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Abstract— This work focuses on the development of
computationally-efficient predictive control algorithms for
nonlinear parabolic PDEs with state and control constraints
arising in the context of diffusion-reaction processes. Specifi-
cally, we consider a diffusion-reaction process described by
a nonlinear parabolic PDE and address the problem of
stabilization of an unstable steady-state subject to input and
state constraints. Galerkin’s method is used to derive finite-
dimensional systems that capture the dominant dynamics of
the parabolic PDE, which are subsequently used for controller
design. Various MPC formulations are constructed on the basis
of the finite dimensional approximations that differ in the way
the evolution of the fast eigenmodes is accounted for in the
performance objective and state constraints. The impact of
these differences on the ability of the predictive controller to
enforce state constraints satisfaction in the infinite-dimensional
system is analyzed. Finally, the MPC formulations are applied,
through simulation, to the problem of stabilizing an unstable
steady-state of a nonlinear model of a diffusion-reaction
process subject to state and control constraints.
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I. INTRODUCTION

Diffusion-reaction processes are characterized by signif-

icant spatial variations and nonlinearities due to the un-

derlying diffusion phenomena and complex reaction mech-

anisms, respectively. The dynamic models of diffusion-

reaction processes typically consist of parabolic partial

differential equation (PDE) systems whose spatial differ-

ential operators are characterized by a spectrum that can

be partitioned into a finite (possibly unstable) slow part

and an infinite stable fast complement [7]. The traditional

approach to control of linear/quasi-linear parabolic PDEs

involves the application of spatial discretization techniques

to the PDE system to derive systems of ordinary differential

equations (ODEs) that accurately describe the dynamics of

the dominant (slow) modes of the PDE system. These finite-

dimensional systems are subsequently used as the basis for

the synthesis of finite-dimensional controllers (e.g., see [4],

[15]). A potential drawback of this approach, especially for

quasi-linear parabolic PDEs, is that the number of modes

that should be retained to derive an ODE system that yields

the desired degree of approximation may be very large,

leading to the high-order controllers.

Motivated by these considerations, significant recent

work has focused on the development of a general frame-

work for the synthesis of low-order controllers for quasi-
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linear parabolic PDE systems – and other highly dissipa-

tive PDE systems that arise in the modeling of spatially-

distributed systems including fluid dynamic systems – on

the basis of low-order nonlinear ODE models derived

through a combination of Galerkin’s method (using analyti-

cal or empirical basis functions) with the concept of inertial

manifolds (e.g., see [6], [3], [2], [1], [10] and the book [5]

for results and references in this area).

The control methods proposed in the above works, how-

ever, do not address the issue of state constraints in the

controller design. Model Predictive Control (MPC), also

known as receding horizon control, is a popular control

method for handling constraints (both on manipulated in-

puts and state variables) within an optimal control setting.

Numerous research studies have investigated the properties

of model predictive controllers and led to a plethora of MPC

formulations that focus on a number of control-relevant is-

sues, including issues of closed–loop stability, performance,

implementation and constraint satisfaction (e.g., see [11],

[14], [13] for results and references in this area).

Few results are available on predictive control of dis-

tributed parameter systems. Contributions include analyzing

the predictive control problem on the basis of the infinite-

dimensional system using control Lyapunov functionals

(e.g., [12]), and the use of finite difference method (e.g.,

[9]) to derive approximate ODE models for MPC design.

In [8], we considered linear parabolic PDE systems and

derived computationally-efficient predictive control algo-

rithms that systematically handle the objectives of state and

input constraints satisfaction and stabilization of the infinite

dimensional system.

In this work, we focus on the development of

computationally-efficient predictive control algorithms for

nonlinear parabolic PDEs with state and control constraints

arising in the context of diffusion-reaction processes. The

paper is organized as follows: we first present a diffusion-

reaction process described by a nonlinear parabolic PDE

subject to input and state constraints. Galerkin’s method is

used to derive finite-dimensional systems that capture the

dominant dynamics of the parabolic PDE, which are subse-

quently used for controller design. Various MPC formula-

tions are constructed on the basis of the finite dimensional

approximations that differ in the way the evolution of the

fast eigenmodes is accounted for in the performance objec-

tive and state constraints. The various MPC formulations

are demonstrated, through simulation, to be successful in
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achieving the control objectives.

