters of
the model.

B. Identification of system linearization

Initially Recursive Projection Method [21] is applied
to the process simulator to identify the, possibly unsta-
ble, target stationary state of the process and the slow
eigendirections in the neighborhood of the stationary state.
Due to the nature of RPM and the simulator, discrete-time
linearizations of the open-loop process model also become
available.

In [10] we presented the derivation of closed-loop linear
discrete-time models, which we briefly describe for com-
pleteness. The RPM identified model is of the form:

xsn+1 = Fxsn + Dun (9)

where xs ∈ CI n is a representation of the slow evolving
eigendirections of the process of Eq.2, F ∈ CI n×n

describes their discrete-time linearized dynamics around the
stationary-state, u ∈ IRm is the vector of the manipulated
inputs and D ∈ CI n×m approximates the linearized effect
of the m control actuators on the slow mode dynamics. The
continuous-time behavior of the linearized slow subsystem
can be inferred from Eq.9 using the following expressions:

A1 = (1/T )VF ln(V −1
F FVF )V −1

F ,

B0 = (F − I)−1A1D,
(10)

where B0 = [B10 B20 · · · Bm0] and T is the reporting
horizon of the microscopic simulations.

The reporting horizon of the microscopic scale simula-
tions, T , is an important parameter in the above approach
for the identification of the important, slow evolving, spatial
patterns, a result of the slaving of the fast dynamics to
the dominant ones. Viable reporting horizons are ones
that fall in the separation gap between the fast and slow
subsystems. We can recursively estimate viable reporting
horizons by employing Arnoldi method [26] to estimate the
largest eigenvalue of the unidentified fast subsystem, in the
neighborhood of the identified by RPM stationary state. If
the chosen reporting horizon lies outside this gap, RPM
and Arnoldi methods are reinitialized for the new choice of
reporting horizon. The reader may refer to [10], [12], [21]
for a detailed analysis on the effect of RPM parameters on
the identification of the slow subsystem.

C. Identification of open-loop nonlinear behavior

Following the identification of the system linearization,
we proceed to the off-line identification of A and Bj in a
sequential manner. First, Mol microscopic simulations are
employed to generate an ensemble Y ol of snapshots of the
process evolution for a variety reporting horizons, time-
length of simulation and initial conditions for uj ≡ 0, ∀j =
1, . . . , m. Care must be taken so that the reporting horizon
of the simulations is large enough, such that it can be
ensured that the fast dynamics of the process have become

negligible. The snapshots of each different simulation run
are used to compute the slow-system modes x and their
representation for the Carleman linear form of Eq.8 x⊗,
denoted as yil ∈ Y ol, i = 0, . . . , nf l, l = 1, . . .Mol,
with Tl the associated reporting horizon, and nf lTl the
final simulation time. Eq.8 for uj ≡ 0, ∀j = 1, . . . , m
can be solved analytically and the solution is x⊗(t) =
exp(At)x⊗(0).

We obtain an estimate of the unknown parameters of A
through the solution of an optimization problem, formulated
as an unconstrained nonlinear optimization program, which
can be subsequently solved using iterative search methods
such as SQP and global optimization methods [27], of the
form:

min
A

[
Mol∑
l=1

nf l∑
i=1

(yil − xi,l)∗(yil − xi,l)

]
, yil ∈ Y ol

s.t.
xi,l = exp(A(iTl))y0l,

∀i = 1, . . . , nf l, ∀l = 1, . . . , Mol

(P-I)

where the elements of A representing the higher order
derivatives of f(x) in Eq.2 are the free variables. Specifi-
cally, the optimization problem is of order n2(np−n)/(n−
1), and, under smoothness assumption for f(x), becomes
(p + 1)(n + p)!/(p + 1)! − (n + 1)!.

D. Identification of actuator effect

Once A of Eq.8 has been identified we can proceed with
the identification of the system response to manipulated in-
put excitation. Furthermore, the effect of each manipulated
input can be estimated independently.

Microscopic simulations are employed to generate m
ensembles Y cl

j of snapshots of the system during the process
evolution for a variety of reporting horizons, time-length
of simulation and random manipulated variable profiles
uj(t) = uji(H(iTl − t)−H(t− (i− 1)Tl), ∀j = 1, . . . , m
(H(·) denotes the Heaviside function) and initial condition
at the stationary state (x⊗(0) = 0). Care must be taken
so that the rate of change of the manipulated inputs is
constrained so that they do not excite the fast dynamics of
the system. The snapshots of each different simulation run
are denoted as yil ∈ Y cl

j , i = 0, . . . , nf l, l = 1, . . .Mol,
with Tl the associated reporting horizon, and nf lTl the final
simulation time.