II. PREDICTIVE CONTROL OF DIFFUSION-REACTION

PROCESSES

Motivating example. In this section, we consider a repre-

sentative example of a diffusion-reaction system described

by a parabolic PDE of the following form:

∂x̄

∂t
=

∂2x̄

∂z2
+ βT (e

− γ

1 + x̄ − e−γ) − βU x̄

+ βU

m∑
i=1

bi(z)ui(t)

x̄(0, t) = 0, x̄(π, t) = 0, x̄(z, 0) = x0(z)

(1)

where x̄ denotes the dimensionless state of the system, βT

denotes a dimensionless heat of reaction, γ denotes a di-

mensionless activation energy, βU denotes a dimensionless

heat transfer coefficient, ui(t) denotes the manipulated input

and bi(z) is the actuator distribution function of the i-th
actuator, chosen to be bi(z) = 1/µ for z ∈ [zai−µ, zai +µ]
and bi(z) = 0 elsewhere in [0, π], where µ is a small

positive real number and zai is the center of the interval

where actuation is applied. The following typical values

are given to the process parameters: βT = 50, βU = 2
and γ = 4. For these values, the operating steady-state,

x̄(z, t) = 0, is an unstable one, as can be seen from Fig.1.

The control objective is to stabilize the state profile at the
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Fig. 1. Open-loop profile showing the instability of the x̄(z, t) = 0
steady-state.

unstable zero steady-state subject to the following input and

state constraints

umin
i ≤ ui ≤ umax

i (2)

χmin ≤
∫ π

0

r(z)x̄(z, t)dz ≤ χmax (3)

where umin
i = −10, umax

i = 10, for i = 1, 2, χmin =
−0.035 and χmax = 2. The state constraints distribution

function, r(·), is chosen to be r(z) = δ(z−zc) for z ∈ [0, π]
and zc = 1.156, which implies that the state constraints

are to be enforced only at a single point in the spatial

domain, i.e., −0.035 ≤ x̄(zc, t) ≤ 2. For this system,

we consider the first two eigenvalues as the dominant ones

and use two point control actuators (m = 2), with finite

support, centered at za1 = π/3 and za2 = 2π/3, to achieve

the control objective subject to the constraints of Eqs.2-3.

Galerkin’s method. To present our results, we first formu-

late the PDE of Eq.1 as an infinite dimensional system in

the Hilbert space H([0, π]; IR), with H being the space of

measurable functions defined on [0, π], with inner product

and norm:

(ω1, ω2) =
∫ π

0

(ω1(z), ω2(z))IRndz, ||ω1||2 = (ω1, ω1)
1
2

(4)

where ω1, ω2 are two elements of H([0, π]; IRn) and the

notation (·, ·)IRn denotes the standard inner product in IRn.

Defining the state function x(t) on the state-space H =
L2(0, π) as

x(t) = x̄(z, t), t > 0, 0 ≤ z ≤ π, (5)

the operator A as

Aφ =
d2φ

dz2
, 0 ≤ z ≤ π, (6)

where φ(z) is a smooth function on (0, π) with φ(0) = 0
and φ(π) = 0, with the following dense domain:

D(A) = {φ(z) ∈ L2(0, π) :

φ(z),
dφ(z)

dz
are absolutely continuous,

Aφ ∈ L2(0, π), φ(0) = 0 and φ(π) = 0},
(7)

and the input operator as:

Bu =
m∑

i=1

biui, (8)

the system of Eq.1 takes the form:

ẋ = Ax + F(x) + Bu, x(0) = x0 (9)

where x0 = x0(z). For the operator A, the eigenvalue

problem takes the form:
d2φj

dz2
= λjφj (10)

subject to

φj(0) = φj(π) = 0 (11)

The above eigenvalue problem can be solved analytically

and its solution yields

λj = −j2, φj(z) =

√
2
π

sin(j z), j = 1, . . . ,∞ (12)

Throughout the rest of the paper, the notation | · | will be

used to denote the standard Euclidian norm in IRn, while

the notation | · |Q will be used to denote the weighted

norm defined by |x|2Q = x′Qx, where Q is a positive-

definite matrix and x′ denotes the transpose of x. Finally

the notation ‖ · ‖2 will be used to denote the L2 norm (as

defined in Eq.4 above) associated with a finite or infinite

dimensional Hilbert space.

Next, we apply standard Galerkin’s method to the

infinite-dimensional system of Eq.9 to derive a finite-

dimensional system. Let Hs, Hf be modal subspaces of

A, defined as Hs = span{φ1, φ2, . . . , φm} and Hf =
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span{φm+1, φm+2, . . .} (the existence of Hs, Hf follows

from the properties of A). Defining the orthogonal projec-

tion operators, Ps and Pf , such that xs = Psx, xf = Pfx,

the state x of the system of Eq.9 can be decomposed as

x = xs + xf = Psx + Pfx (13)

Applying Ps and Pf to the system of Eq.9 and using the

above decomposition for x, the system of Eq.9 can be re-

written in the following equivalent form:

dxs

dt
= Asxs + Fs(xs, xf ) + Bsu,

dxf

dt
= Afxf + Ff (xs, xf ) + Bfu

xs(0) = Psx(0) = Psx0

xf (0) = Pfx(0) = Pfx0

(14)

where As = PsA, Bs = PsB, Af = PfA and Bf =
PfB. In the above system, As is a diagonal matrix of

dimension m×m of the form As = diag{λj} (λj include

all the possibly unstable eigenvalues of As) and Af is

an unbounded exponentially stable differential operator. In

the remainder of the paper, we will refer to the xs- and

xf -subsystems in Eq.14 as the slow and fast subsystems,

respectively.

Control problem formulation. We consider the problem

of asymptotic stabilization of the origin of the system of

Eq.9, subject to the following control and state constraints:

ẋ(t) = Ax(t) + F(x(t)) + Bu(t), x(0) = x0 (15)

umin
i ≤ ui(t) ≤ umax

i (16)

χmin ≤ (r, x(t)) ≤ χmax (17)

This problem will be addressed within an MPC framework

where the control, at state x and time t, is conventionally

obtained by solving, on-line, a finite-horizon constrained

optimal control problem of the form

P (x, t) : min{J(x, t, u(·)) | u(·) ∈ S} (18)

s.t. ẋ(τ) = Ax(τ) + F(x(τ)) + Bu(τ)

χmin ≤ (r, x(τ)) ≤ χmax, τ ∈ [t, t + T ]
(19)

where S = S(t, T ) is the family of piecewise continuous

functions (functions continuous from the right), with period

∆, mapping [t, t+T ] into U := {u ∈ IRm : umin
i ≤ ui ≤

umax
i , i = 1, · · · ,m}, and T is the specified horizon. A

control u(·) in S is characterized by the sequence u[k],
where u[k] := u(k∆), and satisfies u(t) = u[k] for all

t ∈ [k∆, (k + 1)∆). The performance index is given by∫ t+T

t

[
q‖xu(τ ;x, t)‖2

2 + |u(τ)|2R
]
dτ + F (x(t + T ))

(20)

where q > 0, R is a strictly positive definite matrix,

xu(τ) = x(τ ;x, t) denotes the solution of Eq.9, due to

control u, with initial state x at time t, and F (·) denotes

the terminal penalty. The minimizing control u0(·) ∈ S is

then applied to the system over the interval [k∆, (k +1)∆]

and the procedure is repeated indefinitely. This defines an

implicit model predictive control law

M(x) := u0(t;x, t) (21)

Remark 1: It is well known that the control law defined by

Eqs.18-21 is not necessarily stabilizing (even for the finite-

dimensional system) [13]. For finite-dimensional systems,

the issue of closed-loop stability is usually addressed by

means of imposing suitable penalties and constraints on the

state at the end of the optimization horizon (e.g., see [13] for

surveys of different approaches). For the simulation exam-

ple presented here, and for the choice of MPC parameters

and initial conditions, the closed–loop system under MPC

was found to be stabilizing; we therefore do not impose

stability constraints in the optimization problem, but focus

on the task of state constraint satisfaction.