The response of the system of Eq.8 to variations of the
manipulated input uj(t) = uji(H(iTl−t)−H(t−(i−1)Tl),
with uk ≡ 0,∀k �= j and initial condition at the stationary
state, x⊗(0) = 0, can be derived recursively at each time
interval t ∈ ((i − 1)Tl, iTl], since

ẋ⊗ = [A + Bjuji]x⊗ + Bj0uji.

The above equation can be solved analytically and for t =
iTl, xil ≡ x⊗(iTl) it is:

x⊗(iTl) =exp([A + Bjuji]Tl)xi−1l + [A + Bjuji]
−1

×[exp([A + Bjuji]Tl) − I]Bj0uji.
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Note that x0l = x⊗(0) = 0. We obtain an estimate of the
unknown parameters of matrices Bj through the solution
of m unconstrained NLPs. Specifically for the j-th control
actuator, the j-th optimization problem has the form:

min
Bj

⎡
⎣Mclj∑

l=1

nf l∑
i=1

(yil − xil)
∗(yil − xil)

⎤
⎦ , yil ∈ Y cl

j

s.t.
xil =exp([A + Bjuji]Tl)xi−1l

+[A + Bjuji]
−1[exp([A + Bjuji]Tl) − I]Bj0uji,

x0l = 0,

∀i = 1, . . . , nf j , ∀l = 1, . . . , Mclj

(P-II)

IV. OUTPUT FEEDBACK CONTROLLER DESIGN -
FEEDBACK LINEARIZATION

In this section, we synthesize nonlinear finite-dimensional
output feedback controllers to enforce the controlled output
of the closed-loop system to follow a prespecified response,
provided that the time-scale separation between the slow
and the fast subsystems of the unidentified system un-
der investigation is sufficiently large. The output feedback
controllers are constructed through combination of state
feedback controllers with state observers. To this end, we
focus on the approximate system of Eq.7. To simplify our
development, we will represent this system in the following
compact form:

ẋ = f(x) +
m∑

j=1

gj(x)uj

ym = Sx

yci = hi(x), i = 1, . . . , m

(11)

where f(x) =
p∑

k=1

Akx[k], gj(x) =
p−1∑
k=0

Bjkx[k], and S and

h have been previously defined in Eq.2. We assume that the
relative degree, ri, in system of Eq.2 is well defined and
less than p, for all i = 1, . . . , m.

We use the system of Eq.11 to synthesize nonlinear state
feedback controllers of the following general form:

u = p(x) + Q(x)v (12)

where p(x) is a smooth vector function, Q(x) is a smooth
matrix, and v ∈ IRm is the constant reference input vector.
The synthesis of [p(x), Q(x)] such that the nonlinear
controller of the form of Eq.12 guarantees local exponential
stability and forces the output of the system of Eq.11 to
follow a desired linear response, is performed by utilizing
geometric control methods for nonlinear ODEs (the details
of the controller synthesis can be found in [28], and are
omitted for brevity; we will only provide with the resulting
form of the controller).

Based on relative degree of the system, we assign the
following closed-loop behavior to the controlled outputs

yci(t), ∀i = 1, . . . ,m:

m∑
i=1

ri∑
k=0

βik
dkyci

dtk
= v (13)

where v is the function describing the desired set-points of
the controlled outputs. Combining Eq.13 with Eq.11 and
assuming that the characteristic matrix of the approximate
system of Eq.11, C0(x) is invertible ∀ x ∈ IRn, we derive
state feedback controllers of the form:

u = {[β1r1 · · ·βmrm
]C0(x)}−1

{
v −

m∑
i=1

ri∑
k=0

βikLk
fhi(x)

}
(14)

Due to the lack of direct measurement of the modal
amplitudes x(t) in practice, we assume that there exists an
L so that the nonlinear dynamical system:

dη

dt
= f(η) +

m∑
j=1

gj(η)uj + L[ym − Sη] (15)

where η denotes an m-dimensional state vector, is a local
exponential observer for the system of Eq.11 (i.e. the
discrepancy |η(t) − x(t)| tends exponentially to zero).