One possible way to formulate the constrained nonlinear

MPC problem is to design it on the basis of the full system

of Eq.14. The control action is then obtained by solving the

following optimization problem:

min
u

∫ t+T

t

[
qs‖xs(τ)‖2

2 + qf‖xf (τ)‖2
2 + |u(τ)|2R

]
dτ

(22)
s.t. ẋs(τ) = Asxs(τ) + Fs(xs(τ), xf (τ)) + Bsu(τ)

ẋf (τ) = Afxf (τ) + Ff (xs(τ), xf (τ)) + Bfu(τ)
u(τ) ∈ U
χmin ≤ (r, x(τ)) ≤ χmax, τ ∈ [t, t + T ]

(23)

where qs, qf > 0 and R is a positive definite matrix. The

above formulation includes penalties on both the slow and

fast states and uses models that describe their evolution for

prediction purposes. The infinite dimensional nature of the

controller, however, renders it unsuitable for the purpose

of online implementation. We now present and compare

nonlinear MPC formulations that differ in the way the

state constraints are enforced and in the construction of the

performance functional in the optimization problem.

Low-order predictive control formulations. In this formu-

lation, the predictive controller is designed on the basis of

the low-order, finite-dimensional slow subsystem describ-

ing the evolution of the xs states (the fast subsystem is

neglected). Specifically, the nonlinear MPC law is obtained

by solving, in a receding horizon fashion, the following

optimization problem:

min
u

∫ t+T

t

[
qs‖xs(τ)‖2

2 + |u(τ)|2R
]
dτ (24)

s.t. ẋs(τ) = Asxs(τ) + Fs(xs(τ)) + Bsu(τ)
u(τ) ∈ U
χmin ≤ (r, xs(τ)) ≤ χmax, τ ∈ [t, t + T ]

(25)

To simplify the presentation of the results, we will work

with the amplitudes of the eigenmodes of the PDE of Eq.1.

Specifically, using Galerkin’s method, we derive the fol-

lowing high-order ODE system that describes the temporal
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evolution of the amplitudes of the first l eigenmodes:

ȧs(t) = Asas(t) + Fs(as(t), af (t)) + Bsu(t)

ȧf (t) = Afaf (t) + Ff (as(t), af (t)) + Bfu(t)
(26)

where as(t) = [a1(t) a2(t)]′, af (t) = [a3(t) · · · al(t)]′,
ai(t) ∈ IR is the modal amplitude of the i-th eigen-

mode, the notation a′
s denotes the transpose of as, u(t) =

[u1(t) u2(t)]′, the matrices As and Af are diagonal

matrices, given by As = diag{λi}, for i = 1, 2 and

Af = diag{λi}, for i = 3, · · · , l. Bs and Bf are a

2 × 2 and (l − 2) × m matrices, respectively whose (i, j)-
th element is given by Bij = (bj(z), φi(z)). Note that

x̄(z, t) =
∑l

i=1 ai(t)φi(z), xs(t) = a1(t)φ1 + a2(t)φ2,

xf (t) =
∑l

i=3ai(t)φi and that (xs(t), φi) = ai(φi, φi).
Using these projections, the state constraints of Eq.3 can be

expressed as constraints on the modal amplitudes as follows:

χmin ≤
2∑

i=1

ai(t)φi(zc) +
l∑

i=3

ai(t)φi(zc) ≤ χmax (27)

The MPC formulation of Eq.31, when written in terms of

the amplitudes of the eigenmodes takes the following form:

min
u

∫ t+T

t

[
qs|as(τ)|2 + |u(τ)|2R

]
dτ (28)

s.t. ȧs(τ) = Asas(τ) + Fs(as) + Bsu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
χmin ≤ Csas(τ) ≤ χmax, τ ∈ [t, t + T ]

(29)

where Cs = [φ1(zc) φ2(zc)] is a row vector. We now

proceed with the implementation of the predictive control

formulation of Eqs.28-29 and choose qs = 1000, R = rI ,

with r = 0.01, T = 0.0011 and l = 30. The resulting

program is solved using the MATLAB subroutine fmincon.

The control action is then implemented on the 30-th order

model of Eq.26 (higher-order approximation of the PDE

system led to identical results). For an initial condition

x̄(z, 0) = 0.04sin(z) + 0.0005sin(2z) + 0.07sin(3z), the

closed-loop state and manipulated input profiles under the

MPC controller of Eqs.28-29 are shown in Fig.2 and Figs.7-

8 (solid lines), respectively. It is clear that the controller

successfully stabilizes the state at the zero steady-state.