Finally, it can be shown using Lyapunov-based stability
arguments that if the following conditions hold [2]:

1) The roots of the equation:

det(F (s)) = 0 (16)

where F (s) is an m × m matrix whose (i, j)-th

element is of the form
ri∑

k=0

βi
jksk, lie in the open left-

half of the complex plane, where βi
jk are adjustable

controller parameters.
2) The zero dynamics of the system of Eq.11 are locally

exponentially stable.
3) The observer of Eq.15 is locally exponentially stable.

then there exists a positive real number µ, such that if
|x(0)| ≤ µ, and η(0) = x(0), the dynamic output feedback
controller:

dη

dt
=f(η) +

m∑
j=1

gj(η)uj + L[ym − Sη]

u ={[β1r1 · · ·βmrm ]C0(η)}−1

{
v −

m∑
i=1

ri∑
k=0

βikLk
fhi(η)

}
(17)

guarantees local exponential stability and forces the output
of the system of Eq.11 to follow a desired linear response.
Stability of the closed-loop system (resulting from the
application of the controller of Eq.17 to the microscopic
simulator) is also achieved, under the condition that the fast
dynamics of the process die out sufficiently fast.
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V. APPLICATION TO THE FITZHUGH-NAGUMO

EQUATION
The proposed controller design approach is validated us-

ing a timestepper of the FitzHugh-Nagumo (FHN) equation,
a widely used model of wavy behavior in excitable media
in biology [29] and chemistry [11]. The FHN equation has
the following closed-form description:

∂v

∂t
=

∂2v

∂z2
+ v − w − v3 + b(z)u(t)

∂w

∂t
= δ

∂2w

∂z2
+ ε(v − p1w − p0)

ym(t) =
∫ L

0

s(z)v(t)dz

(18)

subject to the boundary conditions:

∂v

∂z
|0 =

∂v

∂z
|L = 0,

∂w

∂z
|0 =

∂w

∂z
|L = 0 (19)

and the initial conditions:

v(0, z) = v0(z), w(0, z) = x0(z) (20)

where v(t, z), w(t, z) ∈ IR are the system variables, u(t) ∈
IR3 is the vector of manipulated variables, ym(t) ∈ IR3 is
the vector of measurements, t is the time, z is the spatial
coordinate, b(z) is a row vector describing the distribution
function of the control actuators, ε, δ, p1, p0 are process
parameters and L is the length of the spatial domain. We
assume that three control actuators are available:

b(z) = [g(z, 0.25L) g(z, 0.50L) g(z, 0.75L)]

where g(z, ζ) = exp(−0.3(z − ζ)2); note that the actuator
distribution functions extend over the entire spatial domain
of the process. We also assume that three point measure-
ments of v(t, z) are available, of the form:

s(z) = [δ(z − 0.25L) δ(z − 0.50L) δ(z − 0.75L)]T

where δ(·) denotes the delta function. In the following
simulations, the initial conditions were chosen as v0 =
0.5cos(πz/L) and w0 = 0.5cos(πz/L).

The FHN exhibits multiple steady-state solutions (spa-
tially uniform as well as spatially nonuniform) and spatially
nonuniform periodic solutions, depending on the values of
the process parameters. For the specific parameter values
shown in Table I, the system has at least four spatially
nonuniform and three spatially uniform steady-states, pre-
sented in Figures 1a and 1b, for v and w respectively.

TABLE I

PROCESS PARAMETERS

L 20 δ 4.0 p1 2.0
T 0.5 ε 0.017 p0 -0.03

Using Galerkin’s method with the (analytically derived)
eigenfunctions of the spatial operator, we discretize the
system in the spatial domain. Linearizing the discretized
FHN in the neighborhood of the steady-states and comput-
ing the eigenvalues we conclude that the system is locally

unstable in the neighborhood of steady states one, two and
three, and locally stable in the neighborhood of steady
states four, five, six and seven. Furthermore, simulating
Eq.18 with u(t) ≡ 0 and initial conditions far from the
stable steady-states, we observe FHN converges to a locally
stable, spatially nonuniform periodic orbit shown in Figures
2a and 2b for v(t) and w(t) respectively. We now focus
our attention to steady-state one depicted as thick lines in
Figures 1a and 1b for v and w respectively (denoted as xss,1

for the rest of the section). We observe in Table II that there
is a finite number of eigenvalues close to the imaginary axis,
while an infinite number of them grow towards negative
infinity. Moreover we observe that a large spectral gap exists
between the second and third eigenvalues (ε = 0.0108).
This time-scale separation suggests that a few dominant
modes may be able to capture the long term dynamics of
the open-loop process.
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Fig. 1. Open-loop steady states of the FHN equation. (a) v, (b) w.