However, by examining Fig.6 (solid line), we observe that

the state at zc = 1.156 violates the lower constraint for some

time. The violation of the state constraint is a consequence

of neglecting the contribution of the af states to the full

state of the PDE in the MPC formulation.

Remark 2: Note that while the controller is designed only

on the basis of the slow modes, the stabilization of the

slow modes of the system leads to the stabilization of the

infinite dimensional system, since the remaining fast modes

are open–loop stable (for a similar result in the context of

linear parabolic PDE systems, see [8]).

For linear parabolic PDEs, low order predictive controller

formulations can be derived, which, upon being feasible,

guarantee stabilization and state constraint satisfaction of
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Fig. 2. Closed-loop state profile under the MPC formulation of Eqs.28-
29 with initial condition initial condition x̄(z, 0) = 0.04sin(z) +
0.0005sin(2z) + 0.07sin(3z) .
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Fig. 3. Closed-loop state profile under the MPC formulation of Eqs.30-
31 with initial condition x̄(z, 0) = 0.04sin(z) + 0.0005sin(2z) +
0.05sin(3z) and Smax = 1.9 and Smin = −0.034.

the infinite dimensional system (see, [8]). The key idea of

the approach is to tighten the constraints in the optimization

problem, and derive bounds on the initial conditions for

the fast states, such that the contribution of the fast states

to the state of the PDE does not result in violation of the

state constraints. The inherent coupling between the fast and

slow subsystems through the terms Fs(xs, xf ), Ff (xs, xf ),
however, significantly complicates the derivation of similar

results in the nonlinear setting. Nevertheless, the same

idea can be utilized in the context of nonlinear parabolic

PDEs, by implementing the reduced order MPC formulation

with “shrunk” state constraints and by reducing the initial

condition for the fast modes. Specifically, the nonlinear

MPC law is obtained by solving, in a receding horizon

fashion, the following optimization problem:

min
u

∫ t+T

t

[
qs‖xs(τ)‖2

2 + |u(τ)|2R
]
dτ (30)

s.t. ẋs(τ) = Asxs(τ) + Fs(xs(τ)) + Bsu(τ)
u(τ) ∈ U
Smin ≤ (r, xs(τ)) ≤ Smax, τ ∈ [t, t + T ]

(31)

where Smin ≥ χmin − α1 and Smax ≤ χmax + α2, where

α1, α2 are positive real numbers. The MPC formulation of

Eq.30-31, when written in terms of the amplitudes of the

eigenmodes takes the following form:
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min
u

∫ t+T

t

[
qs|as(τ)|2 + |u(τ)|2R

]
dτ (32)

s.t. ȧs(τ) = Asas(τ) + Fs(as) + Bsu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
Smin ≤ Csas(τ) ≤ Smax, τ ∈ [t, t + T ]

(33)

where Cs = [φ1(zc) φ2(zc)] is a row vector. The closed-

loop state and manipulated input profiles under the MPC

controller of Eqs.32-33 and with the initial condition

x̄(z, 0) = 0.04sin(z) + 0.0005sin(2z) + 0.05sin(3z) and

Smax = 1.9, Smin = −0.034 are shown in Fig.3 and Fig.6

(dashed line), and in Figs.7-8 (dashed lines). It is clear that

the controller successfully stabilizes the state at the zero

steady-state. Also, by examining Fig.6 (dashed line), we

observe that for the choice of initial condition of the fast

modes and the α1, α2 used in the example, the state at

zc = 1.156 does not violate the state constraints. Note that,

since the control action is computed based on the slow states

– the initial conditions for which are the same as in the

previous scenario – the controller implements control action

as before (the solid and the dashed lines are not discernible

in Figs.7-8).
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Fig. 4. Closed-loop state profile under the MPC formulation of Eqs.36-37
with initial x̄(z, 0) = 0.04sin(z) + 0.0005sin(2z) + 0.07sin(3z).
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Fig. 5. Closed-loop state profile under the MPC formulation of Eqs.38-
39 with initial condition x̄(z, 0) = 0.04sin(z) + 0.0005sin(2z) +
0.07sin(3z) and Smax = 1.9 and Smin = −0.034.