We now switch to the alternative, kinetic the-
ory based Lattice-Boltzmann-Bhatnagar-Gross-Krook (LB-
BGK) scheme [30], which has been constructed so that
its zeroth moment fields approximately satisfy the FHN
equation [11], [10]. Specifically, we implemented a one-
dimensional LB-BGK model [31], [11] to construct a coarse
time-stepper with a time-reporting horizon of T = 0.5.
It combined lifting, from zeroth moment fields to full LB
state fields (employing a local equilibrium assumption), LB-
BGK “mesoscopic” evolution, and restriction back to zeroth
moments corresponding to v and w. The combination of
coarse LB-BGK timestepper with RPM located the target
coarse stationary state and inferred the coarse stability prop-
erties of the process through estimates of the leading coarse
eigenvalues/vectors. Through algebraic manipulations, an
approximate linear continuous-time coarse slow subsystem
in its neighborhood was also computed.
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a)
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Fig. 2. Open-loop stable periodic orbit of FHN equation. (a) v, (b) w.

Specifically, using as an initial guess the stable coarse
stationary profile at ε = 0.1 and ε = 0.11, we converged
to the unstable nonuniform coarse stationary profile at the
target value of ε = 0.017, which lies beyond the Hopf bifur-
cation at ε = 0.019. We also approximated the coarse slow
eigenvalues, their respective eigenvectors and estimated
matrix F of Eq.9 for the coarse slow subsystem. Depending
on the detailed RPM implementation parameters, and -in
particular- on the convergence tolerance, the dimension of
the recursively identified coarse slow subspace required to
achieve convergence ranged from two to four. The reader
may refer to [10], [12], [21] for a detailed analysis on
the effect of RPM parameters on the identification of the
slow subsystem. In Table II, we present the open-loop
eigenvalues of the coarse system and compare with the ones
computed based on the FHN discretization. We observe that
the eigenvalues computed from RPM are in good agreement
with the FHN ones, being within the error tolerance value
used by RPM.

TABLE II

EIGENVALUES OF LINEARIZED FHN IN THE NEIGHBORHOOD OF xss,1

Open-loop Closed-loop
PDE linearization LB-RPM LB-Arnoldi

0.00048 + 0.04665i -0.00079+.02492I −0.01368
0.00048 − 0.04665i -0.00079-.02492I −0.06947

−0.14428 −0.07289 −0.1272
−0.21245 − −0.2044
−0.42501 − −0.4655

Following the coarse open-loop analysis, we computed
the coarse process response to actuators’ perturbations, and
subsequently obtained a linearized expression of their effect
on the slow discrete-time subsystem (matrix F of Eq.9). The
control objective was defined as the deviation of the slow

eigenmodes from their steady-state values:

yci =
∫ L

0

[
φi(z)
ψi(z)

]∗ ([
v(z, t)
w(z, t)

]
−

[
vss,1

wss,1

])
dz,

i = 1, . . . , 3

where φi(z) and ψi(z) are the i-th eigenfunction of u(z, t)
and w(z, t), respectively, identified by RPM.

Since two of the identified eigenvalues lie close to the
imaginary axis our control objective becomes to place
the closed-loop eigenvalues corresponding to the critically
stable slow eigenmodes away from the imaginary axis.
To retain the time-scale separation between the slow and
the fast subsystems (as identified by RPM), the resulting
closed-loop eigenvalues should be placed close to the
third identified slow eigenvalue. Such an objective will
also induce relatively small control actions prescribed by
the controller to avoid exciting the fast dynamics of the
process. We designed a feedback-linearizing continuous-
time controller based on a 3rd order process model with
a 3rd-order approximation of the nonlinear behavior, using
1505 snapshots of the process behavior to fit 108 variables.
The controller parameters were chosen such that the closed-
loop system’s eigenvalues remained close to the imaginary
axis, in order to preserve the time-scale separation between
the fast and slow-subsystems.

In Table II we present the eigenvalues of the closed-
loop FHN in the neighborhood of xss,1 and compare them
with the eigenvalues of the open-loop system. We observe
that the eigenvalues of the closed-loop system are negative
implying that the closed loop FHN is stabilized, and the
time-scale separation between the slow eigenmodes and the
fast ones (gap between the fourth and fifth eigenmodes)
persists: spillover did not change the dimension of the
closed-loop slow subsystem.

In Figure 3a we present the temporal profiles of the
control action. We observe that the control action tends
to zero as time progresses, and it achieves stabilizing the
FHN process at xss,1 without chattering. The effect of the
controller on the dynamics is shown in Figure 3b where
the time-profile of the L2 norm of the FHN converges to
the stationary value rapidly and smoothly. In Figure 3c we
present the effect of the control action on the deviations
of the measurements ym from their respective values at the
target stationary state. We observe that they converge to zero
rapidly and without chattering. Figures 4a and 4b present
the spatiotemporal profiles of the zeroth moments of the LB-
BGK that correspond to v(z, t) and w(z, t), respectively.
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Fig. 4. Closed-loop FHN evolution under 3rd order controller (v0 =
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