Higher-order predictive control formulation. In order to

account for the evolution of the fast states in the optimiza-

tion problem, we consider the following MPC formulation

with the objective function and constraints given by:

min
u

∫ t+T

t

[
qs‖xs(τ)‖2

2 + |u(τ)|2R
]
dτ (34)

s.t. ẋs(τ) = Asxs(τ) + Fs(xs(τ), xf (τ)) + Bsu(τ)
ẋf (τ) = Afxs(τ) + Ff (xs(τ), xf (τ)) + Bfu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
χmin ≤ (r, xs(τ) + xf (τ)) ≤ χmax

(35)

where τ ∈ [t, t + T ]. Note that even though the fast modes

appear explicitly in the state constraints equation, they do

not appear in the cost functional, keeping the computational

requirement relatively low. The MPC formulation above,
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Fig. 6. Closed-loop state profile at zc = 1.156 under the MPC
formulation of Eqs.28-29 (solid), under the MPC formulation of Eqs.32-33
(dashed), under the MPC formulation of Eqs.36-37 (dotted), and under the
MPC formulation of Eqs.38-39 (dashed-dotted).

when written using modal amplitudes, takes the following

form:

min
u

∫ t+T

t

[
qs|as(τ)|2 + |u(τ)|2R

]
dτ (36)

s.t. ȧs(τ) = Asas(τ) + Fs(as(τ), af (τ)) + Bsu(τ)
ȧf (τ) = Afas(τ) + Ff (as(τ), af (τ)) + Bfu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
χmin ≤ Csas(τ) + Cfaf (τ) ≤ χmax

(37)

where τ ∈ [t, t + T ], Cf = [φ3(zc) · · · φ30(zc)] is a row

vector and the MPC tuning parameters have the same values

used in the previous formulation.

Starting from the initial condition, x̄(z, 0) =
0.04sin(z) + 0.0005sin(2z) + 0.07sin(3z), Fig.4 and

Fig.6 (dotted lines) show the closed–loop evolution of

the states under the MPC formulation of Eqs.36-37. The

controller successfully stabilizes the state profile at the

zero steady-state and the state constraints are satisfied for

all times. The corresponding manipulated input profiles are

given in Figs.7-8.

Remark 3: Note that even though the optimization problem

is nonconvex, and the solution obtained may only represent

a local minimum, it does not detrimentally affect the task

of state constraint satisfaction, because state constraints are
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posed as explicit constraints in the optimization problem.

Even if a solution is not a global minimum (which, in

general it will not be), the feasibility of the constraints in

the optimization problem ensure that upon implementation

of this control action, the state constraints will be satisfied

for the infinite dimensional system.

High-order predictive control formulation based on two-
time-scale approximation. As evidenced by the examples

shown before, accounting for the evolution of the fast modes

is important for the purpose of satisfying state constraints.

The computational complexity associated with accounting

for the fast modes could be eased by approximating the

dynamics of the fast modes, while retaining the nonlinear

dynamics of the slow modes (so as to not adversely effect

the task of stabilization). One possible way of approxima-

tion is to neglect the nonlinearity in the equations describing

the evolution of the fast modes. This is because the term

Af behaves like 1/ε, where ε is a small parameter, and

therefore, Af is much larger than Ff and thus Ff can be

neglected from the equation (see [5] for more discussion and

analysis of this approximation). Using this approximation,

and shrinking the state constraints in the optimization to

account for the error induced due to this approximation,

the predictive control formulation takes the following form:

min
u

∫ t+T

t

[
qs|as(τ)|2 + |u(τ)|2R

]
dτ (38)

s.t. ȧs(τ) = Asas(τ) + Fs(as(τ), af (τ)) + Bsu(τ)
ȧf (τ) = Afaf (τ) + Bfu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
Smin ≤ Csas(τ) + Cfaf (τ) ≤ Smax

(39)

where τ ∈ [t, t + T ], Cf = [φ3(zc) · · · φ30(zc)] is a

row vector and the MPC tuning parameters have the same

values used in the previous formulation. For x̄(z, 0) =
0.04sin(z) + 0.0005sin(2z) + 0.07sin(3z), Smax = 1.9
and Smin = −0.034, Figs.5-8 (dash–dotted lines) show the

evolution of the closed–loop state and manipulated input

profiles under the MPC formulation of Eqs.38-39. It can

be seen that the controller successfully stabilizes the state

profile at the zero steady-state and that the state constraints

are satisfied for all time.
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